Passerine

A passerine is any bird of the order Passeriformes, which includes more than half of all bird species. Sometimes known as perching birds or – less accurately – as songbirds, passerines are distinguished from other orders of birds by the arrangement of their toes (three pointing forward and one back), which facilitates perching, amongst other features specific to their evolutionary history in Australaves.

With more than 140 families and some 6,600 identified species,[1] Passeriformes is the largest order of birds and among the most diverse orders of terrestrial vertebrates. Passerines are divided into three suborders: Acanthisitti (New Zealand wrens), Tyranni (suboscines) and Passeri (oscines).[2][3]

The passerines contain several groups of brood parasites such as the viduas, cuckoo-finches, and the cowbirds. Most passerines are omnivorous, while the shrikes are carnivorous.

The terms "passerine" and "Passeriformes" are derived from the scientific name of the house sparrow, Passer domesticus, and ultimately from the Latin term passer, which refers to sparrows and similar small birds.

Passerines
Temporal range: Eocene-Recent, 52.5–0 Ma
Passeriformes-01v01
Clockwise from top right: Palestine sunbird (Cinnyris osea), blue jay (Cyanocitta cristata), house sparrow (Passer domesticus), great tit (Parus major), hooded crow (Corvus cornix), southern masked weaver (Ploceus velatus)
Song of a purple-crowned fairywren (Malurus coronatus)
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Clade: Psittacopasserae
Order: Passeriformes
Linnaeus, 1758
Suborders

and see text

Diversity
Roughly 140 families, 6,600 species

Description

The order is divided into three suborders, Tyranni (suboscines), Passeri (oscines), and the basal Acanthisitti[4]. Oscines have the best control of their syrinx muscles among birds, producing a wide range of songs and other vocalizations (though some of them, such as the crows, do not sound musical to human beings); some such as the lyrebird are accomplished imitators. The acanthisittids or New Zealand wrens are tiny birds restricted to New Zealand, at least in modern times; they were long placed in Passeri; their taxonomic position is uncertain, although they seem to be a distinct and very ancient group.

PasserinePterylosis
Pterylosis or the feather tracts in a typical passerine

Most passerines are smaller than typical members of other avian orders. The heaviest and altogether largest passerines are the thick-billed raven and the larger races of common raven, each exceeding 1.5 kg (3.3 lb) and 70 cm (28 in). The superb lyrebird and some birds-of-paradise, due to very long tails or tail coverts, are longer overall. The smallest passerine is the short-tailed pygmy tyrant, at 6.5 cm (2.6 in) and 4.2 g (0.15 oz).

Anatomy

The foot of a passerine has three toes directed forward and one toe directed backward, called anisodactyl arrangement. This arrangement enables the passerine birds to perch upon vertical surfaces, such as trees and cliffs. The toes have no webbing or joining, but in some cotingas, the second and third toes are united at their basal third. The hind toe joins the leg at the same level as the front toes. The passeriformes have this toe arrangement in common with hunting birds like eagles and falcons.

The leg arrangement of passerine birds contains a special adaptation for perching. A tendon in the rear of the leg running from the underside of the toes to the muscle behind the tibiotarsus will automatically be pulled and tighten when the leg bends, causing the foot to curl and become stiff when the bird lands on a branch. This enables passerines to sleep while perching without falling off.[5][6]

Most passerine birds develop 12 tail feathers, although the superb lyrebird has 16.[7] Certain species of passerines have stiff tail feathers, which help the birds balance themselves when perching upon vertical surfaces. Some passerines, specifically in the family Ploceidae, are well known for their elaborate sexual ornaments, including extremely long tails. A well-known example is the long-tailed widowbird.

Eggs and nests

The chicks of passerines are altricial: blind, featherless, and helpless when hatched from their eggs. Hence, the chicks require extensive parental care. Most passerines lay coloured eggs, in contrast with nonpasserines, most of whose eggs are white except in some ground-nesting groups such as Charadriiformes and nightjars, where camouflage is necessary, and in some parasitic cuckoos, which match the passerine host's egg. Vinous-throated parrotbill has two egg colours, white and blue. This can prevent the brood parasitic Common cuckoo.

Clutches vary considerably in size: some larger passerines of Australia such as lyrebirds and scrub-robins lay only a single egg, most smaller passerines in warmer climates lay between two and five, while in the higher latitudes of the Northern Hemisphere, hole-nesting species like tits can lay up to a dozen and other species around five or six. The family Viduidae do not build their own nests, instead, they lay eggs in other birds' nests.

Origin and evolution

The evolutionary history of the passerine families and the relationships among them remained rather mysterious until the late 20th century. In many cases, passerine families were grouped together on the basis of morphological similarities that, it is now believed, are the result of convergent evolution, not a close genetic relationship. For example, the wrens of the Americas and Eurasia; those of Australia; and those of New Zealand look superficially similar and behave in similar ways, and yet belong to three far-flung branches of the passerine family tree; they are as unrelated as it is possible to be while remaining Passeriformes.[8]

Much research remains to be done, but advances in molecular biology and improved paleobiogeographical data gradually are revealing a clearer picture of passerine origins and evolution that reconciles molecular affinities, the constraints of morphology and the specifics of the fossil record.[9][10] The first passerines are now thought to have evolved in the Southern Hemisphere in the late Paleocene or early Eocene, around 50 million years ago.[3][10]

The initial split was between the New Zealand wrens (Acanthisittidae) and all other passerines, and the second split involved the Tyranni (suboscines) and the Passeri (oscines or songbirds). The latter experienced a great radiation of forms out of the Australian continent. A major branch of the Passeri, parvorder Passerida, expanded deep into Eurasia and Africa, where a further explosive radiation of new lineages occurred.[10] This eventually led to three major Passerida lineages comprising about 4,000 species, which in addition to the Corvida and numerous minor lineages make up songbird diversity today. Extensive biogeographical mixing happens, with northern forms returning to the south, southern forms moving north, and so on.

Fossil record

Earliest passerines

Superb lyrbird in scrub
Male superb lyrebird (Menura novaehollandiae): This very primitive songbird shows strong sexual dimorphism, with a peculiarly apomorphic display of plumage in males.

Perching bird osteology, especially of the limb bones, is rather diagnostic.[11] However, the early fossil record is poor because the first Passeriformes were apparently on the small side of the present size range, and their delicate bones did not preserve well. Queensland Museum specimens F20688 (carpometacarpus) and F24685 (tibiotarsus) from Murgon, Queensland, are fossil bone fragments initially assigned to Passeriformes.[12] However, the material is too fragmentary and their affinities have been questioned.[13] Several more recent fossils from the Oligocene of Europe, such as Wieslochia, Jamna, and Resoviaornis, are more complete and definitely represent early passeriforms, although their exact position in the evolutionary tree is not known.

From the Bathans Formation at the Manuherikia River in Otago, New Zealand, MNZ S42815 (a distal right tarsometatarsus of a tui-sized bird) and several bones of at least one species of saddleback-sized bird have recently been described. These date from the Early to Middle Miocene (Awamoan to Lillburnian, 19–16 mya).[14]

Early European passerines

Wieslochia
Wieslochia fossil

In Europe, perching birds are not too uncommon in the fossil record from the Oligocene onward, but most are too fragmentary for a more definite placement:

  • Wieslochia (Early Oligocene of Frauenweiler, Germany)
  • Jamna (Early Oligocene of Jamna Dolna, Poland)
  • Resoviaornis (Early Oligocene of Wola Rafałowska, Poland)
  • Passeriformes gen. et sp. indet. (Early Oligocene of Luberon, France) – suboscine or basal[15]
  • Passeriformes gen. et spp. indet. (Late Oligocene of France) – several suboscine and oscine taxa[16]
  • Passeriformes gen. et spp. indet. (Middle Miocene of France and Germany) – basal?[17]
  • Passeriformes gen. et spp. indet. (Sajóvölgyi Middle Miocene of Mátraszőlős, Hungary) – at least 2 taxa, possibly 3; at least one probably Oscines[18]
  • Passeriformes gen. et sp. indet. (Middle Miocene of Felsőtárkány, Hungary) – oscine?[19]
  • Passeriformes gen. et sp. indet. (Late Miocene of Polgárdi, Hungary) – Sylvioidea (Sylviidae? Cettiidae?)[20]

That suboscines expanded much beyond their region of origin is proven by several fossil from Germany such as a broadbill (Eurylaimidae) humerus fragment from the Early Miocene (roughly 20 mya) of Wintershof, Germany, the Late Oligocene carpometacarpus from France listed above, and Wieslochia, among others.[21][10] Extant Passeri super-families were quite distinct by that time and are known since about 12–13 mya when modern genera were present in the corvoidean and basal songbirds. The modern diversity of Passerida genera is known mostly from the Late Miocene onwards and into the Pliocene (about 10–2 mya). Pleistocene and early Holocene lagerstätten (<1.8 mya) yield numerous extant species, and many yield almost nothing but extant species or their chronospecies and paleosubspecies.

American fossils

In the Americas, the fossil record is more scant before the Pleistocene, from which several still-existing suboscine families are documented. Apart from the indeterminable MACN-SC-1411 (Pinturas Early/Middle Miocene of Santa Cruz Province, Argentina),[22] an extinct lineage of perching birds has been described from the Late Miocene of California, United States: the Palaeoscinidae with the single genus Paleoscinis. "Palaeostruthus" eurius (Pliocene of Florida) probably belongs to an extant family, most likely passeroidean.

Systematics and taxonomy

Corvida and Passerida were classified as parvorders in the suborder Passeri; in accord with the usual taxonomic practice, they would probably be ranked as infraorders. As originally envisioned in the Sibley-Ahlquist taxonomy, they contained, respectively, the large superfamilies Corvoidea and Meliphagoidea, as well as minor lineages, and the superfamilies Sylvioidea, Muscicapoidea, and Passeroidea.

The arrangement has been found to be oversimplified by more recent research. Since the mid-2000s, literally, dozens of studies are being published that try rather successfully to resolve the phylogeny of the passeriform radiation. For example, the Corvida in the traditional sense was a rather arbitrary assemblage of early and/or minor lineages of passeriform birds of Old World origin, generally from the region of Australia, New Zealand, and Wallacea. The Passeri, though, can be made monophyletic by moving some families about, but the "clean" three-superfamily-arrangement has turned out to be far more complex and it is uncertain whether future authors will stick to it.

Major "wastebin" families such as the Old World warblers and Old World babblers have turned out to be paraphyletic and are being rearranged. Several taxa turned out to represent highly distinct species-poor lineages, so new families had to be established, some of them – like the stitchbird of New Zealand and the Eurasian bearded reedlingmonotypic with only one living species.[23] In the Passeri alone, a number of minor lineages will eventually be recognized as distinct superfamilies. For example, the kinglets constitute a single genus with less than 10 species today but seem to have been among the first perching bird lineages to diverge as the group spread across Eurasia. No particularly close relatives of them have been found among comprehensive studies of the living Passeri, though they might be fairly close to some little-studied tropical Asian groups. Treatment of the nuthatches, wrens, and their closest relatives as a distinct super-family Certhioidea is increasingly considered justified; the same might eventually apply to the tits and their closest relatives.

This process is still continuing. Therefore, the arrangement as presented here is subject to change. However, it should take precedence over unreferenced conflicting treatments in family, genus, and species articles here.

Taxonomic list of Passeriformes families

Rock wren
New Zealand rock wren (Xenicus gilviventris), one of the two surviving species of suborder Acanthisitti

This list is in taxonomic order, placing related families next to one another. The families listed are those recognised by the International Ornithologists' Union (IOC).[1] The order and the division into infraorders, parvorders and superfamilies follows the phylogenetic analysis published by Carl Oliveros and colleagues in 2019.[24][a] The relationships between the families in the suborder Tyranni (suboscines) were all well determined but some of the nodes in Passeri (oscines) were unclear owing to the rapid splitting of the lineages.[24]

Suborder Acanthisitti

Pitta guajana-20030531B
Javan banded pitta (Hydrornis guajanus), an Old World suboscine.
Rupicola peruviana (male) -San Diego Zoo-8
Andean cock-of-the-rock (Rupicola peruvianus) a New World suboscine

Suborder Tyranni (Suboscines)

  • Infraorder Eurylaimides: Old World suboscines
  • Infraorder Tyrannides: New World suboscines
  • Parvorder Furariida
  • Parvorder Tyrannida

Suborder Passeri (Oscines)

Male stitchbird
Male stitchbird or hihi (Notiomystis cincta) showing convergence with honeyeaters
Regentbowerbirdmale
Male regent bowerbird (Sericulus chrysocephalus, Ptilonorhynchidae)
  • Infraorder Corvides
  • Superfamily Orioloidea[b]
  • Superfamily Malaconotoidea[c]
Goldcrest 1
Tiny goldcrest (Regulus regulus) belongs to a minor but highly distinct lineage of Passeri
  • Superfamily Corvoidea[d]
Acrocephalus dumetorum
Reed warblers, such as this Blyth's reed warbler (Acrocephalus dumetorum), are now in the Acrocephalidae
  • Infraorder Passerides
Eurasian blue tit Lancashire 2
blue tit (Cyanistes caeruleus) and its relatives stand well apart from rest of the Sylvioidea sensu lato
  • Parvorder Sylviida[e]
Brown-headed Nuthatch-27527-4c
Brown-headed nuthatch (Sitta pusilla), nuthatches can climb downwards head-first
  • Superfamily Locustelloidea
Einsiedlerdrossel
Hermit thrush (Catharus guttatus), like many Muscicapoidea a stout and cryptic bird with complex vocalizations.
  • Superfamily Sylvioidea
GouldianFinches
Like these male (right) and female Gouldian finches (Erythrura gouldiae), many Passeroidea are very colorful
  • Superfamily Aegithaloidea
Hirundo abyssinica
Lesser striped swallow (Cecropis abyssinica), showing some apomorphies of its ancient yet highly advanced lineage.
  • Parvorder Muscicapida
  • Superfamily Bombycilloidea
  • Superfamily Muscicapoidea
  • Superfamily Certhioidea
  • Parvorder Passerida

Phylogeny

Living Passeriformes based on the "Taxonomy in Flux family phylogenetic tree" by John Boyd.[28]

Notes

  1. ^ Oliveros et al (2009) use the list of families published by Dickinson and Christidis in 2014.[24][25] Oliveros et al include 10 families that are not included on the IOC list. These are not shown here. By contrast, the IOC list includes 6 families that are not present in Dickinson and Christidis. In 5 of these cases, the position of the additional family in the taxonomic order can be determined from the species included by Oliveros and colleagues in their analysis. No species in the family Teretistridae was sampled by Oliveros et al so its position is uncertain.[1][24]
  2. ^ The order of the families within the superfamily Orioloidea is uncertain.[24]
  3. ^ The order of the families within the superfamily Malaconotoidea is uncertain.[24]
  4. ^ The order of the families within the superfamily Corvoidea is uncertain.[24]
  5. ^ The taxanomic sequence of the superfamilies, Locustelloidea, Sylvioidea and Aegithaloidea is uncertain, although the order of the families within each of the superfamilies is well determined.[24]
  6. ^ The order of some of the families within the superfamily Emberizoidea is uncertain.[24]
  7. ^ The family Teretistridae (Cuban warblers) is tentatively placed here. The family was not included in the analysis published by Oliveros et al (2019).[24] Dickinson and Christidis (2014) considered the genus Teretistris Incertae sedis.[27] Barker et al (2013) found that Teretistridae is closely related to Zeledoniidae.[26]

References

  1. ^ a b c Gill, Frank; Donsker, David, eds. (2019). "Australasian robins, rockfowl, rockjumpers, Rail-babbler". World Bird List Version 9.2. International Ornithologists' Union. Retrieved 19 June 2019.
  2. ^ Barker, F.K. et al. (2002) A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc. Biol. Sci. 269, 295–308.
  3. ^ a b Ericson, P.G.; Christidis, L.; Cooper, A.; Irestedt, M.; Jackson, J.; Johansson, U.S.; Norman, J.A. (7 February 2002). "A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens". Proceedings of the Royal Society B. 269 (1488): 235–241. doi:10.1098/rspb.2001.1877. PMC 1690883. PMID 11839192.
  4. ^ Chatterjee, Sankar (2015). The Rise of Birds: 225 Million Years of Evolution. JHU Press. pp. 206–207. ISBN 9781421415901.
  5. ^ Stefoff, Rebecca (2008), The Bird Class, Marshall Cavendish Benchmark
  6. ^ Brooke, Michael and Birkhead, Tim (1991) The Cambridge Encyclopedia of Ornithology, Cambridge University Press ISBN 0521362059.
  7. ^ Jones, D. (2008). "Flight of fancy". Australian Geographic, (89), 18–19.
  8. ^ The name wren has been applied to other, unrelated birds in Australia and New Zealand. The 27 Australasian "wren" species in the family Maluridae are unrelated, as are the New Zealand wrens in the family Acanthisittidae; the antwrens in the family Thamnophilidae; and the wren-babblers of the families Timaliidae, Pellorneidae, and Pnoepygidae. For the monophyly of the "true wrens", Troglodytidae, see Barker, F. K. (May 2004). "Monophyly and relationships of wrens (Aves: Troglodytidae): a congruence analysis of heterogeneous mitochondrial and nuclear DNA sequence data" (PDF). Molecular Phylogenetics and Evolution. 31 (2): 486–504. doi:10.1016/j.ympev.2003.08.005. PMID 15062790. Archived from the original (PDF) on 14 July 2014.
  9. ^ Dyke, Gareth J.; Van Tuinen, Marcel (June 2004). "The evolutionary radiation of modern birds (Neornithes): Reconciling molecules, morphology and the fossil record". Zoological Journal of the Linnean Society. 141 (2): 153–177. doi:10.1111/j.1096-3642.2004.00118.x.
  10. ^ a b c d Claramunt, S.; Cracraft, J. (2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Science Advances. 1 (11). doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  11. ^ See e.g. Boles (1997), Manegold et al. (2004), Mayr & Manegold (2006)
  12. ^ Boles (1997)
  13. ^ Mayr, G (2013). "The age of the crown group of passerine birds and its evolutionary significance–molecular calibrations versus the fossil record". Systematics and Biodiversity. 11 (1). doi:10.1080/14772000.2013.765521.
  14. ^ Worthy et al. (2007)
  15. ^ Specimen SMF Av 504. A flattened right hand of a passerine perhaps 10 cm long overall. If suboscine, perhaps closer to Cotingidae than to Eurylaimides: Roux (2002), Mayr & Manegold (2006)
  16. ^ Hugueney et al. (2003), Mayr & Manegold (2006)
  17. ^ Specimens SMF Av 487–496; SMNS 86822, 86825-86826; MNHN SA 1259–1263: tibiotarsus remains of small, possibly basal Passeriformes: Manegold et al. (2004)
  18. ^ A partial coracoid of a probable Muscicapoidea, possibly Turdidae; distal tibiotarsus and tarsometatarsus of a smallish to mid-sized passerine that may be the same as the preceding; proximal ulna and tarsometatarsus of a Paridae-sized passerine: Gál et al. (1998–1999, 2000)
  19. ^ A humerus diaphysis piece of a swallow-sized passerine: Hír et al. (2001)
  20. ^ Hír et al. (2001)
  21. ^ Manegold et al. (2004)
  22. ^ Distal right humerus, possibly suboscine: Noriega & Chiappe (1991, 1993)
  23. ^ The former does not even have recognized subspecies, while the latter is one of the most singular birds alive today. Good photos of a bearded reedling are for example here Archived 16 October 2007 at the Wayback Machine and here.
  24. ^ a b c d e f g h i j Oliveros, C.H.; et al. (2019). "Earth history and the passerine superradiation". Proceedings of the National Academy of Sciences of the United States. 116 (16): 7916–7925. doi:10.1073/pnas.1813206116.
  25. ^ Dickinson, E.C.; Christidis, L., eds. (2014). The Howard & Moore Complete Checklist of the Birds of the World. Volume 2: Passerines (4th ed.). Eastbourne, UK: Aves Press. ISBN 978-0-9568611-2-2.
  26. ^ a b Barker, F.K.; Burns, K.J.; Klicka, J.; Lanyon, S.M.; Lovette, I.J. (2013). "Going to extremes: contrasting rates of diversification in a recent radiation of New World passerine birds". Systematic Biology. 62 (2): 298–320. doi:10.1093/sysbio/sys094.
  27. ^ Dickinson, E.C.; Christidis, L., eds. (2014). The Howard & Moore Complete Checklist of the Birds of the World. Volume 2: Passerines (4th ed.). Eastbourne, UK: Aves Press. p. 358. ISBN 978-0-9568611-2-2.
  28. ^ John Boyd. "Taxonomy in Flux family phylogenetic tree" (PDF). Retrieved 17 December 2015.

Sources

External links

Acanthizidae

The Acanthizidae, also known as the Australasian warblers, are a family of passerine birds which include gerygones, thornbills, and scrubwrens. The Acanthizidae consists of small to medium passerine birds, with a total length varying between 8 and 19 centimetres (3.1 and 7.5 in). They have short rounded wings, slender bills, long legs, and a short tail. Most species have olive, grey, or brown plumage, although some have patches of a brighter yellow. The weebill is the smallest species of acanthizid, and the smallest Australian passerine; the largest is the pilotbird.

Baby Jay

Baby Jay is one of the mascots of the University of Kansas's sports teams. Baby and best friend Big Jay are Jayhawks. Baby Jay was created by student Amy Sue Hurst and "hatched" at half-time of KU's Homecoming victory in football over Kansas State University on October 9, 1971, and has served as a mascot ever since.

Bunting (bird)

The buntings are a group of Old World passerine birds forming the genus Emberiza, the only genus in the family Emberizidae. They are seed-eating birds with stubby, conical bills.

Gnatcatcher

The 15 to 20 species of small passerine birds in the gnatcatcher family occur in North and South America (except for the far south and the high Andean regions). Most species of this mainly tropical and subtropical group are resident, but the blue-grey gnatcatcher of the United States and southern Canada migrates south in winter. They are close relatives of the wrens.

Grosbeak

Grosbeak is a form taxon containing various species of seed-eating passerine birds with large beaks. Although they all belong to the superfamily Passeroidea, these birds are not part of a natural group but rather a polyphyletic assemblage of distantly related songbirds. Some are cardueline finches in the family Fringillidae, while others are cardinals in the family Cardinalidae; one is a member of the weaver family Ploceidae. The word "grosbeak", first applied in the late 1670s, is a partial translation of the French grosbec, where gros means "large" and bec means "beak".The following is a list of grosbeak species, arranged in groups of closely related genera. These genera are more closely related to smaller-billed birds than to other grosbeaks. The single exception are the three genera of "typical grosbeak finches", which form a group of closest living relatives and might thus be considered the "true" grosbeaks.

List of birds of Japan

This is a list of the bird species recorded in Japan. The avifauna of Japan include a total of 721 species, of which 16 are endemic, and 39 have been introduced by humans.

This list's taxonomic treatment (designation and sequence of orders, families and species) and nomenclature (common and scientific names) follow the conventions of The Clements Checklist of Birds of the World, 2018 edition.The following tags highlight several categories of occurrence other than regular migrants and non-endemic residents.

(A) Accidental – a species that rarely or accidentally occurs in Japan (also called a vagrant)

(E) Endemic – a species endemic to Japan

(I) Introduced – a species introduced to Japan as a consequence, direct or indirect, of human actions

Mockingbird

Mockingbirds are a group of New World passerine birds from the Mimidae family. They are best known for the habit of some species mimicking the songs of other birds and the sounds of insects and amphibians, often loudly and in rapid succession. There are about 17 species in three genera. These do not appear to form a monophyletic lineage: Mimus and Nesomimus are quite closely related; their closest living relatives appear to be thrashers, such as the sage thrasher. Melanotis is more distinct because it seems to represent a very ancient basal lineage of Mimidae.The only mockingbird commonly found in North America is the northern mockingbird (Mimus polyglottos). The Greek word polyglottos means multiple languages.

Near passerine

Near passerine or higher land-bird assemblage are terms of traditional, pre-cladistic taxonomy that have often been given to tree-dwelling birds or those most often believed to be related to the true passerines (order Passeriformes) due to ecological similarities; the group corresponds to some extent with the Anomalogonatae of Alfred Henry Garrod.

Passerellidae

The Passerellidae (New World sparrows or American sparrows) are a large family of seed-eating passerine birds with distinctively finch-like bills. It contains 136 species divided into 28 genera. The American Ornithological Society split the family from Emberizidae (Old World buntings) in 2017.

Penduline tit

The penduline tits constitute a family of small passerine birds, related to the true tits. All but the verdin make elaborate bag nests hanging from trees (whence "penduline", hanging), usually over water.

Satinbird

The satinbirds or cnemophilines, are a family, Cnemophilidae of passerine birds which consists of three species found in the mountain forests of New Guinea. They were originally thought to be part of the birds-of-paradise family Paradisaeidae until genetic research suggested that the birds are not closely related to birds-of-paradise at all and are perhaps closer to berry peckers and longbills (Melanocharitidae). The current evidence suggests that their closest relatives may be the cuckoo-shrikes (Campephagidae).

Snow bunting

The snow bunting (Plectrophenax nivalis) is a passerine bird in the family Calcariidae. It is an Arctic specialist, with a circumpolar Arctic breeding range throughout the northern hemisphere. There are small isolated populations on a few high mountain tops south of the Arctic region, including the Cairngorms in central Scotland and the Saint Elias Mountains on the southern Alaska-Yukon border, and also Cape Breton Highlands. The snow bunting is the most northerly recorded passerine in the world.

Songbird

A songbird is a bird belonging to the clade Passeri of the perching birds (Passeriformes). Another name that is sometimes seen as a scientific or vernacular name is Oscines, from Latin oscen, "a songbird". This group contains 5000 or so species found all over the world, in which the vocal organ typically is developed in such a way as to produce a diverse and elaborate bird song.

Songbirds form one of the two major lineages of extant perching birds, the other being the Tyranni, which are most diverse in the Neotropics and absent from many parts of the world. The Tyranni have a simpler syrinx musculature, and while their vocalizations are often just as complex and striking as those of songbirds, they are altogether more mechanical sounding. There is a third perching bird lineage, the Acanthisitti from New Zealand, of which only two species remain alive today.

Some evidence suggests that songbirds evolved 50 million years ago in the part of Gondwana that later became India, Sri Lanka, Australia, New Zealand, New Guinea and Antarctica, before spreading around the world.

Sylviidae

Sylviidae is a family of passerine birds that includes the typical warblers, parrotbills, the wrentit, and a number of babblers formerly placed within the Old World babbler family. They are found in Eurasia, Africa, and the west coast of North America.

Sylvioidea

Sylvioidea is a superfamily of passerine birds, one of at least three major clades within the Passerida along with the Muscicapoidea and Passeroidea. It contains about 1300 species including the Old World warblers, Old World babblers, swallows, larks and bulbuls. Members of the clade are found worldwide, but fewer species are present in the Americas.

The Dog and the Sparrow

"The Dog and the Sparrow" is a story by the Brothers Grimm, told in their book Kinder- und Hausmärchen as KHM58. The original name is Der Hund und der Sperling.

Thrush (bird)

The thrushes are a family, Turdidae, of passerine birds with a worldwide distribution. The family was once much larger before biologists determined the subfamily Saxicolinae, which includes the chats and European robins, were Old World flycatchers. Thrushes are small to medium-sized ground living birds that feed on insects, other invertebrates and fruit. Some unrelated species around the world have been named after thrushes due to their similarity to birds in this family.

Treecreeper

The treecreepers are a family, Certhiidae, of small passerine birds, widespread in wooded regions of the Northern Hemisphere and sub-Saharan Africa. The family contains ten species in two genera, Certhia and Salpornis. Their plumage is dull-coloured, and as their name implies, they climb over the surface of trees in search of food.

Tyranni

The Tyranni (suboscines) are a clade of passerine birds that includes more than 1,000 species, the large majority of which are South American. It is named after the type genus Tyrannus.

These have a different anatomy of the syrinx musculature than the oscines (songbirds of the larger suborder Passeri), hence its common name of suboscines. The available morphological, DNA sequence, and biogeographical data, as well as the (scant) fossil record, agree that these two major passerine suborders are evolutionarily distinct clades.

Passeriformes classification
Acanthisitti

Acanthisittidae

Eupasseres
Tyranni
Eurylaimides

?Sapayoidae

Calyptomenidae

Pittidae

Philepittidae

Eurylaimidae

Tyrannides
Tyrannida

Pipridae

Cotingidae

Tityridae

Oxyruncidae

Onychorhynchidae

Tyrannidae

Pipritidae

Platyrinchidae

Tachurididae

Rhynchocyclidae

Furnariida

Melanopareiidae

Thamnophilidae

Conopophagidae

Grallariidae

Rhinocryptidae

Formicariidae

Furnariidae

Passeri
Menurides

Atrichornithidae

Menuridae

Euoscines
Climacterides

Ptilonorhynchidae

Climacteridae

Meliphagides

Maluridae

Dasyornithidae

Pardalotidae

Meliphagidae

Orthonychides

Orthonychidae

Pomatostomidae

Corvides

Cinclosomatidae

Campephagidae

Neosittidae

Mohouidae

Orioloidea

Eulacestomidae

Psophodidae

Falcunculidae

Oreoicidae

Paramythiidae

Pteruthiidae

Vireonidae

Pachycephalidae

Oriolidae

Malaconotoidea

Machaerirhynchidae

Artamidae

Rhagologidae

Platysteiridae

Vangidae

Aegithinidae

Pityriaseidae

Malaconotidae

Corvoidea

?Dicruridae

Rhipiduridae

Lamproliidae

Monarchidae

Laniidae

Corvidae

Ifritidae

Melampittidae

Corcoracidae

Paradisaeidae

Passerides
Melanocharitida

Melanocharitidae

Cnemophilida

Cnemophilidae

Petroicida

Petroicidae

Notiomystidae

Callaeidae

Eupetida

Picathartidae

Chaetopidae

Eupetidae

Core Passerides

Core Passerides
Sylviida
Paroidea

Stenostiridae

Hyliotidae

Remizidae

Paridae

Sylvioidea

Nicatoridae

Panuridae

Alaudidae

Macrosphenidae

Cisticolidae

Pnoepygidae

Acrocephalidae

Locustellidae

Donacobiidae

Bernieridae

Hirundinidae

Pycnonotidae

Phylloscopidae

Cettiidae

Hyliidae

Aegithalidae

Sylviidae

Paradoxornithidae

Zosteropidae

Timaliidae

Pellorneidae

Leiothrichidae

Muscicapida
Reguloidea

Regulidae

Bombycilloidea

Elachuridae

Mohoidae

Ptiliogonatidae

Bombycillidae

Dulidae

Hypocoliidae

Certhioidea

Tichodromadidae

Sittidae

Certhiidae

Troglodytidae

Polioptilidae

Muscicapoidea

Cinclidae

Turdidae

Muscicapidae

Buphagidae

Mimidae

Sturnidae

Passerida

Promeropidae

Arcanatoridae

Dicaeidae

Nectariniidae

Urocynchramidae

Irenidae

Chloropseidae

Peucedramidae

Prunellidae

Estrild clade

Ploceidae

Viduidae

Estrildidae

Passerid clade

Passeridae

Motacillidae

Fringillidae

Calcariidae

Rhodinocichlidae

Emberizidae

Passerellidae

?Zeledonia

?Teretistris

Phaenicophilidae

Icteridae

Parulidae

Mitrospingidae

Cardinalidae

Thraupidae

Birds (class: Aves)
Anatomy
Behaviour
Evolution
Fossil birds
Human interaction
Lists
Neornithes

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.