Pennaraptora (Latin penna "bird feather" + raptor "thief", from rapere "snatch"; a feathered bird-like predator) is a clade defined as the most recent common ancestor of Oviraptor philoceratops, Deinonychus antirrhopus, and Passer domesticus (the house sparrow), and all descendants thereof, by Foth et al., 2014.[1] The earliest known definitive member of this clade is Anchiornis, from the late Jurassic period of China, about 160 million years ago.

The clade "Aviremigia" was conditionally proposed along with several other apomorphy-based clades relating to birds by Jacques Gauthier and Kevin de Queiroz in a 2001 paper. Their proposed definition for the group was "the clade stemming from the first panavian with ... remiges and rectrices, that is, enlarged, stiff-shafted, closed-vaned (= barbules bearing hooked distal pennulae), pennaceous feathers arising from the distal forelimbs and tail".[2]

Temporal range:
Late JurassicPresent, 167–0 Ma
Conchoraptor in nest
Cast skeleton of Conchoraptor gracilis
Passer domesticus male (15)
House sparrow (Passer domesticus)
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Order: Saurischia
Suborder: Theropoda
Clade: Maniraptoriformes
Clade: Maniraptora
Clade: Pennaraptora
Foth et al., 2014

See also


  1. ^ Foth, Christian (2014). "New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers". Nature. 511 (7507): 79–82. doi:10.1038/nature13467. PMID 24990749.
  2. ^ Gauthier, J. and de Queiroz, K. (2001). "Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name 'Aves'". Pp. 7-41 in Gauthier, J. and L.F. Gall (eds.), New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom. New Haven: Peabody Museum of Natural History, Yale University. ISBN 0-912532-57-2.

Anchiornis is a type of small, four-winged paravian dinosaur. The genus Anchiornis contains only the type species Anchiornis huxleyi, named for its similarity to modern birds. Anchiornis fossils have been only found in Liaoning, China, in rocks dated to the late Jurassic period, about 160 million years ago. Anchiornis is known from hundreds of specimens, and given the exquisite preservation of some of these fossils, it became the first Mesozoic dinosaur species for which almost the entire life appearance could be determined, and an important source of information on the early evolution of birds. Anchiornis huxleyi translates to "T.H. Huxley's near-bird" in Latin.


Calamospondylus (meaning "quill vertebrae") was a theropod dinosaur genus. It lived during the Early Cretaceous, and its fossils were found in England. The type species, Calamospondylus oweni, was described anonymously by amateur paleontologist William D. Fox in 1866, but is based on fragmentary material. It has been part of a confusing taxonomic issue also involving Aristosuchus and Calamosaurus (which was also named "Calamospondylus", but then renamed). It may have been a primitive oviraptorosaurian.

Feathered dinosaur

Since scientific research began on dinosaurs in the early 1800s, they were generally believed to be closely related to modern reptiles such as lizards. The word "dinosaur" itself, coined in 1842 by paleontologist Richard Owen, comes from the Greek for "fearsome lizard". This view began to shift during the so-called dinosaur renaissance in scientific research in the late 1960s, and by the mid-1990s significant evidence had emerged that dinosaurs were much more closely related to birds, which descended directly from the theropod group of dinosaurs and are themselves a subgroup within the Dinosauria.

Understanding of the origin of feathers developed both as new fossils were discovered throughout the 2000s and 2010s and as technology has enabled scientists to study fossils more closely. Among non-avian dinosaurs, feathers or feather-like integument have been discovered in dozens of genera via both direct and indirect fossil evidence. Although the vast majority of feather discoveries have been in coelurosaurian theropods, feather-like integument has also been discovered in at least three ornithischians, suggesting that feathers may have been present on the last common ancestor of the Ornithoscelida, a dinosaur group including both theropods and ornithischians. It is possible that feathers first developed in even earlier archosaurs, in light of the discovery of highly feather-like pycnofibers in pterosaurs. Crocodilians also possess beta keratin similar to those of birds, which suggests that they evolved from common ancestral genes.


Jianianhualong (meaning "Jianianhua dragon") is a genus of troodontid theropod dinosaur from the Early Cretaceous of China. It contains a single species, Jianianhualong tengi, named in 2017 by Xu Xing and colleagues based on an articulated skeleton preserving feathers. The feathers at the middle of the tail of Jianianhualong are asymmetric, being the first record of asymmetrical feathers among the troodontids. Despite aerodynamic differences from the flight feathers of modern birds, the feathers in the tail vane of Jianianhualong could have functioned in drag reduction whilst the animal was moving. The discovery of Jianianhualong supports the notion that asymmetrical feathers appeared early in the evolutionary history of the Paraves.

Jianianhualong possesses a combination of traits seen in basal as well as traits seen in derived troodontids. This is consistent with its phylogenetically intermediate position among the troodontids. This mixture of traits shows a distinct spatial organization, with basal traits being present in the forelimbs and pelvis, and derived traits being present in the skull and hindlimbs. This may represent a case of mosaic evolution, where natural selection acts upon the form of the body in a modular way. Similar transitional patterns of traits are seen in the troodontid Sinusonasus, a close relative of Jianianhualong. Ecologically speaking, Jianianhualong and Sinusonasus are part of the considerable diversity of troodontids that is present within the Yixian Formation.


Maniraptora is a clade of coelurosaurian dinosaurs that includes the birds and the non-avian dinosaurs that were more closely related to them than to Ornithomimus velox. It contains the major subgroups Avialae, Deinonychosauria, Oviraptorosauria and Therizinosauria. Ornitholestes and the Alvarezsauroidea are also often included. Together with the next closest sister group, the Ornithomimosauria, Maniraptora comprises the more inclusive clade Maniraptoriformes. Maniraptorans first appear in the fossil record during the Jurassic Period (see Eshanosaurus), and are regarded as surviving today as living birds.


Maniraptoriformes is a clade of dinosaurs with pennaceous feathers and wings that contains ornithomimosaurs and maniraptors. This group was named by Thomas Holtz, who defined it as "the most recent common ancestor of Ornithomimus and birds, and all descendants of that common ancestor."


Nemegtomaia is a genus of oviraptorid dinosaur from what is now Mongolia that lived in the Late Cretaceous Period, about 70 million years ago. The first specimen was found in 1996, and became the basis of the new genus and species N. barsboldi in 2004. The original genus name was Nemegtia, but this was changed to Nemegtomaia in 2005, as the former name was preoccupied. The first part of the generic name refers to the Nemegt Basin, where the animal was found, and the second part means "good mother", in reference to the fact that oviraptorids are known to have brooded their eggs. The specific name honours the palaeontologist Rinchen Barsbold. Two more specimens were found in 2007, one of which was found on top of a nest with eggs, but the dinosaur had received its genus name before it was found associated with eggs.

Nemegtomaia is estimated to have been around 2 m (7 ft) in length, and to have weighed 40 kg (85 lb). As an oviraptorosaur, it would have been feathered. It had a deep, narrow, and short skull, with an arched crest. It was toothless, had a short snout with a parrot-like beak, and a pair of tooth-like projections on its palate. It had three fingers; the first was largest and bore a strong claw. Nemegtomaia is classified as a member of the oviraptorid subfamily Ingeniinae, and it the only known member of this group with a cranial crest. Though Nemegtomaia has been used to suggest that oviraptorosaurs were flightless birds, the clade is generally considered a group of non-avian dinosaurs.

The nesting Nemegtomaia specimen was placed on top of what was probably a ring of eggs, with its arms folded across them. None of the eggs are complete, but they are estimated to have been 5 to 6 cm (2 to 2.3 in) wide and 14 to 16 cm (5 to 6 in) long when intact. The specimen was found in a stratigraphic area that indicates Nemegtomaia preferred nesting near streams that would provide soft, sandy substrate and food. Nemegtomaia may have protected its eggs by covering them with its tail and wing feathers. The skeleton of the nesting specimen has damage that indicates it was scavenged by skin beetles. The diet of oviraptorids is uncertain, but their skulls are most similar to other animals that are known or thought to have been herbivorous. Nemegtomaia is known from the Nemegt and Baruungoyot Formations, which are thought to represent humid and arid environments that coexisted in the same area,

Origin of birds

The scientific question of within which larger group of animals birds evolved, has traditionally been called the origin of birds. The present scientific consensus is that birds are a group of theropod dinosaurs that originated during the Mesozoic Era.

A close relationship between birds and dinosaurs was first proposed in the nineteenth century after the discovery of the primitive bird Archaeopteryx in Germany. Birds and extinct non-avian dinosaurs share many unique skeletal traits. Moreover, fossils of more than thirty species of non-avian dinosaur have been collected with preserved feathers. There are even very small dinosaurs, such as Microraptor and Anchiornis, which have long, vaned, arm and leg feathers forming wings. The Jurassic basal avialan Pedopenna also shows these long foot feathers. Witmer in 2009 concluded that this evidence is sufficient to demonstrate that avian evolution went through a four-winged stage. Fossil evidence also demonstrates that birds and dinosaurs shared features such as hollow, pneumatized bones, gastroliths in the digestive system, nest-building and brooding behaviors.

Although the origin of birds has historically been a contentious topic within evolutionary biology, only a few scientists still debate the dinosaurian origin of birds, suggesting descent from other types of archosaurian reptiles. Within the consensus that supports dinosaurian ancestry, the exact sequence of evolutionary events that gave rise to the early birds within maniraptoran theropods is disputed. The origin of bird flight is a separate but related question for which there are also several proposed answers.


The Ornithomimosauria, ornithomimosaurs ("bird-mimic lizards") or ostrich dinosaurs are theropod dinosaurs which bore a superficial resemblance to modern ostriches. They were fast, omnivorous or herbivorous dinosaurs from the Cretaceous Period of Laurasia (now Asia, Europe and North America), as well as Africa and possibly Australia. The group first appeared in the Early Cretaceous and persisted until the Late Cretaceous. Primitive members of the group include Nqwebasaurus, Pelecanimimus, Shenzhousaurus, Hexing and Deinocheirus, the arms of which reached 2.4 m (8 feet) in length. More advanced species, members of the family Ornithomimidae, include Gallimimus, Struthiomimus, and Ornithomimus. Some paleontologists, like Paul Sereno, consider the enigmatic alvarezsaurids to be close relatives of the ornithomimosaurs and place them together in the superfamily Ornithomimoidea (see classification below).


Oviraptorosaurs ("egg thief lizards") are a group of feathered maniraptoran dinosaurs from the Cretaceous Period of what are now Asia and North America. They are distinct for their characteristically short, beaked, parrot-like skulls, with or without bony crests atop the head. They ranged in size from Caudipteryx, which was the size of a turkey, to the 8 metre long, 1.4 ton Gigantoraptor. The group (along with all maniraptoran dinosaurs) is close to the ancestry of birds. Analyses like those of Maryanska et al (2002) and Osmólska et al. (2004) suggest that they may represent primitive flightless birds. The most complete oviraptorosaur specimens have been found in Asia. The North American oviraptorosaur record is sparse.The earliest and most basal ("primitive") known oviraptorosaurs are Ningyuansaurus wangi, Protarchaeopteryx robusta and Incisivosaurus gauthieri, both from the lower Yixian Formation of China, dating to about 125 million years ago during the Aptian age of the early Cretaceous period. A tiny neck vertebra reported from the Wadhurst Clay Formation of England shares some features in common with oviraptorosaurs, and may represent an earlier occurrence of this group (at about 140 million years ago).


Paraves are a widespread group of theropod dinosaurs that originated in the Late Jurassic period. In addition to the extinct dromaeosaurids, troodontids, anchiornithids, and scansoriopterygids, the group also contains the avialans, among which are the over ten thousand species of living birds. Primitive members of Paraves are well-known for the possession of an enlarged claw on the second digit of the foot, which was held off the ground when walking in some species.


Scansoriopterygidae (meaning "climbing wings") is an extinct family of climbing and gliding maniraptoran dinosaurs. Scansoriopterygids are known from four well-preserved fossils, representing three species, unearthed in the Tiaojishan Formation fossil beds (dating to the mid-late Jurassic Period) of Liaoning and Hebei, China.

Scansoriopteryx heilmanni (and its likely synonym Epidendrosaurus ninchengensis) was the first non-avian dinosaur found that had clear adaptations to an arboreal or semi-arboreal lifestyle–it is likely that they spent much of their time in trees. Both specimens showed features indicating they were juveniles, which made it difficult to determine their exact relationship to other non-avian dinosaurs and birds. It was not until the description of Epidexipteryx hui in 2008 that an adult specimen was known. In 2015, the discovery of another, larger adult specimen belonging to the species Yi qi showed that scansoriopterygids were not only climbers but also had adaptations that could have been used for gliding flight.


Serikornis is a genus of small, feathered anchiornithid dinosaur from the Upper Jurassic Tiaojishan Formation of Liaoning, China. It is represented by the type species Serikornis sungei. Its name means "Ge Sun's silk bird", a reference to the plumulaceous-like body covering evident in the fossil. The specimen's nickname, "Silky", refers to the striking resemblance of the delicate hindlimb filaments to the modern Silky breed of domestic chicken.Serikornis, first described in August 2017, is noteworthy for the variety of feather types represented in its holotype, a single complete articulated skeleton preserved on a slab along with extensive integumentary structures. The specimen’s feather imprints include wispy bundles along the neck, short and symmetrical vaned feathers on the arms, and both fuzz and long pennaceous feathers on its hindlimbs. While its anatomy and integument share features with birds as well as derived dromaeosaurs such as Microraptor, cladistic analysis places the genus within the cluster of feathered dinosaurs near the origin of avians. It was unlikely to be a flier.


Xiaotingia is a genus of anchiornithid theropod dinosaur from early Late Jurassic deposits of western Liaoning, China, containing a single species, Xiaotingia zhengi.

Yi (dinosaur)

Yi is a genus of scansoriopterygid dinosaurs from the Late Jurassic of China. Its only species, Yi qi (Mandarin pronunciation: [î tɕʰǐ]; from Chinese: 翼; pinyin: yì; literally: "wing" and 奇; qí; "strange"), is known from a single fossil specimen of an adult individual found in Middle or Late Jurassic of Hebei, China, approximately 160 million years ago. It was a small, possibly tree-dwelling (arboreal) animal. Like other scansoriopterygids, Yi possessed an unusual, elongated third finger, that appears to have helped to support a membranous gliding plane made of skin. The planes of Yi qi were also supported by a long, bony strut attached to the wrist. This modified wrist bone and membrane-based plane is unique among all known dinosaurs, and might have resulted in wings similar in appearance to those of bats.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.