The Paleogene (/ˈpæliədʒiːn, ˈpeɪliə-/; also spelled Palaeogene or Palæogene; informally Lower Tertiary or Early Tertiary) is a geologic period and system that spans 43 million years from the end of the Cretaceous Period 66 million years ago (Mya) to the beginning of the Neogene Period 23.03 Mya. It is the beginning of the Cenozoic Era of the present Phanerozoic Eon.[7] The Paleogene is most notable for being the time during which mammals diversified from relatively small, simple forms into a large group of diverse animals in the wake of the Cretaceous–Paleogene extinction event that ended the preceding Cretaceous Period.[8] The United States Geological Survey uses the abbreviation PE for the Paleogene.

This period consists of the Paleocene, Eocene, and Oligocene epochs. The end of the Paleocene (55.5/54.8 Mya) was marked by the Paleocene–Eocene Thermal Maximum, one of the most significant periods of global change during the Cenozoic, which upset oceanic and atmospheric circulation and led to the extinction of numerous deep-sea benthic foraminifera and on land, a major turnover in mammals. The terms 'Paleogene System' (formal) and 'lower Tertiary System' (informal) are applied to the rocks deposited during the 'Paleogene Period'. The somewhat confusing terminology seems to be due to attempts to deal with the comparatively fine subdivisions of time possible in the relatively recent geologic past, for which more details are preserved. When the Tertiary Period is divided into two periods instead of directly into five epochs, the periods are more closely comparable to the duration of 'periods' of the preceding Mesozoic and Paleozoic Eras.

Paleogene Period
66–23.03 million years ago
Mean atmospheric O
content over period duration
c. 26 vol %[1][2]
(130 % of modern level)
Mean atmospheric CO
content over period duration
c. 500 ppm[3]
(2 times pre-industrial level)
Mean surface temperature over period duration c. 18 °C[4]
(4 °C above modern level)
Key events in the Paleogene
-65 —
-60 —
-55 —
-50 —
-45 —
-40 —
-35 —
-30 —
-25 —
N. Amer. prairie expands[5]
First Antarctic permanent ice-sheets[6]
An approximate timescale of key Paleogene events.
Axis scale: millions of years ago.

Climate and geography

The global climate during the Paleogene departed from the hot and humid conditions of the late Mesozoic era and began a cooling and drying trend which, despite having been periodically disrupted by warm periods such as the Paleocene–Eocene Thermal Maximum,[9] persisted until the temperature begun to rise again due to anthropogenic influences at around 1945. The trend was partly caused by the formation of the Antarctic Circumpolar Current, which significantly lowered oceanic water temperatures. A 2018 published study estimated that during the early Palaeogene about 56-48 million years ago, annual air temperatures, over land and at mid-latitude, averaged about 23–29 °C (± 4.7 °C), which is 5–10 °C higher than most previous estimates.[10][11] Or for comparison, it was 10 to 15 °C higher than current annual mean temperatures in these areas; the authors suggest that the current atmospheric carbon dioxide trajectory, if it continues, could establish these temperatures again.[12]

During the Paleogene, the continents continued to drift closer to their current positions. India was in the process of colliding with Asia, forming the Himalayas. The Atlantic Ocean continued to widen by a few centimeters each year. Africa was moving north to meet with Europe and form the Mediterranean Sea, while South America was moving closer to North America (they would later connect via the Isthmus of Panama). Inland seas retreated from North America early in the period. Australia had also separated from Antarctica and was drifting toward Southeast Asia.

Flora and fauna

Mammals began a rapid diversification during this period. After the Cretaceous–Paleogene extinction event, which saw the demise of the non-avian dinosaurs, mammals transformed from a few small and generalized forms that began to evolve into most of the modern varieties we see today. Some of these mammals would evolve into large forms that would dominate the land, while others would become capable of living in marine, specialized terrestrial, and airborne environments. Those that took to the oceans became modern cetaceans, while those that took to the trees became primates, the group to which humans belong. Birds, which were already well established by the end of the Cretaceous, also experienced an adaptive radiation as they took over the skies left empty by the now extinct Pterosaurs.

Pronounced cooling in the Oligocene led to a massive floral shift and many extant modern plants arose during this time. Grasses and herbs such as Artemisia began to appear at the expense of tropical plants, which began to decline. Conifer forests developed in mountainous areas. This cooling trend continued, with major fluctuation, until the end of the Pleistocene.[13] This evidence for this floral shift is found in the palynological record.[14]


Oil industry relevance

The Paleogene is notable in the context of offshore oil drilling, and especially in Gulf of Mexico oil exploration, where it is commonly referred to as the "Lower Tertiary". These rock formations represent the current cutting edge of deep-water oil discovery.

Lower Tertiary rock formations encountered in the Gulf of Mexico oil industry usually tend to be comparatively high temperature and high pressure reservoirs, often with high sand content (70%+) or under very thick evaporite sediment layers.[15]

Lower Tertiary explorations to date include (partial list):


  1. ^ Image:Sauerstoffgehalt-1000mj.svg
  2. ^ File:OxygenLevel-1000ma.svg
  3. ^ Image:Phanerozoic Carbon Dioxide.png
  4. ^ Image:All palaeotemps.png
  5. ^ Retallack, G. J. (1997). "Neogene Expansion of the North American Prairie". PALAIOS. 12 (4): 380–390. doi:10.2307/3515337. JSTOR 3515337. Retrieved 2008-02-11.
  6. ^ Zachos, J. C.; Kump, L. R. (2005). "Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene". Global and Planetary Change. 47 (1): 51–66. Bibcode:2005GPC....47...51Z. doi:10.1016/j.gloplacha.2005.01.001.
  7. ^ Formerly, the period covered by the Paleogene was called the first part of the Tertiary, whose usage is no longer official. "Whatever happened to the Tertiary and Quaternary?"
  8. ^ Robert W. Meredith, Jan E. Janecka, John Gatesy, Oliver A. Ryder, Colleen A. Fisher, Emma C. Teeling, Alisha Goodbla, Eduardo Eizirik, Taiz L. L. Simão, Tanja Stadler, Daniel L. Rabosky, Rodney L. Honeycutt, John J. Flynn, Colleen M. Ingram, Cynthia Steiner, Tiffani L. Williams, Terence J. Robinson, Angela Burk-Herrick, Michael Westerman, Nadia A. Ayoub, Mark S. Springer, William J. Murphy. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:521-524.
  9. ^ Wing, S. L. (2005-11-11). "Transient Floral Change and Rapid Global Warming at the Paleocene-Eocene Boundary". Science. 310 (5750): 993–996. doi:10.1126/science.1116913. ISSN 0036-8075.
  10. ^ Naafs et al. (2018). "High temperatures in the terrestrial mid-latitudes during the early Palaeogene". Nature Geoscience. 11 (10): 766–771. doi:10.1038/s41561-018-0199-0.CS1 maint: Uses authors parameter (link)
  11. ^ University of Bristol (30 July 2018). "Ever-increasing CO2 levels could take us back to the tropical climate of Paleogene period". ScienceDaily.
  12. ^ "Ever-increasing CO2 levels could take us back to the tropical climate of Paleogene period". University of Bristol. 2018.
  13. ^ 1925-, Traverse, Alfred (1988). Paleopalynology. Unwin Hyman. ISBN 978-0045610013. OCLC 17674795.
  14. ^ Muller, Jan (January 1981). "Fossil pollen records of extant angiosperms". The Botanical Review. 47 (1): 1–142. doi:10.1007/bf02860537. ISSN 0006-8101.
  15. ^ "Lower Tertiary". Halliburton. Archived from the original on 2011-09-29. Retrieved 2011-07-13.

External links


The order Cathartiformes of raptors or birds of prey includes the New World vultures and the now extinct Teratornithidae. These raptors are classified by most taxonomic authorities in the order Accipitriformes (which includes the eagles and hawks). In the past they were considered to be a sister group to the storks of the order Ciconiiformes based on DNA-DNA hybridization and morphology.

Chicxulub crater

The Chicxulub crater (; Mayan: [tʃʼikʃuluɓ]) is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is located near the town of Chicxulub, after which the crater is named. It was formed by a large asteroid or comet about 11 to 81 kilometres (6.8 to 50.3 miles) in diameter, the Chicxulub impactor, striking the Earth. The date of the impact coincides precisely with the Cretaceous–Paleogene boundary (K–Pg boundary), slightly less than 66 million years ago, and a widely accepted theory is that worldwide climate disruption from the event was the cause of the Cretaceous–Paleogene extinction event, a mass extinction in which 75% of plant and animal species on Earth became extinct, including all non-avian dinosaurs.

The crater is estimated to be 150 kilometres (93 miles) in diameter and 20 km (12 mi) in depth, well into the continental crust of the region of about 10–30 km (6.2–18.6 mi) depth. It is the second largest confirmed impact structure on Earth and the only one whose peak ring is intact and directly accessible for scientific research.The crater was discovered by Antonio Camargo and Glen Penfield, geophysicists who had been looking for petroleum in the Yucatán during the late 1970s. Penfield was initially unable to obtain evidence that the geological feature was a crater and gave up his search. Later, through contact with Alan Hildebrand in 1990, Penfield obtained samples that suggested it was an impact feature. Evidence for the impact origin of the crater includes shocked quartz, a gravity anomaly, and tektites in surrounding areas.

In 2016, a scientific drilling project drilled deep into the peak ring of the impact crater, hundreds of meters below the current sea floor, to obtain rock core samples from the impact itself. The discoveries were widely seen as confirming current theories related to both the crater impact and its effects.


The Cretaceous ( , kri-TAY-shəs) is a geologic period and system that spans 79 million years from the end of the Jurassic Period 145 million years ago (mya) to the beginning of the Paleogene Period 66 mya. It is the last period of the Mesozoic Era, and the longest period of the Phanerozoic Eon. The Cretaceous Period is usually abbreviated K, for its German translation Kreide (chalk, creta in Latin).

The Cretaceous was a period with a relatively warm climate, resulting in high eustatic sea levels that created numerous shallow inland seas. These oceans and seas were populated with now-extinct marine reptiles, ammonites and rudists, while dinosaurs continued to dominate on land. During this time, new groups of mammals and birds, as well as flowering plants, appeared.

The Cretaceous (along with the Mesozoic) ended with the Cretaceous–Paleogene extinction event, a large mass extinction in which many groups, including non-avian dinosaurs, pterosaurs and large marine reptiles died out. The end of the Cretaceous is defined by the abrupt Cretaceous–Paleogene boundary (K–Pg boundary), a geologic signature associated with the mass extinction which lies between the Mesozoic and Cenozoic eras.

Cretaceous–Paleogene boundary

The Cretaceous–Paleogene (K–Pg) boundary, formerly known as the Cretaceous–Tertiary (K-T) boundary, is a geological signature, usually a thin band of rock. K, the first letter of the German word Kreide (chalk), is the traditional abbreviation for the Cretaceous Period and Pg is the abbreviation for the Paleogene Period.

The K–Pg boundary marks the end of the Cretaceous Period, the last period of the Mesozoic Era, and marks the beginning of the Paleogene Period, the first period of the Cenozoic Era. Its age is usually estimated at around 66 Ma (million years ago), with radiometric dating yielding a more specific age of 66.043 ± 0.011 Ma.The K–Pg boundary is associated with the Cretaceous–Paleogene extinction event, a mass extinction which destroyed a majority of the world's Mesozoic species, including all dinosaurs except for birds.Strong evidence exists that the extinction coincided with a large meteorite impact at the Chicxulub crater and the generally accepted scientific theory is that this impact triggered the extinction event.

Cretaceous–Paleogene extinction event

The Cretaceous–Paleogene (K–Pg) extinction event, also known as the Cretaceous–Tertiary (K–T) extinction, was a sudden mass extinction of some three-quarters of the plant and animal species on Earth, approximately 66 million years ago. With the exception of some ectothermic species such as the leatherback sea turtle and crocodiles, no tetrapods weighing more than 25 kilograms (55 lb) survived. It marked the end of the Cretaceous period and with it, the entire Mesozoic Era, opening the Cenozoic Era that continues today.

In the geologic record, the K–Pg event is marked by a thin layer of sediment called the K–Pg boundary, which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows high levels of the metal iridium, which is rare in the Earth's crust, but abundant in asteroids.As originally proposed in 1980 by a team of scientists led by Luis Alvarez and his son Walter Alvarez, it is now generally thought that the K–Pg extinction was caused by the impact of a massive comet or asteroid 10 to 15 km (6 to 9 mi) wide, 66 million years ago, which devastated the global environment, mainly through a lingering impact winter which halted photosynthesis in plants and plankton. The impact hypothesis, also known as the Alvarez hypothesis, was bolstered by the discovery of the 180-kilometer-wide (112 mi) Chicxulub crater in the Gulf of Mexico's Yucatán Peninsula in the early 1990s, which provided conclusive evidence that the K–Pg boundary clay represented debris from an asteroid impact. The fact that the extinctions occurred simultaneously provides strong evidence that they were caused by the asteroid. A 2016 drilling project into the Chicxulub peak ring, confirmed that the peak ring comprised granite ejected within minutes from deep in the earth, but contained hardly any gypsum, the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an aerosol into the atmosphere, causing longer-term effects on the climate and food chain.

Other causal or contributing factors to the extinction may have been the Deccan Traps and other volcanic eruptions, climate change, and sea level change.

A wide range of species perished in the K–Pg extinction, the best-known being the non-avian dinosaurs. It also destroyed a plethora of other terrestrial organisms, including certain mammals, pterosaurs, birds, lizards, insects, and plants. In the oceans, the K–Pg extinction killed off plesiosaurs and the giant marine lizards (Mosasauridae) and devastated fish, sharks, mollusks (especially ammonites, which became extinct), and many species of plankton. It is estimated that 75% or more of all species on Earth vanished. Yet the extinction also provided evolutionary opportunities: in its wake, many groups underwent remarkable adaptive radiation—sudden and prolific divergence into new forms and species within the disrupted and emptied ecological niches. Mammals in particular diversified in the Paleogene, evolving new forms such as horses, whales, bats, and primates. Birds, fish, and perhaps lizards also radiated.


The Danian is the oldest age or lowest stage of the Paleocene epoch or series, the Paleogene period or system and the Cenozoic era or erathem. The beginning of the Danian age (and the end of the preceding Maastrichtian age) is at the Cretaceous–Paleogene extinction event 66 Ma. The age ended 61.6 Ma, being followed by the Selandian age.


Euclastes is an extinct genus of sea turtles that survived the Cretaceous–Paleogene mass extinction. The genus was first named by Edward Drinker Cope in 1867, and contains three species. E. hutchisoni, was named in 2003 but has since been reassigned to the genus Pacifichelys, while E. coahuilaensis named in 2009 was reassigned as Mexichelys coahuilaensis in 2010.

Giant's Causeway

The Giant's Causeway is an area of about 40,000 interlocking basalt columns, the result of an ancient volcanic fissure eruption. It is located in County Antrim on the north coast of Northern Ireland, about three miles (4.8 km) northeast of the town of Bushmills.

It was declared a World Heritage Site by UNESCO in 1986, and a national nature reserve in 1987 by the Department of the Environment for Northern Ireland. In a 2005 poll of Radio Times readers, the Giant's Causeway was named as the fourth greatest natural wonder in the United Kingdom. The tops of the columns form stepping stones that lead from the cliff foot and disappear under the sea. Most of the columns are hexagonal, although there are also some with four, five, seven or eight sides. The tallest are about 12 metres (39 ft) high, and the solidified lava in the cliffs is 28 metres (92 ft) thick in places.

Much of the Giant's Causeway and Causeway Coast World Heritage Site is today owned and managed by the National Trust and it is one of the most popular tourist attractions in Northern Ireland. Access to the Giant’s Causeway is free of charge: it is not necessary to go via the visitors centre, which charges a fee. The remainder of the site is owned by the Crown Estate and a number of private landowners.

Laramide orogeny

The Laramide orogeny was a period of mountain building in western North America, which started in the Late Cretaceous, 70 to 80 million years ago, and ended 35 to 55 million years ago. The exact duration and ages of beginning and end of the orogeny are in dispute. The Laramide orogeny occurred in a series of pulses, with quiescent phases intervening. The major feature that was created by this orogeny was deep-seated, thick-skinned deformation, with evidence of this orogeny found from Canada to northern Mexico, with the easternmost extent of the mountain-building represented by the Black Hills of South Dakota. The phenomenon is named for the Laramie Mountains of eastern Wyoming. The Laramide orogeny is sometimes confused with the Sevier orogeny, which partially overlapped in time and space.

The orogeny is commonly attributed to events off the west coast of North America, where the Kula and Farallon Plates were sliding under the North American plate. Most hypotheses propose that oceanic crust was undergoing flat-slab subduction, i.e., with a shallow subduction angle, and as a consequence, no magmatism occurred in the central west of the continent, and the underlying oceanic lithosphere actually caused drag on the root of the overlying continental lithosphere. One cause for shallow subduction may have been an increased rate of plate convergence. Another proposed cause was subduction of thickened oceanic crust.

Magmatism associated with subduction occurred not near the plate edges (as in the volcanic arc of the Andes, for example), but far to the east, called the Coast Range Arc. Geologists call such a lack of volcanic activity near a subduction zone a magmatic gap. This particular gap may have occurred because the subducted slab was in contact with relatively cool continental lithosphere, not hotter asthenosphere. One result of shallow angle of subduction and the drag that it caused was a broad belt of mountains, some of which were the progenitors of the Rocky Mountains. Part of the proto-Rocky Mountains would be later modified by extension to become the Basin and Range Province.

Late Cretaceous

The Late Cretaceous (100.5–66 Ma) is the younger of two epochs into which the Cretaceous period is divided in the geologic timescale. Rock strata from this epoch form the Upper Cretaceous series. The Cretaceous is named after the white limestone known as chalk which occurs widely in northern France and is seen in the white cliffs of south-eastern England, and which dates from this time.

List of fossiliferous stratigraphic units in California

This article contains a list of fossil-bearing stratigraphic units in the state of California, U.S.

List of fossiliferous stratigraphic units in Texas

This article contains a list of fossil-bearing stratigraphic units in the state of Texas, U.S.


Lithornithidae is an extinct, possibly paraphyletic (but see below) clade of early paleognath birds. They are known from fossils dating to the Upper Paleocene through the Middle Eocene of North America and Europe, with possible Late Cretaceous representatives. All are extinct today; the youngest specimen is the currently unnamed SGPIMH MEV1 specimen from the mid-Eocene Messel Pit site.

Lithornithids had long, slender, bills for probing. They closely resembled modern tinamous. They possessed a rhynchokinetic skull with relatively unfused cranial bones, a weakly fused pygostyle and a splenial. The unguals were more curved than in tinamous and probably allowed better perching in trees.

The order Lithornithiformes was erected by Dr. Peter Houde in 1988. Initially, only three genera (Lithornis, Paracathartes, and Pseudocrypturus) and eight named species were included. Promusophaga (Harrison & Walker, 1977) originally considered a stem-turaco, is considered synonymous with Lithornis vulturinus. Fissuravis may also belong to the clade, and several unnamed remains are known.


The Oligocene ( ) is a geologic epoch of the Paleogene Period and extends from about 33.9 million to 23 million years before the present (33.9±0.1 to 23.03±0.05 Ma). As with other older geologic periods, the rock beds that define the epoch are well identified but the exact dates of the start and end of the epoch are slightly uncertain. The name Oligocene was coined in 1854 by the German paleontologist Heinrich Ernst Beyrich; the name comes from the Ancient Greek ὀλίγος (olígos, "few") and καινός (kainós, "new"), and refers to the sparsity of extant forms of molluscs. The Oligocene is preceded by the Eocene Epoch and is followed by the Miocene Epoch. The Oligocene is the third and final epoch of the Paleogene Period.

The Oligocene is often considered an important time of transition, a link between the archaic world of the tropical Eocene and the more modern ecosystems of the Miocene. Major changes during the Oligocene included a global expansion of grasslands, and a regression of tropical broad leaf forests to the equatorial belt.

The start of the Oligocene is marked by a notable extinction event called the Grande Coupure; it featured the replacement of European fauna with Asian fauna, except for the endemic rodent and marsupial families. By contrast, the Oligocene–Miocene boundary is not set at an easily identified worldwide event but rather at regional boundaries between the warmer late Oligocene and the relatively cooler Miocene.


The Paleocene ( ) or Palaeocene, the "old recent", is a geological epoch that lasted from about 66 to 56 million years ago. It is the first epoch of the Paleogene Period in the modern Cenozoic Era. As with many geologic periods, the strata that define the epoch's beginning and end are well identified, but the exact ages remain uncertain.

The Paleocene Epoch is bracketed by two major events in Earth's history. It started with the mass extinction event at the end of the Cretaceous, known as the Cretaceous–Paleogene (K–Pg) boundary. This was a time marked by the demise of non-avian dinosaurs, giant marine reptiles and much other fauna and flora. The die-off of the dinosaurs left unfilled ecological niches worldwide. The Paleocene ended with the Paleocene–Eocene Thermal Maximum, a geologically brief (~0.2 million year) interval characterized by extreme changes in climate and carbon cycling.

The name "Paleocene" comes from Ancient Greek and refers to the "old(er)" (παλαιός, palaios) "new" (καινός, kainos) fauna that arose during the epoch.

Scawt Hill

Scawt Hill is a volcanic plug in County Antrim, Northern Ireland, in the borough of Larne, 5 km from the village of Ballygalley.It gets its name from the Ulster Scots 'scawd' meaning scaly, scabby or rugged. Alternately, 'scawt' meaning scruffy and contemptible, and when applied to rocks, covered in barnacles.


Titanoboa () is an extinct genus of very large snakes that lived in what is now La Guajira in northeastern Colombia. They could grow up to 12.8 m (42 ft) long and reach a weight of 1,135 kg (2,500 lb).Fossils of Titanoboa have been found in the Cerrejón Formation, and date to around 58 to 60 million years ago. The giant snake lived during the Middle to Late Paleocene epoch, a 10-million-year period immediately following the Cretaceous-Paleogene extinction event.The only known species is Titanoboa cerrejonensis, the largest snake ever discovered, which supplanted the previous record holder, Gigantophis.

Paleogene Period
Cenozoic era
(present–66.0 Mya)
Mesozoic era
(66.0–251.902 Mya)
Paleozoic era
(251.902–541.0 Mya)
Proterozoic eon
(541.0 Mya–2.5 Gya)
Archean eon (2.5–4 Gya)
Hadean eon (4–4.6 Gya)
History of geology
Сomposition and structure
Historical geology

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.