Paraves are a widespread group of theropod dinosaurs that originated in the Late Jurassic period. In addition to the extinct dromaeosaurids, troodontids, anchiornithids, and scansoriopterygids, the group also contains the avialans, among which are the over ten thousand species of living birds.[1] Primitive members of Paraves are well-known for the possession of an enlarged claw on the second digit of the foot, which was held off the ground when walking in some species.[2]

Temporal range:
Late JurassicPresent,
Microraptor gui holotype
Fossil specimen of a Microraptor gui
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Order: Saurischia
Suborder: Theropoda
Clade: Pennaraptora
Clade: Paraves
Sereno, 1997


Like other theropods, all paravians are bipedal, walking on their two hind legs.[3]

The teeth of primitive paravians were curved and serrated, but not blade-like except in some specialized species such as Dromaeosaurus albertensis. The serrations on the front edge of dromaeosaurid and troodontid teeth were very small and fine, while the back edge had serrations which were very large and hooked.[4]

Most of the earliest paravian groups were carnivorous, though some smaller species (especially among the troodontids and early avialans) are known to have been omnivores, and it has been suggested that an omnivorous diet was the ancestral state for this group, with strict carnivory evolving in some specialized lineages.[5][4] Fossils also suggest that legs and feet covered with feathers was an ancestral condition, possibly having originated in the Coelurosauria, even if this trait was later lost in more advanced birds.[6]


Paravians generally have long, winged forelimbs, though these have become smaller in many flightless species and some extinct lineages that evolved before flight. The wings usually bore three large, flexible, clawed fingers in early forms.[4] The fingers became fused and stiffened and the claws highly reduced or lost in some advanced lineages. An increasingly asymmetric wrist joint, a trend that can be traced back to primitive coelurosaurs, allowed the forelimbs to elongate and an elaboration of their plumage, traits that made the evolution of flapping flight possible.[7]

Many early members of Paraves had both well-developed wings and long feathers on the hind legs, which in some cases, formed a second set of airfoils. These species, most famously represented by Microraptor gui, have often been referred to as "four winged dinosaurs".[8][9][10] Though it has been suggested that these hind wings would have prevented some paravians from getting around on the ground, and that they must have lived in trees, there is very little evidence that any of the earliest paravians were capable of climbing. This apparent paradox was addressed by later studies which showed that early paravians like Microraptor were capable of flapping flight and powered launching from the ground into the air without relying on climbing. Microraptor in particular also seems to represent a case of flight evolving independently of the bird lineage within Paraves.[11]

Feet and sickle claw

Most theropods walked with three toes contacting the ground, but fossilized footprint tracks confirm that many basal paravians, including dromaeosaurids, troodontids, and some early avialans, held the second toe off the ground in a hyperextended position, with only the third and fourth toes bearing the weight of the animal. This is called functional didactyly.[2] The enlarged second toe bore an unusually large, curved sickle-shaped claw (held off the ground or 'retracted' when walking). This claw was especially large and flattened from side to side in the large-bodied predatory eudromaeosaurs.[12] In these early species, the first toe (hallux) was usually small and angled inward toward the center of the body, but only became fully reversed in more specialized members of the bird lineage.[4] One species, Balaur bondoc, possessed a first toe which was highly modified in parallel with the second. Both the first and second toes on each foot of B. bondoc were held retracted and bore enlarged, sickle-shaped claws.[13]

Deinonychus patte arrière gauche
Deinonychus "sickle claw"

One of the best-known features of paravians is the presence of an enlarged and strongly curved "sickle claw" on a hyper-extendible second toe, modified to hold the sickle claw clear of the ground when walking, most notably developed in the dromaeosaurids and troodontids. While this characteristic claw and its associated modifications to the anatomy of the foot (such as a shortened metatarsus in eudromaeosaurs) had been known since the mid-20th century, their possible functions were the subject mainly of speculation, and few actual studies were published. Initial speculation regarded the claws as slashing implements used to disembowel large prey. In this scenario, the shortened upper foot would serve as an anchor point for powerful tendons to improve kicking ability. However, subsequent studies of the actual claw shape showed that the underside of the claw was only weakly keeled and would not have been an effective cutting instrument. Instead, it appeared to be more of a hooking implement. Manning et al. suggested in 2006 that the claws were similar to crampons and were used for climbing, and in the case of larger species or individuals, climbing up the flanks of very large prey.[14]

A larger study of sickle-claw function, published in 2011 by Fowler and colleagues, concluded that the earlier study by Manning and colleagues was correct and that the "sickle claws" would have been ineffective as cutting weapons. They compared the claw and overall foot anatomy of various primitive species with modern birds to shed light on their actual function. Fowler and colleagues showed that many modern predatory birds also have enlarged claws on the second toes. In modern raptors, these claws are used to help grip and hold prey of sizes smaller than or equal to the predator, while the birds use their body weight to pin their prey to the ground and eat it alive.[4] Fowler and colleagues suggested that this behavior is entirely consistent with the anatomy of advanced dromaeosaurids like Deinonychus, which had slightly opposing first toes and strong tendons in the toes and foot. This makes it likely that advanced dromaeosaurids also used their claws to puncture and grip their prey to aid in pinning it to the ground, while using shallow wing beats and tail movements to stabilize themselves.[4] Other lines of evidence for this behavior include teeth which had large, hooked serrations only on the back edge (useful in pulling flesh upward rather than slicing it) and large claws on the wings (for greater maneuvering of prey while mantling it with the wings).[4]

In more primitive dromaeosaurids and in troodontids, the feet were not as specialized and the claws were not as large or as hooked. Additionally, the toe joints allowed more range of motion than the simple up-down movements of advanced dromaeosaurids. This makes it likely that these species specialized in smaller prey that could be pinned using only the inner toes, not requiring the feet to be as strong or sturdy.[4]

Dichotomy in body sizes

The most extreme examples of miniaturization and progenesis are found in Paraves.[15] The ancestors of Paraves first started to shrink in size in the early Jurassic 200 million years ago, and fossil evidence shows that this theropod line evolved new adaptations four times faster than other groups of dinosaurs,[16] and was shrinking 160 times faster than other dinosaur lineages were growing.[17] Turner et al. (2007) suggested that extreme miniaturization was ancestral for the clade, whose common ancestor has been estimated to have been around 65 centimeters long and 600-700 grams in mass. In Eumaniraptora, both Dromaeosauridae and Troodontidae went later through four independent events of gigantism, three times in dromaeosaurids and once in troodontids, while the body mass continued to decrease in many forms within Avialae.[18] Fossils show that all the earliest members of Paraves found to date started out as small, while Troodontidae and Dromaeosauridae gradually increased in size during the Cretaceous period.[18]


















Cladogram following the results of a phylogenetic study by Lefèvreet al., 2017.[19]

Paraves is a branch-based clade defined to include all dinosaurs which are more closely related to birds than to oviraptorosaurs. The ancestral paravian is the earliest common ancestor of birds, dromaeosaurids, and troodontids which was not also ancestral to oviraptorosaurs. Paravians comprises three major sub-groups: Avialae, including Archaeopteryx and modern birds, as well as the dromaeosaurids and troodontids, which may or may not form a natural group.

The name 'Paraves' (Greek par(a):near + Latin aves, plural of avis:bird) was coined by Paul Sereno in 1997.[20] The clade was defined by Sereno in 1998 as a branch-based clade containing all Maniraptora closer to Neornithes (which includes all the birds living in the world today) than to Oviraptor.[21]

In 1997, a node-based clade called Eumaniraptora ("true maniraptorans") was named by Padian, Hutchinson and Holtz. They defined their clade to include only avialans and deinonychosaurs. Paraves and Eumaniraptora are generally considered to be synonyms, though a few phylogenetic studies suggest that the two groups have a similar but not identical content; Agnolín and Novas (2011) recovered scansoriopterygids and alvarezsaurids as paravians that were not eumaniraptorans,[22] while Turner, Makovicky and Norell (2012) recovered Epidexipteryx as the only known non-eumaniraptoran paravian.[1] A nearly identical definition, "the theropod group that includes all taxa closer to Passer than to Dromaeosaurus", was used by Agnolín and Novas (2013) for their clade Averaptora.[23]

Since the 1960s, the dromaeosaurids and troodontids have often been classified together in a group or clade named the Deinonychosauria, initially based primarily on the presence of a retractable second toe with sickle-claw (now also known to be present in some avialans). The name Deinonychosauria was coined by Ned Colbert and Dale Russell in 1969, and defined as a clade (all theropods closer to dromaeosaurids than to birds) by Jacques Gauthier in 1986. However, several more recent studies have cast doubt on the hypothesis that dromaeosaurids and troodontids were more closely related to each other than either was to birds, instead finding that troodontids were more closely related to birds than to dromaeosaurids.[24][25] Because Deinonychosauria was originally defined as all animals closer to dromaeosaurids than to birds without specific reference to troodontids, this would render Deinonychosauria a synonym of Dromaeosauridae.[25]

In 2015 Chatterjee created Tetrapterygidae in the second edition of his book The Rise of Birds: 225 Million Years of Evolution, where he included Microraptor, Xiaotingia, Aurornis, and Anchiornis; together they were proposed to be the sister group of the Avialae.[26] Paraves, Eumaniraptora and Averaptora are generally considered to be synonyms. Deinonychosauria is a synonym of Dromaeosauridae if troodontids are closer to Avialae as now seems likely. Tetrapterygidae is a polyphyletic grouping of four-winged basal paravian genera.

Origin and early evolution

Paravians diverged from other maniraptorans no later than 160 Mya; some 65 My later, the ancestors of modern birds diverged from other paravians at approximately 95 Mya.[27]

Other than the crown group of modern birds, which are direct descendants in the stem lineage of Paraves, there are no extant survivors or genetic material, so their entire phylogeny is inferred only from the fossil record.[28] The prototypical fossil is Archaeopteryx, of which 11 whole or partial examples have been found.[29]

See also


  1. ^ a b Alan Hamilton Turner, Peter J. Makovicky and Mark Norell (2012). "A review of dromaeosaurid systematics and paravian phylogeny". Bulletin of the American Museum of Natural History. 371: 1–206. doi:10.1206/748.1.
  2. ^ a b Li, Rihui; Lockley, M.G.; Makovicky, P.J.; Matsukawa, M.; Norell, M.A.; Harris, J.D.; Liu, M. (2007). "Behavioral and faunal implications of Early Cretaceous deinonychosaur trackways from China". Naturwissenschaften. 95 (3): 185–91. Bibcode:2008NW.....95..185L. doi:10.1007/s00114-007-0310-7. PMID 17952398.
  3. ^ Mayr, G. (Oct 2016). Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance (1 ed.). p. Ch. 2. ISBN 978-1119020769.
  4. ^ a b c d e f g h Fowler, D.W.; Freedman, E.A.; Scannella, J.B.; Kambic, R.E. (2011). "The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds". PLoS ONE. 6 (12): e28964. Bibcode:2011PLoSO...628964F. doi:10.1371/journal.pone.0028964. PMC 3237572. PMID 22194962.
  5. ^ Zanno, L.E.; Makovicky, P.J. (2011). "Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution". Proc Natl Acad Sci USA. 108 (1): 232–237. Bibcode:2011PNAS..108..232Z. doi:10.1073/pnas.1011924108. PMC 3017133. PMID 21173263.
  6. ^ 125-Million-Year-Old Biplanes: New Evidence Suggests the Earliest Bird Species Had Feathers on their Hind Limbs
  7. ^ The asymmetry of the carpal joint and the evolution of wing folding in maniraptoran theropod dinosaurs
  8. ^ Hu, Dongyu; Lianhi, Hou; Zhang, Lijun; Xu, Xing (2009). "A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus". Nature. 461 (7264): 640–643. Bibcode:2009Natur.461..640H. doi:10.1038/nature08322. PMID 19794491.
  9. ^ Xing, X.; Zhou, Z.; Wang, X.; Kuang, X.; Zhang, F.; Du, X. (2003). "Four-winged dinosaurs from China". Nature. 421 (6921): 335–340. Bibcode:2003Natur.421..335X. doi:10.1038/nature01342. PMID 12540892.
  10. ^ Xu, X.; Zhang, F. (2005). "A new maniraptoran dinosaur from China with long feathers on the metatarsus". Naturwissenschaften. 92 (4): 173–177. Bibcode:2005NW.....92..173X. doi:10.1007/s00114-004-0604-y. PMID 15685441.
  11. ^ Dececchi, T.A.; Larsson, H.C.E.; Habib, M.B. (2016). "The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents". PeerJ. 4: e2159. doi:10.7717/peerj.2159.
  12. ^ Longrich, N.R.; Currie, P.J. (2009). "A microraptorine (Dinosauria–Dromaeosauridae) from the Late Cretaceous of North America". PNAS. 106 (13): 5002–7. Bibcode:2009PNAS..106.5002L. doi:10.1073/pnas.0811664106. PMC 2664043. PMID 19289829.
  13. ^ Z., Csiki; Vremir, M.; Brusatte, S. L.; Norell, M. A. (2010). "An aberrant island-dwelling theropod dinosaur from the Late Cretaceous of Romania". Proceedings of the National Academy of Sciences of the United States of America. 107 (35): 15357–61. Bibcode:2010PNAS..10715357C. doi:10.1073/pnas.1006970107. PMC 2932599. PMID 20805514. Supporting Information
  14. ^ Manning, P.L.; Payne, D.; Pennicott, J.; Barrett, P.M.; Ennos, R.A. (2006). "Dinosaur killer claws or climbing crampons?". Biology Letters. 2 (1): 110–112. doi:10.1098/rsbl.2005.0395. PMC 1617199. PMID 17148340.
  15. ^ Bhullar, B.A.; et al. (2012). "Birds have paedomorphic dinosaur skulls". Nature. 487 (7406): 223–226. Bibcode:2012Natur.487..223B. doi:10.1038/nature11146. PMID 22722850.
  16. ^ Dinosaurs 'shrank' regularly to become birds
  17. ^ How Dinosaurs Shrank and Became Birds
  18. ^ a b Turner, Alan H.; Pol, Diego; Clarke, Julia A.; Erickson, Gregory M.; Norell, M. (2007). "A basal dromaeosaurid and size evolution preceding avian flight". Science. 317 (5843): 1378–1381. Bibcode:2007Sci...317.1378T. doi:10.1126/science.1144066. PMID 17823350.
  19. ^ Ulysse Lefèvre, Andrea Cau, Aude Cincotta, Dongyu Hu, Anusuya Chinsamy, François Escuillié & Pascal Godefroit (2017). A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers. The Science of Nature, 104: 74 (advance online publication). doi:10.1007/s00114-017-1496-y
  20. ^ Sereno, P. C., 1997, "The origin and evolution of dinosaurs", Annual Review of Earth & Planetary Sciences 25:435- 489. (21)
  21. ^ Sereno, P. C., 1998, "A rationale for phylogenetic definitions, with application to the higher level taxonomy of Dinosauria", Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 210:41-83. (23)
  22. ^ Agnolín, Federico L.; Novas, Fernando E. (2011). "Unenlagiid theropods: are they members of the Dromaeosauridae (Theropoda, Maniraptora)?". Anais da Academia Brasileira de Ciências. 83 (1): 117–162. doi:10.1590/S0001-37652011000100008.
  23. ^ Federico L. Agnolín and Fernando E. Novas (2013). "Avian ancestors. A review of the phylogenetic relationships of the theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae". SpringerBriefs in Earth System Sciences. SpringerBriefs in Earth System Sciences: 1–96. doi:10.1007/978-94-007-5637-3. ISBN 978-94-007-5636-6.
  24. ^ Godefroit, Pascal; Cau, Andrea; Hu, Dong-Yu; Escuillié, François; Wu, Wenhao; Dyke, Gareth (2013). "A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds". Nature. 498 (7454): 359–362. Bibcode:2013Natur.498..359G. doi:10.1038/nature12168. PMID 23719374.
  25. ^ a b Mortimer, M. (2012): The Theropod Database: Phylogeny of Theropoda. Retrieved 2013-AUG-15.
  26. ^ Chatterjee, S. (2015). The rise of birds: 225 million years of evolution. Johns Hopkins University Press, 45-48.
  27. ^ Claramunt, S.; Cracraft, J. (Dec 2015). "A new time tree reveals Earth history's imprint on the evolution of modern birds". Sci Adv. 1 (11): e1501005. Bibcode:2015SciA....1E1005C. doi:10.1126/sciadv.1501005. PMC 4730849. PMID 26824065.
  28. ^ Toby,, M (Feb 2005). "The quality of the fossil record of Mesozoic birds". Proc Biol Sci. 272 (1560): 289–294. doi:10.1098/rspb.2004.2923. PMC 1634967. PMID 15705554.
  29. ^ Foth,, C. (Jul 2014). "New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers". Nature. 511: 79–82. Bibcode:2014Natur.511...79F. doi:10.1038/nature13467.
1887 in paleontology

Paleontology or palaeontology (from Greek: paleo, "ancient"; ontos, "being"; and logos, "knowledge") is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 1887.


Anchiornis is a type of small, four-winged paravian dinosaur. The genus Anchiornis contains only the type species Anchiornis huxleyi, named for its similarity to modern birds. Anchiornis fossils have been only found in Liaoning, China, in rocks dated to the late Jurassic period, about 160 million years ago. Anchiornis is known from hundreds of specimens, and given the exquisite preservation of some of these fossils, it became the first Mesozoic dinosaur species for which almost the entire life appearance could be determined, and an important source of information on the early evolution of birds. Anchiornis huxleyi translates to "T.H. Huxley's near-bird" in Latin.


Anchiornithidae ("near birds") is a family of eumaniraptorans which could be the basalmost family of birds (in the general sense) in the clade Avialae. Anchiornithids have been classified at varying positions in the maniraptoran tree, with some scientists classifying them as a distinct family, a basal subfamily of Troodontidae, members of Archaeopterygidae, or an assemblage of dinosaurs that are an evolutionary grade within Avialae or Paraves.


Avialae ("bird wings") is a clade of flying dinosaurs containing their only living representatives, the birds. It is usually defined as all theropod dinosaurs more closely related to modern birds (Aves) than to deinonychosaurs, though alternative definitions are occasionally used (see below).

Archaeopteryx lithographica, from the late Jurassic Period Solnhofen Formation of Germany, is the earliest known avialan which may have had the capability of powered flight. However, several older avialans are known from the late Jurassic Tiaojishan Formation of China, dated to about 160 million years ago.

Balaur bondoc

Balaur bondoc is a species of theropod dinosaur which lived in what is now Romania during the late Cretaceous period. It is the type species of the monotypic genus Balaur which was described by scientists in August 2010, and was named after the balaur (Romanian pronunciation: [baˈla.ur]), a dragon of Romanian folklore. The specific name bondoc means "stocky", so Balaur bondoc means "stocky dragon" in Romanian. This name refers to the greater musculature that Balaur had compared to its relatives. The genus is known from two partial skeletons including the type specimen.

Seventy million years ago, world sea levels were higher, and the location where its fossils are found was a part of the European Archipelago called Hațeg Island which is also referred to as the "Island of the Dwarf Dinosaurs". Unlike other early members of the group Paraves, which includes Velociraptor, Troodon, and Archaeopteryx, this theropod had not just one but two large, retractable, sickle-shaped claws on each foot, and its limbs were proportionally shorter and heavier than those of its relatives. As with other dinosaurs from Hațeg, such as Magyarosaurus, a dwarf sauropod, its strange features have been argued to show the effects of its island habitat on its evolution.


Epidexipteryx is a genus of small paravian dinosaurs, known from one fossil specimen in the collection of the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing. Epidexipteryx represents the earliest known example of ornamental feathers in the fossil record. The type specimen is catalog number IVPP V 15471. It has been reported to be a maniraptoran dinosaur from the Middle Jurassic or Upper Jurassic age Daohugou Beds of Inner Mongolia, China (about 160 or 168 mya).The specific name, Epidexipteryx hui ("Hu's display feather"), and its Chinese name Hushi Yaolong ("Hu Yaoming's dragon") were coined in memory of paleomammologist Hu Yaoming.

Evolution of birds

The evolution of birds began in the Jurassic Period, with the earliest birds derived from a clade of theropoda dinosaurs named Paraves. Birds are categorized as a biological class, Aves. For more than a century, the small theropod dinosaur Archaeopteryx lithographica from the Late Jurassic period was considered to have been the earliest bird. Modern phylogenies place birds in the dinosaur clade Theropoda. According to the current consensus, Aves and a sister group, the order Crocodilia, together are the sole living members of an unranked "reptile" clade, the Archosauria. Four distinct lineages of bird survived the Cretaceous-Tertiary extinction event 66 million years ago, giving rise to ostriches and relatives (Paleognathae), ducks and relatives (Anseriformes), ground-living fowl (Galliformes), and “modern birds” (Neoaves).

Phylogenetically, Aves is usually defined as all descendants of the most recent common ancestor of a specific modern bird species (such as the house sparrow, Passer domesticus), and either Archaeopteryx, or some prehistoric species closer to Neornithes (to avoid the problems caused by the unclear relationships of Archaeopteryx to other theropods). If the latter classification is used then the larger group is termed Avialae. Currently, the relationship between dinosaurs, Archaeopteryx, and modern birds is still under debate.


Halszkaraptor (; meaning "Halszka's seizer") is a genus of dromaeosaurid dinosaur from Mongolia that lived during the Late Cretaceous period. It contains only one known species, Halszkaraptor escuilliei.Scientists compared the type specimen (holotype) to the bones of extant crocodilians and aquatic birds, and found evidence of a semiaquatic lifestyle. A phylogenetic analysis revealed it was a member of the basal subfamily Halszkaraptorinae along with Mahakala and Hulsanpes.


Jianianhualong (meaning "Jianianhua dragon") is a genus of troodontid theropod dinosaur from the Early Cretaceous of China. It contains a single species, Jianianhualong tengi, named in 2017 by Xu Xing and colleagues based on an articulated skeleton preserving feathers. The feathers at the middle of the tail of Jianianhualong are asymmetric, being the first record of asymmetrical feathers among the troodontids. Despite aerodynamic differences from the flight feathers of modern birds, the feathers in the tail vane of Jianianhualong could have functioned in drag reduction whilst the animal was moving. The discovery of Jianianhualong supports the notion that asymmetrical feathers appeared early in the evolutionary history of the Paraves.

Jianianhualong possesses a combination of traits seen in basal as well as traits seen in derived troodontids. This is consistent with its phylogenetically intermediate position among the troodontids. This mixture of traits shows a distinct spatial organization, with basal traits being present in the forelimbs and pelvis, and derived traits being present in the skull and hindlimbs. This may represent a case of mosaic evolution, where natural selection acts upon the form of the body in a modular way. Similar transitional patterns of traits are seen in the troodontid Sinusonasus, a close relative of Jianianhualong. Ecologically speaking, Jianianhualong and Sinusonasus are part of the considerable diversity of troodontids that is present within the Yixian Formation.


Maniraptoriformes is a clade of dinosaurs with pennaceous feathers and wings that contains ornithomimosaurs and maniraptors. This group was named by Thomas Holtz, who defined it as "the most recent common ancestor of Ornithomimus and birds, and all descendants of that common ancestor."


Pennaraptora (Latin penna "bird feather" + raptor "thief", from rapere "snatch"; a feathered bird-like predator) is a clade defined as the most recent common ancestor of Oviraptor philoceratops, Deinonychus antirrhopus, and Passer domesticus (the house sparrow), and all descendants thereof, by Foth et al., 2014. The earliest known definitive member of this clade is Anchiornis, from the late Jurassic period of China, about 160 million years ago.

The clade "Aviremigia" was conditionally proposed along with several other apomorphy-based clades relating to birds by Jacques Gauthier and Kevin de Queiroz in a 2001 paper. Their proposed definition for the group was "the clade stemming from the first panavian with ... remiges and rectrices, that is, enlarged, stiff-shafted, closed-vaned (= barbules bearing hooked distal pennulae), pennaceous feathers arising from the distal forelimbs and tail".


Pneumatoraptor is a genus of small, paravian dinosaur that lived in Hungary. It is known from a single complete left shoulder girdle (scapulocoracoid) found in the Csehbánya Formation of the Iharkút locality in the Bakony Mountains of western Hungary. This formation dates to the late Cretaceous period (Santonian age) about 85 million years ago.The type species is Pneumatoraptor fodori, named for Géza Fodor, who provided funding for the dig. The genus name Pneumatoraptor refers to the pneumaticity of the bone, the hollow spaces that would have been filled with air sacs in life. The holotype specimen is identified by the catalog number MTM V.2008.38.1. and housed at the Hungarian Natural History Museum in Budapest.


Scansoriopterygidae (meaning "climbing wings") is an extinct family of climbing and gliding maniraptoran dinosaurs. Scansoriopterygids are known from four well-preserved fossils, representing three species, unearthed in the Tiaojishan Formation fossil beds (dating to the mid-late Jurassic Period) of Liaoning and Hebei, China.

Scansoriopteryx heilmanni (and its likely synonym Epidendrosaurus ninchengensis) was the first non-avian dinosaur found that had clear adaptations to an arboreal or semi-arboreal lifestyle–it is likely that they spent much of their time in trees. Both specimens showed features indicating they were juveniles, which made it difficult to determine their exact relationship to other non-avian dinosaurs and birds. It was not until the description of Epidexipteryx hui in 2008 that an adult specimen was known. In 2015, the discovery of another, larger adult specimen belonging to the species Yi qi showed that scansoriopterygids were not only climbers but also had adaptations that could have been used for gliding flight.


Serikornis is a genus of small, feathered anchiornithid dinosaur from the Upper Jurassic Tiaojishan Formation of Liaoning, China. It is represented by the type species Serikornis sungei. Its name means "Ge Sun's silk bird", a reference to the plumulaceous-like body covering evident in the fossil. The specimen's nickname, "Silky", refers to the striking resemblance of the delicate hindlimb filaments to the modern Silky breed of domestic chicken.Serikornis, first described in August 2017, is noteworthy for the variety of feather types represented in its holotype, a single complete articulated skeleton preserved on a slab along with extensive integumentary structures. The specimen’s feather imprints include wispy bundles along the neck, short and symmetrical vaned feathers on the arms, and both fuzz and long pennaceous feathers on its hindlimbs. While its anatomy and integument share features with birds as well as derived dromaeosaurs such as Microraptor, cladistic analysis places the genus within the cluster of feathered dinosaurs near the origin of avians. It was unlikely to be a flier.


Sinornithoides (meaning "Chinese bird form") is a genus of troodontid theropod dinosaurs containing the single species Sinornithoides youngi. S. youngi lived during the Early Cretaceous (Aptian/Albian stage, around 113 million years ago). It measured approximately one meter long (3.3 ft). It lived in Inner Mongolia, China, and probably ate invertebrates and other small prey.


Sinovenator (meaning "Chinese hunter") is a genus of troodontid dinosaur from China. It is from the early Cretaceous Period.


Taurovenator is a medium-sized carcharodontosaurid theropod from the late Cretaceous of Argentina. Discovered by Matias Motta in 2005 and formally described in 2016, it is represented by an isolated right postorbital.


Troodontidae is a family of bird-like theropod dinosaurs. During most of the 20th century, troodontid fossils were few and scrappy and they have therefore been allied, at various times, with many dinosaurian lineages. More recent fossil discoveries of complete and articulated specimens (including specimens which preserve feathers, eggs, embryos, and complete juveniles), have helped to increase understanding about this group. Anatomical studies, particularly studies of the most primitive troodontids, like Sinovenator, demonstrate striking anatomical similarities with Archaeopteryx and primitive dromaeosaurids, and demonstrate that they are relatives comprising a clade called Paraves.


Xiaotingia is a genus of anchiornithid theropod dinosaur from early Late Jurassic deposits of western Liaoning, China, containing a single species, Xiaotingia zhengi.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.