Overburden pressure

Overburden pressure, also called lithostatic pressure, confining pressure or vertical stress, is the pressure or stress imposed on a layer of soil or rock by the weight of overlying material.

The Oxford Dictionary of Earth Sciences describes 'confining pressure' as "the combined hydrostatic stress and lithostatic stress; i.e. the total weight of the interstitial pore water and rock above a specified depth.[1]" Confining pressure might influence ductile behavior of rocks as well. Ductile behavior is enhanced where high confining pressures are combined with high temperatures and low rates of strain, conditions characteristic of deeper crustal levels.[2]

The overburden pressure at a depth z is given by

where ρ(z) is the density of the overlying rock at depth z and g is the acceleration due to gravity. p0 is the datum pressure, the pressure at the surface.

In deriving the above equation it is assumed that gravitational acceleration g is a constant over z, since it is placed outside the integral. In reality, g is a (non-constant) function of z and should appear inside the integral. But since g varies little over depths which are a very small fraction of the Earth's radius, it is placed outside the integral in practice for most near-surface applications which require an assessment of lithostatic pressure. In deep-earth geophysics/geodynamics, gravitational acceleration varies significantly over depth and g may not be assumed to be constant.

This should be compared with the equivalent concept of hydrostatic pressure in hydrodynamics.

See also

References

  1. ^ Oxford Dictionary of Earth Sciences ISBN 978-0-19-921194-4, p.126
  2. ^ Oxford Dictionary of Earth Sciences ISBN 978-0-19-921194-4, p 180
Borehole

A borehole is a narrow shaft bored in the ground, either vertically or horizontally. A borehole may be constructed for many different purposes, including the extraction of water, other liquids (such as petroleum) or gases (such as natural gas), as part of a geotechnical investigation, environmental site assessment, mineral exploration, temperature measurement, as a pilot hole for installing piers or underground utilities, for geothermal installations, or for underground storage of unwanted substances, e.g. in carbon capture and storage.

Clay

Clay is a finely-grained natural rock or soil material that combines one or more clay minerals with possible traces of quartz (SiO2), metal oxides (Al2O3 , MgO etc.) and organic matter. Geologic clay deposits are mostly composed of phyllosilicate minerals containing variable amounts of water trapped in the mineral structure. Clays are plastic due to particle size and geometry as well as water content, and become hard, brittle and non–plastic upon drying or firing. Depending on the soil's content in which it is found, clay can appear in various colours from white to dull grey or brown to deep orange-red.

Although many naturally occurring deposits include both silts and clay, clays are distinguished from other fine-grained soils by differences in size and mineralogy. Silts, which are fine-grained soils that do not include clay minerals, tend to have larger particle sizes than clays. There is, however, some overlap in particle size and other physical properties. The distinction between silt and clay varies by discipline. Geologists and soil scientists usually consider the separation to occur at a particle size of 2 µm (clays being finer than silts), sedimentologists often use 4–5 μm, and colloid chemists use 1 μm. Geotechnical engineers distinguish between silts and clays based on the plasticity properties of the soil, as measured by the soils' Atterberg limits. ISO 14688 grades clay particles as being smaller than 2 μm and silt particles as being larger.

Mixtures of sand, silt and less than 40% clay are called loam. Loam makes good soil and is used as a building material.

Density logging

Density logging is a well logging tool that can provide a continuous record of a formation's bulk density along the length of a borehole. In geology, bulk density is a function of the density of the minerals forming a rock (i.e. matrix) and the fluid enclosed in the pore spaces. This is one of three well logging tools that are commonly used to calculate porosity, the other two being sonic logging and neutron porosity logging

Gravel

Gravel is a loose aggregation of rock fragments. Gravel is classified by particle size range and includes size classes from granule- to boulder-sized fragments. In the Udden-Wentworth scale gravel is categorized into granular gravel (2 to 4 mm or 0.079 to 0.157 in) and pebble gravel (4 to 64 mm or 0.2 to 2.5 in). ISO 14688 grades gravels as fine, medium, and coarse with ranges 2 mm to 6.3 mm to 20 mm to 63 mm. One cubic metre of gravel typically weighs about 1,800 kg (or a cubic yard weighs about 3,000 pounds).

Gravel is an important commercial product, with a number of applications. Many roadways are surfaced with gravel, especially in rural areas where there is little traffic. Globally, far more roads are surfaced with gravel than with concrete or asphalt; Russia alone has over 400,000 km (250,000 mi) of gravel roads. Both sand and small gravel are also important for the manufacture of concrete.

Hydro-slotted perforation

Hydro-slotting perforation technology is the process of opening the productive formation through the casing and cement sheath to produce the oil or gas product flow (intensification, stimulation). The process has been used for industrial drilling since 1980, and involves the use of an underground hydraulic slotting engine (tool, equipment). The technology helps to minimize compressive stress following drilling in the well-bore zone (which reduces the permeability in the zone).

Index of soil-related articles

This is an index of articles relating to soil.

Natchez silt loam

In 1988, the Professional Soil Classifiers Association of Mississippi selected Natchez silt loam soil to represent the soil resources of the State. These soils exist on 171,559 acres (0.56% of state) of landscape in Mississippi.

Oil well control

Oil well control is the management of the dangerous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling.

Formation fluid can enter the wellbore if the pressure exerted by the column of drilling fluid is not great enough to overcome the pressure exerted by the fluids in the formation being drilled. Oil well control also includes monitoring a well for signs of impending influx of formation fluid into the wellbore during drilling and procedures, to stop the well from flowing when it happens by taking proper remedial actions.Failure to manage and control these pressure effects can cause serious equipment damage and injury, or loss of life. Improperly managed well control situations can cause blowouts, which are uncontrolled and explosive expulsions of formation fluid from the well, potentially resulting in a fire.

Preconsolidation pressure

Preconsolidation pressure is the maximum effective vertical overburden stress that a particular soil sample has sustained in the past. This quantity is important in geotechnical engineering, particularly for finding the expected settlement of foundations and embankments. Alternative names for the preconsolidation pressure are preconsolidation stress, pre-compression stress, pre-compaction stress, and preload stress. A soil is called overconsolidated if the current effective stress acting on the soil is less than the historical maximum.

The preconsolidation pressure can help determine the largest overburden pressure that can be exerted on a soil without irrecoverable volume change. This type of volume change is important for understanding shrinkage behavior, crack and structure formation and resistance to shearing stresses. Previous stresses and other changes in a soil's history are preserved within the soil's structure. If a soil is loaded beyond this point the soil is unable to sustain the increased load and the structure will break down. This breakdown can cause a number of different things depending on the type of soil and its geologic history.

Preconsolidation pressure cannot be measured directly, but can be estimated using a number of different strategies. Samples taken from the field are subjected to a variety of tests, like the constant rate of strain test (CRS) or the incremental loading test (IL). These tests can be costly due to expensive equipment and the long period of time they require. Each sample must be undisturbed and can only undergo one test with satisfactory results. It is important to execute these tests precisely to ensure an accurate resulting plot. There are various methods for determining the preconsolidation pressure from lab data. The data is usually arranged on a semilog plot of the effective stress (frequently represented as σ'vc) versus the void ratio. This graph is commonly called the e log p curve or the consolidation curve.

Response spectrum

A response spectrum is a plot of the peak or steady-state response (displacement, velocity or acceleration) of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock. The resulting plot can then be used to pick off the response of any linear system, given its natural frequency of oscillation. One such use is in assessing the peak response of buildings to earthquakes. The science of strong ground motion may use some values from the ground response spectrum (calculated from recordings of surface ground motion from seismographs) for correlation with seismic damage.

If the input used in calculating a response spectrum is steady-state periodic, then the steady-state result is recorded. Damping must be present, or else the response will be infinite. For transient input (such as seismic ground motion), the peak response is reported. Some level of damping is generally assumed, but a value will be obtained even with no damping.

Response spectra can also be used in assessing the response of linear systems with multiple modes of oscillation (multi-degree of freedom systems), although they are only accurate for low levels of damping. Modal analysis is performed to identify the modes, and the response in that mode can be picked from the response spectrum. These peak responses are then combined to estimate a total response. A typical combination method is the square root of the sum of the squares (SRSS) if the modal frequencies are not close. The result is typically different from that which would be calculated directly from an input, since phase information is lost in the process of generating the response spectrum.

The main limitation of response spectra is that they are only universally applicable for linear systems. Response spectra can be generated for non-linear systems, but are only applicable to systems with the same non-linearity, although attempts have been made to develop non-linear seismic design spectra with wider structural application. The results of this cannot be directly combined for multi-mode response.

Sand

Sand is a granular material composed of finely divided rock and mineral particles. It is defined by size, being finer than gravel and coarser than silt. Sand can also refer to a textural class of soil or soil type; i.e., a soil containing more than 85 percent sand-sized particles by mass.The composition of sand varies, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and non-tropical coastal settings is silica (silicon dioxide, or SiO2), usually in the form of quartz. The second most common type of sand is calcium carbonate, for example, aragonite, which has mostly been created, over the past half billion years, by various forms of life, like coral and shellfish. For example, it is the primary form of sand apparent in areas where reefs have dominated the ecosystem for millions of years like the Caribbean.

Sand is a non-renewable resource over human timescales, and sand suitable for making concrete is in high demand. Desert sand, although plentiful, is not suitable for concrete. 50 billion tons of beach sand and fossil sand is used each year for construction.

Silt

Silt is granular material of a size between sand and clay, whose mineral origin is quartz and feldspar. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water (also known as a suspended load) and soil in a body of water such as a river. It may also exist as soil deposited at the bottom of a water body, like mudflows from landslides. Silt has a moderate specific area with a typically non-sticky, plastic feel. Silt usually has a floury feel when dry, and a slippery feel when wet. Silt can be visually observed with a hand lens, exhibiting a sparkly appearance. It also can be felt by the tongue as granular when placed on the front teeth (even when mixed with clay particles).

Specific storage

In the field of hydrogeology, storage properties are physical properties that characterize the capacity of an aquifer to release groundwater. These properties are storativity (S), specific storage (Ss) and specific yield (Sy).

They are often determined using some combination of field tests (e.g., aquifer tests) and laboratory tests on aquifer material samples. Recently, these properties have been also determined using remote sensing data derived from Interferometric synthetic-aperture radar.

Standard penetration test

The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. This test is the most frequently used subsurface exploration drilling test performed worldwide. The test procedure is described in ISO 22476-3, ASTM D1586 and Australian Standards AS 1289.6.3.1.

The test provides samples for identification purposes and provides a measure of penetration resistance which can be used for geotechnical design purposes. Many local and widely published international correlations which relate blow count, or N-value, to the engineering properties of soils are available for geotechnical engineering purposes.

Stylolite

Stylolites or styolite (Greek: stylos, pillar; lithos, stone) are serrated surfaces within a rock mass at which mineral material has been removed by pressure dissolution, in a process that decreases the total volume of rock. Insoluble minerals, such as clays, pyrite and oxides, as well as insoluble organic matter, remain within the stylolites and make them visible. Sometimes host rocks contain no insoluble minerals, in which case stylolites can be recognized by change in texture of the rock. They occur most commonly in homogeneous rocks, carbonates, cherts, sandstones, but they can be found in certain igneous rocks and ice. Their size vary from microscopic contacts between two grains (microstylolites) to large structures up to 20 m in length and up to 10 m in amplitude in ice. Stylolites usually form parallel to bedding, because of overburden pressure, but they can be oblique or even perpendicular to bedding, as a result of tectonic activity.

Subsidence

Subsidence is the sudden sinking or gradual downward settling of the ground's surface with little or no horizontal motion. The definition of subsidence is not restricted by the rate, magnitude, or area involved in the downward movement. It may be caused by natural processes or by human activities. The former include various karst phenomena, thawing of permafrost, consolidation, oxidation of organic soils, slow crustal warping (isostatic adjustment), normal faulting, caldera subsidence, or withdrawal of fluid lava from beneath a solid crust. The human activities include sub-surface mining or extraction of underground fluids, e. g. petroleum, natural gas, or groundwater. Ground subsidence is of global concern to geologists, geotechnical engineers, surveyors, engineers, urban planners, landowners, and the public in general.

Thixotropy

Thixotropy is a time-dependent shear thinning property. Certain gels or fluids that are thick or viscous under static conditions will flow (become thin, less viscous) over time when shaken, agitated, sheared or otherwise stressed (time dependent viscosity). They then take a fixed time to return to a more viscous state.

Some non-Newtonian pseudoplastic fluids show a time-dependent change in viscosity; the longer the fluid undergoes shear stress, the lower its viscosity. A thixotropic fluid is a fluid which takes a finite time to attain equilibrium viscosity when introduced to a steep change in shear rate. Some thixotropic fluids return to a gel state almost instantly, such as ketchup, and are called pseudoplastic fluids. Others such as yogurt take much longer and can become nearly solid. Many gels and colloids are thixotropic materials, exhibiting a stable form at rest but becoming fluid when agitated. Thixotropy arises because particles or structured solutes require time to organize. An excellent overview of thixotropy has been provided by Mewis and Wagner.Some fluids are anti-thixotropic: constant shear stress for a time causes an increase in viscosity or even solidification. Fluids which exhibit this property are sometimes called rheopectic. Anti-thixotropic fluids are less well documented than thixotropic fluids.

Trench

A trench is a type of excavation or depression in the ground that is generally deeper than it is wide (as opposed to a wider gully, or ditch), and narrow compared with its length (as opposed to a simple hole).In geology, trenches are created as a result of erosion by rivers or by geological movement of tectonic plates. In the civil engineering field, trenches are often created to install underground infrastructure or utilities (such as gas mains, water mains or telephone lines), or later to access these installations. Trenches have also often been dug for military defensive purposes. In archaeology, the "trench method" is used for searching and excavating ancient ruins or to dig into strata of sedimented material.

Void ratio

The void ratio of a mixture is the ratio of the volume of voids to volume of solids.

It is a dimensionless quantity in materials science, and is closely related to porosity as follows:

and

where is void ratio, is porosity, VV is the volume of void-space (such as fluids), VS is the volume of solids, and VT is the total or bulk volume. This figure is relevant in composites, in mining (particular with regard to the properties of tailings), and in soil science. In geotechnical engineering, it is considered as one of the state variables of soils and represented by the symbol e.

Note that in geotechnical engineering, the symbol usually represents the angle of shearing resistance, a shear strength (soil) parameter. Because of this, the equation is usually rewritten using for porosity:

and

where is void ratio, is porosity, VV is the volume of void-space (air and water), VS is the volume of solids, and VT is the total or bulk volume.

Soil
Foundations
Retaining walls
Stability
Earthquakes
Geosynthetics
Numerical analysis

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.