The unit cell of rutile. Ti(IV) centers are grey; oxide centers are red. Notice that oxide forms three bonds to titanium and titanium forms six bonds to oxide.
The unit cell of rutile. Ti(IV) centers are grey; oxide centers are red. Notice that oxide forms three bonds to titanium and titanium forms six bonds to oxide.

An oxide /ˈɒksaɪd/ is a chemical compound that contains at least one oxygen atom and one other element[1] in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– atom. Metal oxides thus typically contain an anion of oxygen in the oxidation state of −2. Most of the Earth's crust consists of solid oxides, the result of elements being oxidized by the oxygen in air or in water. Hydrocarbon combustion affords the two principal carbon oxides: carbon monoxide and carbon dioxide. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 (called a passivation layer) that protects the foil from further corrosion.[2] Individual elements can often form multiple oxides, each containing different amounts of the element and oxygen. In some cases these are distinguished by specifying the number of atoms as in carbon monoxide and carbon dioxide, and in other cases by specifying the element's oxidation number, as in iron(II) oxide and iron(III) oxide. Certain elements can form many different oxides, such as those of nitrogen.


Due to its electronegativity, oxygen forms stable chemical bonds with almost all elements to give the corresponding oxides. Noble metals (such as gold or platinum) are prized because they resist direct chemical combination with oxygen, and substances like gold(III) oxide must be generated by indirect routes.

Two independent pathways for corrosion of elements are hydrolysis and oxidation by oxygen. The combination of water and oxygen is even more corrosive. Virtually all elements burn in an atmosphere of oxygen or an oxygen-rich environment. In the presence of water and oxygen (or simply air), some elements— sodium—react rapidly, to give the hydroxides. In part, for this reason, alkali and alkaline earth metals are not found in nature in their metallic, i.e., native, form. Cesium is so reactive with oxygen that it is used as a getter in vacuum tubes, and solutions of potassium and sodium, so-called NaK are used to deoxygenate and dehydrate some organic solvents. The surface of most metals consists of oxides and hydroxides in the presence of air. A well-known example is aluminium foil, which is coated with a thin film of aluminium oxide that passivates the metal, slowing further corrosion. The aluminum oxide layer can be built to greater thickness by the process of electrolytic anodizing. Though solid magnesium and aluminum react slowly with oxygen at STP—they, like most metals, burn in air, generating very high temperatures. Finely grained powders of most metals can be dangerously explosive in air. Consequently, they are often used in solid-fuel rockets.

Rust screw
Oxides, such as iron(III) oxide or rust, which consists of hydrated iron(III) oxides Fe2O3·nH2O and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), form when oxygen combines with other elements

In dry oxygen, iron readily forms iron(II) oxide, but the formation of the hydrated ferric oxides, Fe2O3−x(OH)2x, that mainly comprise rust, typically requires oxygen and water. Free oxygen production by photosynthetic bacteria some 3.5 billion years ago precipitated iron out of solution in the oceans as Fe2O3 in the economically important iron ore hematite.


Oxides have a range of different structures, from individual molecules to polymeric and crystalline structures. At standard conditions, oxides may range from solids to gases.

Oxides of metals

Oxides of most metals adopt polymeric structures.[3] The oxide typically links three metal atoms (e.g., rutile structure) or six metal atoms (carborundum or rock salt structures). Because the M-O bonds are typically strong and these compounds are crosslinked polymers, the solids tend to be insoluble in solvents, though they are attacked by acids and bases. The formulas are often deceptively simple. Many are nonstoichiometric compounds.[2]

Molecular oxides


Carbon dioxide is the main product of fossil fuel combustion.

Carbon monoxide 2D

Carbon monoxide is the product of the incomplete combustion of carbon-based fuels and a precursor to many useful chemicals.


Nitrogen dioxide is a problematic pollutant from internal combustion engines.


Sulfur dioxide, the principal oxide of sulfur, is emitted from volcanoes.


Nitrous oxide ("laughing gas") is a potent greenhouse gas produced by soil bacteria.

Although most metal oxides are polymeric, some oxides are molecules. Examples of molecular oxides are carbon dioxide and carbon monoxide. All simple oxides of nitrogen are molecular, e.g., NO, N2O, NO2 and N2O4. Phosphorus pentoxide is a more complex molecular oxide with a deceptive name, the real formula being P4O10. Some polymeric oxides depolymerize when heated to give molecules, examples being selenium dioxide and sulfur trioxide. Tetroxides are rare. The more common examples: ruthenium tetroxide, osmium tetroxide, and xenon tetroxide.

Many oxyanions are known, such as polyphosphates and polyoxometalates. Oxycations are rarer, some examples being nitrosonium (NO+), vanadyl (VO2+), and uranyl (UO2+
). Of course many compounds are known with both oxides and other groups. In organic chemistry, these include ketones and many related carbonyl compounds. For the transition metals, many oxo complexes are known as well as oxyhalides.


Conversion of a metal oxide to the metal is called reduction. The reduction can be induced by many reagents. Many metal oxides convert to metals simply by heating.

Reduction by carbon

Metals are "won" from their oxides by chemical reduction, i.e. by the addition of a chemical reagent. A common and cheap reducing agent is carbon in the form of coke. The most prominent example is that of iron ore smelting. Many reactions are involved, but the simplified equation is usually shown as:[2]

2 Fe2O3 + 3 C → 4 Fe + 3 CO2

Metal oxides can be reduced by organic compounds. This redox process is the basis for many important transformations in chemistry, such as the detoxification of drugs by the P450 enzymes and the production of ethylene oxide, which is converted to antifreeze. In such systems, the metal center transfers an oxide ligand to the organic compound followed by regeneration of the metal oxide, often by oxygen in the air.

Reduction by heating

Metals that are lower in the reactivity series can be reduced by heating alone. For example, silver oxide decomposes at 200 °C:[4]

2 Ag2O → 4 Ag + O2

Reduction by displacement

Metals that are more reactive displace the oxide of the metals that are less reactive. For example, zinc is more reactive than copper, so it displaces copper (II) oxide to form zinc oxide:

Zn + CuO → ZnO + Cu

Reduction by hydrogen

Apart from metals, hydrogen can also displace metal oxides to form hydrogen oxide, also known as water:

H2 + CuO → Cu + H2O

Reduction by electrolysis

Since metals that are reactive form oxides that are stable, some metal oxides must be electrolyzed to be reduced. This includes sodium oxide, potassium oxide, calcium oxide, magnesium oxide, and aluminium oxide. The oxides must be molten before immersing graphite electrodes in them:

2Al2O3 → 4Al + 3O2

Hydrolysis and dissolution

Oxides typically react with acids or bases, sometimes both. Those reacting only with acids are labeled basic oxides. Those reacting only by bases are called "acidic oxides". Oxides that react with both are amphoteric. Metals tend to form basic oxides, non-metals tend to form acidic oxides, and amphoteric oxides are formed by elements near the boundary between metals and non-metals (metalloids). This reactivity is the basis of many practical processes, such as the extraction of some metals from their ores in the process called hydrometallurgy.

Oxides of more electropositive elements tend to be basic. They are called basic anhydrides. Exposed to water, they may form basic hydroxides. For example, sodium oxide is basic—when hydrated, it forms sodium hydroxide. Oxides of more electronegative elements tend to be acidic. They are called "acid anhydrides"; adding water, they form oxoacids. For example, dichlorine heptoxide is an acid anhydride; perchloric acid is its fully hydrated form. Some oxides can act as both acid and base. They are amphoteric. An example is aluminium oxide. Some oxides do not show behavior as either acid or base.

The oxide ion has the formula O2−. It is the conjugate base of the hydroxide ion, OH and is encountered in ionic solids such as calcium oxide. O2− is unstable in aqueous solution − its affinity for H+ is so great (pKb ~ −38) that it abstracts a proton from a solvent H2O molecule:

O2− + H2O → 2 OH

The equilibrium constant of aforesaid reactions is pKeq ~ −22

In the 18th century, oxides were named calxes or calces after the calcination process used to produce oxides. Calx was later replaced by oxyd.

Reductive dissolution

The reductive dissolution of a transition metal oxide occurs when dissolution is coupled to a redox event.[5] For example, ferric oxides dissolve in the presence of reductants, which can include organic compounds.[6] or bacteria[7] Reductive dissolution is integral to geochemical phenomena such as the iron cycle.[8]

Reductive dissolution does not necessarily occur at the site where the reductant adsorbs. Instead, the added electron travel through the particle, causing reductive dissolution elsewhere on the particle.[9][10]

Nomenclature and formulas

Sometimes, metal-oxygen ratios are used to name oxides. Thus, NbO would be called niobium monoxide and TiO2 is titanium dioxide. This naming follows the Greek numerical prefixes. In the older literature and continuing in industry, oxides are named by adding the suffix -a to the element's name. Hence alumina, magnesia and chromia, are, respectively, Al2O3, MgO and Cr2O3.

Special types of oxides are peroxide, O22−, and superoxide, O2. In such species, oxygen is assigned higher oxidation states than oxide.

The chemical formulas of the oxides of the chemical elements in their highest oxidation state are predictable and are derived from the number of valence electrons for that element. Even the chemical formula of O4, tetraoxygen, is predictable as a group 16 element. One exception is copper, for which the highest oxidation state oxide is copper(II) oxide and not copper(I) oxide. Another exception is fluoride, which does not exist as one might expect—as F2O7—but as OF2.[11]

Since fluorine is more electronegative than oxygen, oxygen difluoride (OF2) does not represent an oxide of fluorine, but instead represents a fluoride of oxygen.

Examples of oxides

The following table gives examples of commonly encountered oxides. Only a few representatives are given, as the number of polyatomic ions encountered in practice is very large.

Name Formula Found/Usage
Water (hydrogen oxide) H
Common solvent, required by carbon-based life
Nitrous oxide N
Laughing gas, anesthetic (used in a combination with diatomic oxygen (O2) to make nitrous oxide and oxygen anesthesia), produced by nitrogen-fixing bacteria, nitrous, oxidizing agent in rocketry, aerosol propellant, recreational drug, greenhouse gas. Other nitrogen oxides such as NO
(nitrogen dioxide), NO (nitrogen oxide), N
(dinitrogen trioxide) and N
(dinitrogen tetroxide) exist, particularly in areas with notable air pollution. They are also strong oxidisers, can add nitric acid to acid rain, and are harmful to health.
Silicon dioxide SiO
Sand, quartz
Iron(II,III) oxide Fe
Iron ore, rust, along with iron(III) oxide (Fe
Aluminium oxide Al
Aluminium ore, alumina, corundum, ruby (corundum with impurities of chromium).
Zinc oxide ZnO Required for vulcanization of rubber, additive to concrete, sunscreen, skin care lotions, antibacterial and antifungal properties, food additive, white pigment.
Carbon dioxide CO
Constituent of the atmosphere of Earth, the most abundant and important greenhouse gas, used by plants in photosynthesis to make sugars, product of biological processes such as respiration and chemical reactions such as combustion and chemical decomposition of carbonates. CO or Carbon monoxide exists as a product of incomplete combustion and is a highly toxic gas.
Calcium oxide CaO Quicklime (used in construction to make mortar and concrete), used in self-heating cans due to exothermic reaction with water to produce calcium hydroxide, possible ingredient in Greek fire and produces limelight when heated over 2,400 °Celsius.

See also


  1. ^ Foundations of College Chemistry, 12th Edition
  2. ^ a b c Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
  3. ^ P.A. Cox (2010). Transition Metal Oxides. An Introduction to Their Electronic Structure and Properties. Oxford University Press. ISBN 9780199588947.CS1 maint: Uses authors parameter (link)
  4. ^ http://chemister.ru/Database/properties-en.php?dbid=1&id=4098
  5. ^ Cornell, R. M.; Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Second Edition. p. 306. doi:10.1002/3527602097.
  6. ^ Sulzberger, Barbara; Suter, Daniel; Siffert, Christophe; Banwart, Steven; Stumm, Werner (1989). "Dissolution of fe(III)(hydr)oxides in natural waters; laboratory assessment on the kinetics controlled by surface coordination". Marine Chemistry. 28 (1–3): 127–144. doi:10.1016/0304-4203(89)90191-6. ISSN 0304-4203.
  7. ^ Roden, Eric E. (2008). "Microbiological Controls on Geochemical Kinetics 1: Fundamentals and Case Study on Microbial Fe(III) Oxide Reduction": 335–415. doi:10.1007/978-0-387-73563-4_8.
  8. ^ Cornell, R. M.; Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Second Edition. p. 323. doi:10.1002/3527602097.
  9. ^ Yanina, S. V.; Rosso, K. M. (2008). "Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction". Science. 320 (5873): 218–222. Bibcode:2008Sci...320..218Y. doi:10.1126/science.1154833. ISSN 0036-8075. PMID 18323417.
  10. ^ Chatman, S.; Zarzycki, P.; Rosso, K. M. (2015). "Spontaneous Water Oxidation at Hematite (α-Fe2O3) Crystal Faces" (PDF). ACS Applied Materials & Interfaces. 7 (3): 1550–1559. doi:10.1021/am5067783. ISSN 1944-8244.
  11. ^ Schultz, Emeric (2005). "Fully Exploiting the Potential of the Periodic Table through Pattern Recognition". J. Chem. Educ. 82: 1649. Bibcode:2005JChEd..82.1649S. doi:10.1021/ed082p1649.
Aluminium oxide

Aluminium oxide (IUPAC name) or aluminum oxide (American English) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium(III) oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum depending on particular forms or applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is significant in its use to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.


Complementary metal-oxide semiconductor (CMOS) is a technology for constructing integrated circuits. CMOS technology is used in microprocessors, microcontrollers, static RAM, and other digital logic circuits. CMOS technology is also used for several analog circuits such as image sensors (CMOS sensor), data converters, and highly integrated transceivers for many types of communication. Frank Wanlass invented CMOS in 1963 while at Fairchild Semiconductor and was granted US patent 3,356,858 in 1967.

CMOS is also sometimes referred to as complementary symmetry metal-oxide semiconductor (COS-MOS). "COS-MOS" was an RCA trademark, which forced other manufacturers to find another name.

The words "complementary symmetry" refer to the typical design style with CMOS using complementary and symmetrical pairs of p-type and n-type metal oxide semiconductor field effect transistors (MOSFETs) for logic functions.Two important characteristics of CMOS devices are high noise immunity and low static power consumption.

Since one transistor of the pair is always off, the series combination draws significant power only momentarily during switching between on and off states. Consequently, CMOS devices do not produce as much waste heat as other forms of logic, for example transistor–transistor logic (TTL) or N-type metal-oxide-semiconductor logic (NMOS) logic, which normally have some standing current even when not changing state. CMOS also allows a high density of logic functions on a chip. It was primarily for this reason that CMOS became the most used technology to be implemented in very-large-scale integration (VLSI) chips.

The phrase "metal-oxide semiconductor" is a reference to the physical structure of certain field-effect transistors, having a metal gate electrode placed on top of an oxide insulator, which in turn is on top of a semiconductor material. Aluminium was once used but now the material is polysilicon. Other metal gates have made a comeback with the advent of high-κ dielectric materials in the CMOS process, as announced by IBM and Intel for the 45 nanometer node and smaller sizes.

Calcium oxide

Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term lime connotes calcium-containing inorganic materials, in which carbonates, oxides and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single chemical compound calcium oxide. Calcium oxide that survives processing without reacting in building products such as cement is called free lime.Quicklime is relatively inexpensive. Both it and a chemical derivative (calcium hydroxide, of which quicklime is the base anhydride) are important commodity chemicals.

Diethyl ether

Diethyl ether, or simply ether, is an organic compound in the ether class with the formula (C2H5)2O, sometimes abbreviated as Et2O (see Pseudoelement symbols). It is a colorless, highly volatile flammable liquid. It is commonly used as a solvent in laboratories and as a starting fluid for some engines. It was formerly used as a general anesthetic, until non-flammable drugs were developed, such as halothane. It has been used as a recreational drug to cause intoxication.

Ethylene oxide

Ethylene oxide, called oxirane by IUPAC, is an organic compound with the formula C2H4O. It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of silver catalyst.

The reactivity that is responsible for many of ethylene oxide's hazards also make it useful. Although too dangerous for direct household use and generally unfamiliar to consumers, ethylene oxide is used for making many consumer products as well as non-consumer chemicals and intermediates. These products include detergents, thickeners, solvents, plastics, and various organic chemicals such as ethylene glycol, ethanolamines, simple and complex glycols, polyglycol ethers, and other compounds. Although it is a vital raw material with diverse applications, including the manufacture of products like polysorbate 20 and polyethylene glycol (PEG) that are often more effective and less toxic than alternative materials, ethylene oxide itself is a very hazardous substance. At room temperature it is a flammable, carcinogenic, mutagenic, irritating, and anaesthetic gas.As a toxic gas that leaves no residue on items it contacts, ethylene oxide is a surface disinfectant that is widely used in hospitals and the medical equipment industry to replace steam in the sterilization of heat-sensitive tools and equipment, such as disposable plastic syringes. It is so flammable and extremely explosive that it is used as a main component of thermobaric weapons; therefore, it is commonly handled and shipped as a refrigerated liquid to control its hazardous nature.

Iron(III) oxide

Iron(III) oxide or ferric oxide is the inorganic compound with the formula Fe2O3. It is one of the three main oxides of iron, the other two being iron(II) oxide (FeO), which is rare; and iron(II,III) oxide (Fe3O4), which also occurs naturally as the mineral magnetite. As the mineral known as hematite, Fe2O3 is the main source of iron for the steel industry. Fe2O3 is readily attacked by acids. Iron(III) oxide is often called rust, and to some extent this label is useful, because rust shares several properties and has a similar composition. To a chemist, rust is considered an ill-defined material, described as hydrated ferric oxide.

Iron oxide

Iron oxides are chemical compounds composed of iron and oxygen. All together, there are sixteen known iron oxides and oxyhydroxides.Iron oxides and oxide-hydroxides are widespread in nature, play an important role in many geological and biological processes, and are widely used by humans, e.g., as iron ores, pigments, catalysts, in thermite (see the diagram) and hemoglobin. Common rust is a form of iron(III) oxide. Iron oxides are widely used as inexpensive, durable pigments in paints, coatings and colored concretes. Colors commonly available are in the "earthy" end of the yellow/orange/red/brown/black range. When used as a food coloring, it has E number E172.


The metal-oxide-semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor or MISFET is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect transistor.

The basic principle of the field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925.

The main advantage of a MOSFET is that it requires almost no input current to control the load current, when compared with bipolar transistors (bipolar junction transistors/BJTs). In an enhancement mode MOSFET, voltage applied to the gate terminal increases the conductivity of the device. In depletion mode transistors, voltage applied at the gate reduces the conductivity.The "metal" in the name MOSFET is sometimes a misnomer, because the gate material can be a layer of polysilicon (polycrystalline silicon). Similarly, "oxide" in the name can also be a misnomer, as different dielectric materials are used with the aim of obtaining strong channels with smaller applied voltages.

The MOSFET is by far the most common transistor in digital circuits, as billions may be included in a memory chip or microprocessor. Since MOSFETs can be made with either p-type or n-type semiconductors, complementary pairs of MOS transistors can be used to make switching circuits with very low power consumption, in the form of CMOS logic.

Magnesium oxide

Magnesium oxide (MgO), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg2+ ions and O2− ions held together by ionic bonding. Magnesium hydroxide forms in the presence of water (MgO + H2O → Mg(OH)2), but it can be reversed by heating it to separate moisture.

Magnesium oxide was historically known as magnesia alba (literally, the white mineral from magnesia – other sources give magnesia alba as MgCO3), to differentiate it from magnesia negra, a black mineral containing what is now known as manganese.

While "magnesium oxide" normally refers to MgO, magnesium peroxide MgO2 is also known as a compound. According to evolutionary crystal structure prediction, MgO2 is thermodynamically stable at pressures above 116 GPa (gigapascals), and a semiconducting suboxide Mg3O2 is thermodynamically stable above 500 GPa. Because of its stability, MgO is used as a model system for investigating vibrational properties of crystals.

Nitric oxide

Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical, i.e., it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula, i.e., ·NO. Nitric oxide is also a heteronuclear diatomic molecule, a historic class that drew researches which spawned early modern theories of chemical bonding.An important intermediate in chemical industry, nitric oxide forms in combustion systems and can be generated by lightning in thunderstorms. In mammals, including humans, nitric oxide is a signaling molecule in many physiological and pathological processes. It was proclaimed the "Molecule of the Year" in 1992. The 1998 Nobel Prize in Physiology or Medicine was awarded for discovering nitric oxide's role as a cardiovascular signalling molecule.

Nitric oxide should not be confused with nitrous oxide (N2O), an anesthetic, or with nitrogen dioxide (NO2), a brown toxic gas and a major air pollutant.

Nitric oxide synthase

Nitric oxide synthases (EC (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS (endothelial NOS) and nNOS (neuronal NOS). The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.

NOS catalyzes the reaction:

NOS isoforms catalyze other leak and side reactions, such as superoxide production at the expense of NADPH. As such, this stoichiometry is not generally observed, and reflects the three electrons supplied per NO by NADPH.

NOSs are unusual in that they require five cofactors. Eukaryotic NOS isozymes are catalytically self-sufficient. The electron flow in the NO synthase reaction is: NADPH → FAD → FMN → heme → O2. Tetrahydrobiopterin provides an additional electron during the catalytic cycle which is replaced during turnover. NOS is the only known enzyme that binds flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme, tetrahydrobiopterin (BH4) and calmodulin.[citation needed]

Nitrous oxide

Nitrous oxide, commonly known as laughing gas or nitrous, is a chemical compound, an oxide of nitrogen with the formula N2O. At room temperature, it is a colourless non-flammable gas, with a slight metallic scent and taste. At elevated temperatures, nitrous oxide is a powerful oxidiser similar to molecular oxygen.

It is soluble in water.

Nitrous oxide has significant medical uses, especially in surgery and dentistry, for its anaesthetic and pain reducing effects. Its name "laughing gas", coined by Humphry Davy, is due to the euphoric effects upon inhaling it, a property that has led to its recreational use as a dissociative anaesthetic. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. It also is used as an oxidiser in rocket propellants, and in motor racing to increase the power output of engines.

Nitrous oxide occurs in small amounts in the atmosphere, but recently has been found to be a major scavenger of stratospheric ozone, with an impact comparable to that of CFCs. It is estimated that 30% of the N2O in the atmosphere is the result of human activity, chiefly agriculture.

Polyethylene glycol

Polyethylene glycol (PEG; ) is a polyether compound with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG is commonly expressed as H−(O−CH2−CH2)n−OH.

Properties of water

Water (H2O) is a polar inorganic compound that is at room temperature a tasteless and odorless liquid, which is nearly colorless apart from an inherent hint of blue. It is by far the most studied chemical compound and is described as the "universal solvent" and the "solvent of life". It is the most abundant substance on Earth and the only common substance to exist as a solid, liquid, and gas on Earth's surface. It is also the third most abundant molecule in the universe.Water molecules form hydrogen bonds with each other and are strongly polar. This polarity allows it to dissociate ions in salts and bond to other polar substances such as alcohols and acids, thus dissolving them. Its hydrogen bonding causes its many unique properties, such as having a solid form less dense than its liquid form, a relatively high boiling point of 100 °C for its molar mass, and a high heat capacity.

Water is amphoteric, meaning that it can exhibit properties of an acid or a base, depending on the pH of the solution that it is in; it readily produces both H+ and OH− ions. Related to its amphoteric character, it undergoes self-ionization. The product of the activities, or approximately, the concentrations of H+ and OH− is a constant, so their respective concentrations are inversely proportional to each other.

Sulfur dioxide

Sulfur dioxide (also sulphur dioxide in British English) is the chemical compound with the formula SO2. It is a toxic gas with a burnt match smell. It is released naturally by volcanic activity and is produced as a by-product of the burning of fossil fuels contaminated with sulfur compounds and copper extraction.


Tetrahydrofuran (THF) is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent.

Titanium dioxide

Titanium dioxide, also known as titanium(IV) oxide or titania, is the naturally occurring oxide of titanium, chemical formula TiO2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. Generally, it is sourced from ilmenite, rutile and anatase. It has a wide range of applications, including paint, sunscreen and food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million metric tons. It has been estimated that titanium dioxide is used in two-thirds of all pigments, and pigments based on the oxide has been valued at $13.2 billion.

Zinc oxide

Zinc oxide is an inorganic compound with the formula ZnO. ZnO is a white powder that is insoluble in water, and it is widely used as an additive in numerous materials and products including rubbers, plastics, ceramics, glass, cement, lubricants, paints, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, and first-aid tapes. Although it occurs naturally as the mineral zincite, most zinc oxide is produced synthetically.ZnO is a wide-bandgap semiconductor of the II-VI semiconductor group. The native doping of the semiconductor due to oxygen vacancies or zinc interstitials is n-type. This semiconductor has several favorable properties, including good transparency, high electron mobility, wide bandgap, and strong room-temperature luminescence. Those properties are valuable in emerging applications for: transparent electrodes in liquid crystal displays, energy-saving or heat-protecting windows, and electronics as thin-film transistors and light-emitting diodes.

Mixed oxidation states
+1 oxidation state
+2 oxidation state
+3 oxidation state
+4 oxidation state
+5 oxidation state
+6 oxidation state
+7 oxidation state
+8 oxidation state

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.