Osmium (from Greek ὀσμή osme, "smell") is a chemical element with symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, mostly in platinum ores. Osmium is the densest naturally occurring element, with an experimentally measured (using x-ray crystallography) density of 22.59 g/cm3. Manufacturers use its alloys with platinum, iridium, and other platinum-group metals to make fountain pen nib tipping, electrical contacts, and in other applications that require extreme durability and hardness.[3] The element's abundance in the Earth's crust is among the rarest.[4][5]

Osmium,  76Os
Osmium crystals
Pronunciation/ˈɒzmiəm/ (OZ-mee-əm)
Appearancesilvery, blue cast
Standard atomic weight Ar, std(Os)190.23(3)[1]
Osmium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Atomic number (Z)76
Groupgroup 8
Periodperiod 6
Element category  transition metal
Electron configuration[Xe] 4f14 5d6 6s2
Electrons per shell
2, 8, 18, 32, 14, 2
Physical properties
Phase at STPsolid
Melting point3306 K ​(3033 °C, ​5491 °F)
Boiling point5285 K ​(5012 °C, ​9054 °F)
Density (near r.t.)22.59 g/cm3
when liquid (at m.p.)20 g/cm3
Heat of fusion31 kJ/mol
Heat of vaporization378 kJ/mol
Molar heat capacity24.7 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 3160 3423 3751 4148 4638 5256
Atomic properties
Oxidation states−4, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide)
ElectronegativityPauling scale: 2.2
Ionization energies
  • 1st: 840 kJ/mol
  • 2nd: 1600 kJ/mol
Atomic radiusempirical: 135 pm
Covalent radius144±4 pm
Color lines in a spectral range
Spectral lines of osmium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp)
Hexagonal close packed crystal structure for osmium
Speed of sound thin rod4940 m/s (at 20 °C)
Thermal expansion5.1 µm/(m·K) (at 25 °C)
Thermal conductivity87.6 W/(m·K)
Electrical resistivity81.2 nΩ·m (at 0 °C)
Magnetic orderingparamagnetic[2]
Magnetic susceptibility11·10−6 cm3/mol[2]
Shear modulus222 GPa
Bulk modulus462 GPa
Poisson ratio0.25
Mohs hardness7.0
Vickers hardness300 MPa
Brinell hardness293 MPa
CAS Number7440-04-2
Discovery and first isolationSmithson Tennant (1803)
Main isotopes of osmium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
184Os 0.02% stable
185Os syn 93.6 d ε 185Re
186Os 1.59% 2.0×1015 y α 182W
187Os 1.96% stable
188Os 13.24% stable
189Os 16.15% stable
190Os 26.26% stable
191Os syn 15.4 d β 191Ir
192Os 40.78% stable
193Os syn 30.11 d β 193Ir
194Os syn 6 y β 194Ir


Physical properties

Osmium 1-crop
Osmium, remelted pellet

Osmium has a blue-gray tint and is the densest stable element; it is approximately twice as dense as lead[3] and slightly denser than iridium.[6] Calculations of density from the X-ray diffraction data may produce the most reliable data for these elements, giving a value of 22.587±0.009 g/cm3 for osmium, slightly denser than the 22.562±0.009 g/cm3 of iridium; both metals are nearly 23 times as dense as water.[7]

Osmium is a hard but brittle metal that remains lustrous even at high temperatures. It has a very low compressibility. Correspondingly, its bulk modulus is extremely high, reported between 395 and 462 GPa, which rivals that of diamond (443 GPa). The hardness of osmium is moderately high at 4 GPa.[8][9][10] Because of its hardness, brittleness, low vapor pressure (the lowest of the platinum-group metals), and very high melting point (the fourth highest of all elements, after only carbon, tungsten, and rhenium), solid osmium is difficult to machine, form, or work.

Chemical properties

Oxidation states of osmium
−2 Na
−1 Na
0 Os
+1 OsI
+2 OsI
+3 OsBr
+4 OsO
, OsCl
+5 OsF
+6 OsF
+7 OsOF
+8 OsO
, Os(NCH3)

Osmium forms compounds with oxidation states ranging from −2 to +8. The most common oxidation states are +2, +3, +4, and +8. The +8 oxidation state is notable for being the highest attained by any chemical element aside from iridium's +9[11] and is encountered only in xenon,[12][13] ruthenium,[14] hassium,[15] and iridium.[16] The oxidation states −1 and −2 represented by the two reactive compounds Na
and Na
are used in the synthesis of osmium cluster compounds.[17][18]

The most common compound exhibiting the +8 oxidation state is osmium tetroxide. This toxic compound is formed when powdered osmium is exposed to air. It is a very volatile, water-soluble, pale yellow, crystalline solid with a strong smell. Osmium powder has the characteristic smell of osmium tetroxide.[19] Osmium tetroxide forms red osmates OsO
upon reaction with a base. With ammonia, it forms the nitrido-osmates OsO
.[20][21][22] Osmium tetroxide boils at 130 °C and is a powerful oxidizing agent. By contrast, osmium dioxide (OsO2) is black, non-volatile, and much less reactive and toxic.

Only two osmium compounds have major applications: osmium tetroxide for staining tissue in electron microscopy and for the oxidation of alkenes in organic synthesis, and the non-volatile osmates for organic oxidation reactions.[23]

Osmium pentafluoride (OsF5) is known, but osmium trifluoride (OsF3) has not yet been synthesized. The lower oxidation states are stabilized by the larger halogens, so that the trichloride, tribromide, triiodide, and even diiodide are known. The oxidation state +1 is known only for osmium iodide (OsI), whereas several carbonyl complexes of osmium, such as triosmium dodecacarbonyl (Os
), represent oxidation state 0.[20][21][24][25]

In general, the lower oxidation states of osmium are stabilized by ligands that are good σ-donors (such as amines) and π-acceptors (heterocycles containing nitrogen). The higher oxidation states are stabilized by strong σ- and π-donors, such as O2−
and N3−

Despite its broad range of compounds in numerous oxidation states, osmium in bulk form at ordinary temperatures and pressures resists attack by all acids and alkalis, including aqua regia.[27]


Osmium has seven naturally occurring isotopes, six of which are stable: 184
, 187
, 188
, 189
, 190
, and (most abundant) 192
. 186
undergoes alpha decay with such a long half-life (2.0±1.1)×1015 years, approximately 140000 times the age of the universe, that for practical purposes it can be considered stable. Alpha decay is predicted for all seven naturally occurring isotopes, but it has been observed only for 186
, presumably due to very long half-lives. It is predicted that 184
and 192
can undergo double beta decay but this radioactivity has not been observed yet.[28]

is the descendant of 187
(half-life 4.56×1010 years) and is used extensively in dating terrestrial as well as meteoric rocks (see rhenium-osmium dating). It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. This decay is a reason why rhenium-rich minerals are abnormally rich in 187
.[29] However, the most notable application of osmium isotopes in geology has been in conjunction with the abundance of iridium, to characterise the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the non-avian dinosaurs 65 million years ago.[30]


Osmium was discovered in 1803 by Smithson Tennant and William Hyde Wollaston in London, England.[31] The discovery of osmium is intertwined with that of platinum and the other metals of the platinum group. Platinum reached Europe as platina ("small silver"), first encountered in the late 17th century in silver mines around the Chocó Department, in Colombia.[32] The discovery that this metal was not an alloy, but a distinct new element, was published in 1748.[33] Chemists who studied platinum dissolved it in aqua regia (a mixture of hydrochloric and nitric acids) to create soluble salts. They always observed a small amount of a dark, insoluble residue.[27] Joseph Louis Proust thought that the residue was graphite.[27] Victor Collet-Descotils, Antoine François, comte de Fourcroy, and Louis Nicolas Vauquelin also observed iridium in the black platinum residue in 1803, but did not obtain enough material for further experiments.[27] Later the two French chemists Antoine-François Fourcroy and Nicolas-Louis Vauquelin identified a metal in a platinum residue they called ‘ptène’.[34]

In 1803, Smithson Tennant analyzed the insoluble residue and concluded that it must contain a new metal. Vauquelin treated the powder alternately with alkali and acids[35] and obtained a volatile new oxide, which he believed was of this new metal—which he named ptene, from the Greek word πτηνος (ptènos) for winged.[36][37] However, Tennant, who had the advantage of a much larger amount of residue, continued his research and identified two previously undiscovered elements in the black residue, iridium and osmium.[27][35] He obtained a yellow solution (probably of cis–[Os(OH)2O4]2−) by reactions with sodium hydroxide at red heat. After acidification he was able to distill the formed OsO4.[36] He named it osmium after Greek osme meaning "a smell", because of the ashy and smoky smell of the volatile osmium tetroxide.[38] Discovery of the new elements was documented in a letter to the Royal Society on June 21, 1804.[27][39]

Uranium and osmium were early successful catalysts in the Haber process, the nitrogen fixation reaction of nitrogen and hydrogen to produce ammonia, giving enough yield to make the process economically successful. At the time, a group at BASF led by Carl Bosch bought most of the world's supply of osmium to use as a catalyst. Shortly thereafter, in 1908, cheaper catalysts based on iron and iron oxides were introduced by the same group for the first pilot plants, removing the need for the expensive and rare osmium.[40]

Nowadays osmium is obtained primarily from the processing of platinum and nickel ores.[41]


Platinum nuggets
Native platinum containing traces of the other platinum group metals

Osmium is one of the even-numbered elements, which puts it in the upper half of elements commonly found in space. It is, however, the least abundant stable element in Earth's crust, with an average mass fraction of 50 parts per trillion in the continental crust.[42]

Osmium is found in nature as an uncombined element or in natural alloys; especially the iridium–osmium alloys, osmiridium (osmium rich), and iridosmium (iridium rich).[35] In nickel and copper deposits, the platinum group metals occur as sulfides (i.e., (Pt,Pd)S)), tellurides (e.g., PtBiTe), antimonides (e.g., PdSb), and arsenides (e.g., PtAs2); in all these compounds platinum is exchanged by a small amount of iridium and osmium. As with all of the platinum group metals, osmium can be found naturally in alloys with nickel or copper.[43]

Within Earth's crust, osmium, like iridium, is found at highest concentrations in three types of geologic structure: igneous deposits (crustal intrusions from below), impact craters, and deposits reworked from one of the former structures. The largest known primary reserves are in the Bushveld Igneous Complex in South Africa,[44] though the large copper–nickel deposits near Norilsk in Russia, and the Sudbury Basin in Canada are also significant sources of osmium. Smaller reserves can be found in the United States.[44] The alluvial deposits used by pre-Columbian people in the Chocó Department, Colombia are still a source for platinum group metals. The second large alluvial deposit was found in the Ural Mountains, Russia, which is still mined.[41][45]


Osmium is obtained commercially as a by-product from nickel and copper mining and processing. During electrorefining of copper and nickel, noble metals such as silver, gold and the platinum group metals, together with non-metallic elements such as selenium and tellurium settle to the bottom of the cell as anode mud, which forms the starting material for their extraction.[46][47] Separating the metals requires that they first be brought into solution. Several methods can achieve this, depending on the separation process and the composition of the mixture. Two representative methods are fusion with sodium peroxide followed by dissolution in aqua regia, and dissolution in a mixture of chlorine with hydrochloric acid.[44][48] Osmium, ruthenium, rhodium and iridium can be separated from platinum, gold and base metals by their insolubility in aqua regia, leaving a solid residue. Rhodium can be separated from the residue by treatment with molten sodium bisulfate. The insoluble residue, containing Ru, Os and Ir, is treated with sodium oxide, in which Ir is insoluble, producing water-soluble Ru and Os salts. After oxidation to the volatile oxides, RuO
is separated from OsO
by precipitation of (NH4)3RuCl6 with ammonium chloride.

After it is dissolved, osmium is separated from the other platinum group metals by distillation or extraction with organic solvents of the volatile osmium tetroxide.[49] The first method is similar to the procedure used by Tennant and Wollaston. Both methods are suitable for industrial scale production. In either case, the product is reduced using hydrogen, yielding the metal as a powder or sponge that can be treated using powder metallurgy techniques.[50]

Neither the producers nor the United States Geological Survey published any production amounts for osmium. In 1971, estimations of the United States production of osmium as a byproduct of copper refining was 2000 troy ounces (62 kg).[51] In 2017, the estimated US import of osmium for consumption was 90 kg.[52]


Because of the volatility and extreme toxicity of its oxide, osmium is rarely used in its pure state, but is instead often alloyed with other metals for high-wear applications. Osmium alloys such as osmiridium are very hard and, along with other platinum-group metals, are used in the tips of fountain pens, instrument pivots, and electrical contacts, as they can resist wear from frequent operation. They were also used for the tips of phonograph styli during the late 78 rpm and early "LP" and "45" record era, circa 1945 to 1955. Osmium-alloy tips were significantly more durable than steel and chromium needle points, but wore out far more rapidly than competing, and costlier, sapphire and diamond tips, so they were discontinued.[53]

Osmium tetroxide has been used in fingerprint detection[54] and in staining fatty tissue for optical and electron microscopy. As a strong oxidant, it cross-links lipids mainly by reacting with unsaturated carbon–carbon bonds and thereby both fixes biological membranes in place in tissue samples and simultaneously stains them. Because osmium atoms are extremely electron-dense, osmium staining greatly enhances image contrast in transmission electron microscopy (TEM) studies of biological materials. Those carbon materials otherwise have very weak TEM contrast (see image).[23] Another osmium compound, osmium ferricyanide (OsFeCN), exhibits similar fixing and staining action.[55]

The tetroxide and its derivative potassium osmate are important oxidants in organic synthesis. For the Sharpless asymmetric dihydroxylation, which uses osmate for the conversion of a double bond into a vicinal diol, Karl Barry Sharpless was awarded the Nobel Prize in Chemistry in 2001.[56][57] OsO4 is very expensive for this use, so KMnO4 is often used instead, even though the yields are less for this cheaper chemical reagent.

In 1898 an Austrian chemist Auer von Welsbach developed the Oslamp with a filament made of osmium, which he introduced commercially in 1902. After only a few years, osmium was replaced by the more stable metal tungsten. Tungsten has the highest melting point among all metals, and its use in light bulbs increases the luminous efficacy and life of incandescent lamps.[36]

The light bulb manufacturer Osram (founded in 1906, when three German companies, Auer-Gesellschaft, AEG and Siemens & Halske, combined their lamp production facilities) derived its name from the elements of osmium and Wolfram (the latter is German for tungsten).[58]

Like palladium, powdered osmium effectively absorbs hydrogen atoms. This could make osmium a potential candidate for a metal-hydride battery electrode. However, osmium is expensive and would react with potassium hydroxide, the most common battery electrolyte.[59]

Osmium has high reflectivity in the ultraviolet range of the electromagnetic spectrum; for example, at 600 Å osmium has a reflectivity twice that of gold.[60] This high reflectivity is desirable in space-based UV spectrometers, which have reduced mirror sizes due to space limitations. Osmium-coated mirrors were flown in several space missions aboard the Space Shuttle, but it soon became clear that the oxygen radicals in the low Earth orbit are abundant enough to significantly deteriorate the osmium layer.[61]

The only known clinical use of osmium is synovectomy in arthritic patients in Scandinavia.[62] It involves the local administration of osmium tetroxide (OsO4), which is a highly toxic compound. The lack of reports of long-term side effects suggest that osmium itself can be biocompatible, though this depends on the osmium compound administered. In 2011, osmium(VI)[63] and osmium(II)[64] compounds were reported to show anticancer activity in vivo, it indicated a promising future for using osmium compounds as anticancer drugs.[65]

Sharpless Dihydroxylation Scheme

The Sharpless dihydroxylation:
RL = largest substituent; RM = medium-sized substituent; RS = smallest substituent


Post-flight appearance of Os, Ag, and Au mirrors from the front (left images) and rear panels of the Space Shuttle. Blackening reveals oxidation due to irradiation by oxygen atoms.[66][67]


Metallic osmium is harmless[68] but finely divided metallic osmium is pyrophoric[51] and reacts with oxygen at room temperature, forming volatile osmium tetroxide. Some osmium compounds are also converted to the tetroxide if oxygen is present.[51] This makes osmium tetroxide the main source of contact with the environment.

Osmium tetroxide is highly volatile and penetrates skin readily, and is very toxic by inhalation, ingestion, and skin contact.[69] Airborne low concentrations of osmium tetroxide vapor can cause lung congestion and skin or eye damage, and should therefore be used in a fume hood.[19] Osmium tetroxide is rapidly reduced to relatively inert compounds by e.g. ascorbic acid[70] or polyunsaturated vegetable oils (such as corn oil).[71]


Osmium is usually sold as a minimum 99.9% pure powder. Like other precious metals, it is measured by troy weight and by grams.The market price of osmium has not changed in decades, primarily because little change has occurred in supply and demand. In addition to so little of it being available, osmium is difficult to work with, has few uses, and is a challenge to store safely because of the toxic compound it produces when it oxidizes.

While the price of $400 per troy ounce has remained steady since the 1990s, inflation since that time has led to the metal losing about one-third of its value in the two decades prior to 2019.


  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. ^ a b Haynes 2011, p. 4.134.
  3. ^ a b Haynes 2011, p. 4.25.
  4. ^ Fleischer, Michael (1953). "Recent estimates of the abundances of the elements in the Earth's crust" (PDF). U.S. Geological Survey.
  5. ^ "Reading: Abundance of Elements in Earth's Crust | Geology". courses.lumenlearning.com. Retrieved May 10, 2018.
  6. ^ Arblaster, J. W. (1989). "Densities of osmium and iridium: recalculations based upon a review of the latest crystallographic data" (PDF). Platinum Metals Review. 33 (1): 14–16.
  7. ^ Arblaster, J. W. (1995). "Osmium, the Densest Metal Known". Platinum Metals Review. 39 (4): 164.
  8. ^ Weinberger, Michelle; Tolbert, Sarah; Kavner, Abby (2008). "Osmium Metal Studied under High Pressure and Nonhydrostatic Stress". Phys. Rev. Lett. 100 (4): 045506. Bibcode:2008PhRvL.100d5506W. doi:10.1103/PhysRevLett.100.045506. PMID 18352299.
  9. ^ Cynn, Hyunchae; Klepeis, J. E.; Yeo, C. S.; Young, D. A. (2002). "Osmium has the Lowest Experimentally Determined Compressibility". Physical Review Letters. 88 (13): 135701. Bibcode:2002PhRvL..88m5701C. doi:10.1103/PhysRevLett.88.135701. PMID 11955108.
  10. ^ Sahu, B. R.; Kleinman, L. (2005). "Osmium Is Not Harder Than Diamond". Physical Review B. 72 (11): 113106. Bibcode:2005PhRvB..72k3106S. doi:10.1103/PhysRevB.72.113106.
  11. ^ Stoye, Emma (October 23, 2014). "Iridium forms compound in +9 oxidation state". Royal Society of Chemistry.
  12. ^ Selig, H.; Claassen, H. H.; Chernick, C. L.; Malm, J. G.; et al. (1964). "Xenon tetroxide – Preparation + Some Properties". Science. 143 (3612): 1322–3. Bibcode:1964Sci...143.1322S. doi:10.1126/science.143.3612.1322. JSTOR 1713238. PMID 17799234.
  13. ^ Huston, J. L.; Studier, M. H.; Sloth, E. N. (1964). "Xenon tetroxide – Mass Spectrum". Science. 143 (3611): 1162–3. Bibcode:1964Sci...143.1161H. doi:10.1126/science.143.3611.1161-a. JSTOR 1712675. PMID 17833897.
  14. ^ Barnard, C. F. J. (2004). "Oxidation States of Ruthenium and Osmium". Platinum Metals Review. 48 (4): 157. doi:10.1595/147106704X10801.
  15. ^ "Chemistry of Hassium" (PDF). Gesellschaft für Schwerionenforschung mbH. 2002. Retrieved January 31, 2007.
  16. ^ Gong, Yu; Zhou, Mingfei; Kaupp, Martin; Riedel, Sebastian (2009). "Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII". Angewandte Chemie International Edition. 48 (42): 7879–83. doi:10.1002/anie.200902733. PMID 19593837.
  17. ^ Krause, J.; Siriwardane, Upali; Salupo, Terese A.; Wermer, Joseph R.; et al. (1993). "Preparation of [Os3(CO)11]2− and its reactions with Os3(CO)12; structures of [Et4N] [HOs3(CO)11] and H2OsS4(CO)". Journal of Organometallic Chemistry. 454: 263–271. doi:10.1016/0022-328X(93)83250-Y.
  18. ^ Carter, Willie J.; Kelland, John W.; Okrasinski, Stanley J.; Warner, Keith E.; et al. (1982). "Mononuclear hydrido alkyl carbonyl complexes of osmium and their polynuclear derivatives". Inorganic Chemistry. 21 (11): 3955–3960. doi:10.1021/ic00141a019.
  19. ^ a b Mager Stellman, J. (1998). "Osmium". Encyclopaedia of Occupational Health and Safety. International Labour Organization. p. 63.34. ISBN 978-92-2-109816-4. OCLC 35279504.
  20. ^ a b Holleman, A. F.; Wiberg, E.; Wiberg, N. (2001). Inorganic Chemistry (1st ed.). Academic Press. ISBN 978-0-12-352651-9. OCLC 47901436.
  21. ^ a b Griffith, W. P. (1965). "Osmium and its compounds". Quarterly Reviews, Chemical Society. 19 (3): 254–273. doi:10.1039/QR9651900254.
  22. ^ Subcommittee on Platinum-Group Metals, Committee on Medical and Biologic Effects of Environmental Pollutants, Division of Medical Sciences, Assembly of Life Sciences, National Research Council (1977). Platinum-group metals. National Academy of Sciences. p. 55. ISBN 978-0-309-02640-6.CS1 maint: Multiple names: authors list (link)
  23. ^ a b Bozzola, John J.; Russell, Lonnie D. (1999). "Specimen Preparation for Transmission Electron Microscopy". Electron microscopy : principles and techniques for biologists. Sudbury, Mass.: Jones and Bartlett. pp. 21–31. ISBN 978-0-7637-0192-5.
  24. ^ Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). Oxford:Butterworth-Heinemann. pp. 1113–1143, 1294. ISBN 978-0-7506-3365-9. OCLC 213025882.
  25. ^ Gulliver, D. J; Levason, W. (1982). "The chemistry of ruthenium, osmium, rhodium, iridium, palladium and platinum in the higher oxidation states". Coordination Chemistry Reviews. 46: 1–127. doi:10.1016/0010-8545(82)85001-7.
  26. ^ Sykes, A. G. (1992). Advances in Inorganic Chemistry. Academic Press. p. 221. ISBN 978-0-12-023637-4.
  27. ^ a b c d e f Hunt, L. B. (1987). "A History of Iridium" (PDF). Platinum Metals Review. 31 (1): 32–41. Retrieved March 15, 2012.
  28. ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  29. ^ Dąbek, Józef; Halas, Stanislaw (2007). "Physical Foundations of Rhenium-Osmium Method – A Review". Geochronometria. 27: 23–26. doi:10.2478/v10003-007-0011-4.
  30. ^ Alvarez, L. W.; Alvarez, W.; Asaro, F.; Michel, H. V. (1980). "Extraterrestrial cause for the Cretaceous–Tertiary extinction" (PDF). Science. 208 (4448): 1095–1108. Bibcode:1980Sci...208.1095A. CiteSeerX doi:10.1126/science.208.4448.1095. PMID 17783054.
  31. ^ Venetskii, S. I. (1974). "Osmium". Metallurgist. 18 (2): 155–157. doi:10.1007/BF01132596.
  32. ^ McDonald, M. (959). "The Platinum of New Granada: Mining and Metallurgy in the Spanish Colonial Empire". Platinum Metals Review. 3 (4): 140–145.
  33. ^ Juan, J.; de Ulloa, A. (1748). Relación histórica del viage a la América Meridional (in Spanish). 1. p. 606.
  34. ^ Haubrichs, Rolf; Zaffalon, Pierre-Leonard (2017). "Osmium vs. 'Ptène': The Naming of the Densest Metal". Johnson Matthey Technology Review. 61 (3): 190. doi:10.1595/205651317x695631.
  35. ^ a b c Emsley, J. (2003). "Osmium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 199–201. ISBN 978-0-19-850340-8.
  36. ^ a b c Griffith, W. P. (2004). "Bicentenary of Four Platinum Group Metals. Part II: Osmium and iridium – events surrounding their discoveries". Platinum Metals Review. 48 (4): 182–189. doi:10.1595/147106704X4844.
  37. ^ Thomson, T. (1831). A System of Chemistry of Inorganic Bodies. Baldwin & Cradock, London; and William Blackwood, Edinburgh. p. 693.
  38. ^ Weeks, M. E. (1968). Discovery of the Elements (7 ed.). Journal of Chemical Education. pp. 414–418. ISBN 978-0-8486-8579-9. OCLC 23991202.
  39. ^ Tennant, S. (1804). "On Two Metals, Found in the Black Powder Remaining after the Solution of Platina". Philosophical Transactions of the Royal Society. 94: 411–418. doi:10.1098/rstl.1804.0018. JSTOR 107152.
  40. ^ Smil, Vaclav (2004). Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press. pp. 80–86. ISBN 978-0-262-69313-4.
  41. ^ a b George, Micheal W. "2006 Minerals Yearbook: Platinum-Group Metals" (PDF). United States Geological Survey USGS. Retrieved September 16, 2008.
  42. ^ Wedepohl, Hans K (1995). "The composition of the continental crust". Geochimica et Cosmochimica Acta. 59 (7): 1217–1232. Bibcode:1995GeCoA..59.1217W. doi:10.1016/0016-7037(95)00038-2.
  43. ^ Xiao, Z.; Laplante, A. R. (2004). "Characterizing and recovering the platinum group minerals—a review". Minerals Engineering. 17 (9–10): 961–979. doi:10.1016/j.mineng.2004.04.001.
  44. ^ a b c Seymour, R. J.; O'Farrelly, J. I. (2001). "Platinum-group metals". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.1612012019052513.a01.pub2. ISBN 978-0471238966.
  45. ^ "Commodity Report: Platinum-Group Metals" (PDF). United States Geological Survey USGS. Retrieved September 16, 2008.
  46. ^ George, M. W. (2008). "Platinum-group metals" (PDF). U.S. Geological Survey Mineral Commodity Summaries.
  47. ^ George, M. W. 2006 Minerals Yearbook: Platinum-Group Metals (PDF). United States Geological Survey USGS. Retrieved September 16, 2008.
  48. ^ Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; et al. (2002). "Platinum group metals and compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a21_075. ISBN 978-3527306732.
  49. ^ Gilchrist, Raleigh (1943). "The Platinum Metals". Chemical Reviews. 32 (3): 277–372. doi:10.1021/cr60103a002.
  50. ^ Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138. Retrieved October 2, 2008.
  51. ^ a b c Smith, Ivan C.; Carson, Bonnie L.; Ferguson, Thomas L. (1974). "Osmium: An Appraisal of Environmental Exposure". Environmental Health Perspectives. 8: 201–213. doi:10.2307/3428200. JSTOR 3428200. PMC 1474945. PMID 4470919.
  52. ^ "Platinum-Group Metals" (PDF). USGS. Retrieved May 27, 2013.
  53. ^ Cramer, Stephen D. & Covino, Bernard S. Jr. (2005). ASM Handbook Volume 13B. Corrosion: Materials. ASM International. ISBN 978-0-87170-707-9.
  54. ^ MacDonell, Herbert L. (1960). "The Use of Hydrogen Fluoride in the Development of Latent Fingerprints Found on Glass Surfaces". The Journal of Criminal Law, Criminology, and Police Science. 51 (4): 465–470. doi:10.2307/1140672. JSTOR 1140672.
  55. ^ Chadwick, D. (2002). Role of the sarcoplasmic reticulum in smooth muscle. John Wiley and Sons. pp. 259–264. ISBN 978-0-470-84479-3.
  56. ^ Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. (1994). "Catalytic Asymmetric Dihydroxylation". Chemical Reviews. 94 (8): 2483–2547. doi:10.1021/cr00032a009.
  57. ^ Colacot, T. J. (2002). "2001 Nobel Prize in Chemistry" (PDF). Platinum Metals Review. 46 (2): 82–83.
  58. ^ Bowers, B., B. (2001). "Scanning our past from London: the filament lamp and new materials". Proceedings of the IEEE. 89 (3): 413–415. doi:10.1109/5.915382.
  59. ^ Antonov, V. E.; Belash, I. T.; Malyshev, V. Yu.; Ponyatovsky, E. G. (1984). "The Solubility of Hydrogen in the Platinum Metals under High Pressure" (PDF). Platinum Metals Review. 28 (4): 158–163.
  60. ^ Torr, Marsha R. (1985). "Osmium coated diffraction grating in the Space Shuttle environment: performance". Applied Optics. 24 (18): 2959. Bibcode:1985ApOpt..24.2959T. doi:10.1364/AO.24.002959. PMID 18223987.
  61. ^ Gull, T. R.; Herzig, H.; Osantowski, J. F.; Toft, A. R. (1985). "Low earth orbit environmental effects on osmium and related optical thin-film coatings". Applied Optics. 24 (16): 2660. Bibcode:1985ApOpt..24.2660G. doi:10.1364/AO.24.002660. PMID 18223936.
  62. ^ Sheppeard, H.; D. J. Ward (1980). "Intra-articular osmic acid in rheumatoid arthritis: five years' experience". Rheumatology. 19 (1): 25–29. doi:10.1093/rheumatology/19.1.25. PMID 7361025.
  63. ^ Lau, T.-C; W.-X. Ni; W.-L. Man; M. T.-W. Cheung; et al. (2011). "Osmium(vi) complexes as a new class of potential anti-cancer agents". Chem. Commun. 47 (7): 2140–2142. doi:10.1039/C0CC04515B. PMID 21203649.
  64. ^ Sadler, Peter; Steve D. Shnyder; Ying Fu; Abraha Habtemariam; et al. (2011). "Anti-colorectal cancer activity of an organometallic osmium arene azopyridine complex" (PDF). Med. Chem. Commun. 2 (7): 666–668. doi:10.1039/C1MD00075F.
  65. ^ Fu, Ying; Romero, María J.; Habtemariam, Abraha; et al. (2012). "The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes" (PDF). Chemical Science. 3 (8): 2485–2494. doi:10.1039/C2SC20220D.
  66. ^ Linton, Roger C.; Kamenetzky, Rachel R. (1992). "Second LDEF post-retrieval symposium interim results of experiment A0034" (PDF). NASA. Retrieved June 6, 2009.
  67. ^ Linton, Roger C.; Kamenetzky, Rachel R.; Reynolds, John M.; Burris, Charles L. (1992). "LDEF experiment A0034: Atomic oxygen stimulated outgassing". NASA. Langley Research Center: 763. Bibcode:1992ldef.symp..763L.
  68. ^ McLaughlin, A. I. G.; Milton, R.; Perry, Kenneth M. A. (July 1946). "Toxic Manifestations of Osmium Tetroxide". British Journal of Industrial Medicine. 3 (3): 183–186. doi:10.1136/oem.3.3.183. ISSN 0007-1072. PMC 1035752. PMID 20991177.
  69. ^ Luttrell, William E.; Giles, Cory B. (2007). "Toxic tips: Osmium tetroxide". Journal of Chemical Health and Safety. 14 (5): 40–41. doi:10.1016/j.jchas.2007.07.003.
  70. ^ Mushran S.P., Mehrotra U.S. (1970). "Oxidation of ascorbic acid by osmium(VIII)". Canadian Journal of Chemistry. 48 (7): 1148–1150. doi:10.1139/v70-188.
  71. ^ "How to Handle Osmium Tetroxide". University of California, San Diego. Archived from the original on February 21, 2006. Retrieved June 2, 2009.

External links

Adamsfield, Tasmania

Adamsfield is a locality in Tasmania Australia where osmiridium was discovered in 1925. Alluvial mining resulted in one of the world's largest sources of osmium and iridium metal.Florentine Post Office opened on 1 November 1925. It was renamed Adamsfield next month and closed in 1960.

Group 8 element

Group 8 is a group (column) of chemical elements in the periodic table. It consists of iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs). They are all transition metals.

Like other groups, the members of this family show patterns in electron configuration, especially in the outermost shells, resulting in trends in chemical behavior.

"Group 8" is the modern standard designation for this group, adopted by the IUPAC in 1990.In the older group naming systems, this group was combined with group 9 (cobalt, rhodium, iridium, and meitnerium) and group 10 (nickel, palladium, platinum, and darmstadtium) and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system" (and in Mendeleev's original table).

Group 8 (current IUPAC) should not be confused with "group VIIIA" in the CAS system, which is group 18 (current IUPAC), the noble gases.

While groups (columns) of the periodic table are sometimes named after their lighter member (as in "the oxygen group" for group 16), the term iron group does not mean "group 8". Most often, it means a set of adjacent elements on period (row) 4 of the table that includes iron, such as chromium, manganese, iron, cobalt, and nickel; or only the last three; or some other set — depending on the context.

Group 9 element

Group 9 is a group (column) of chemical elements in the periodic table. Members are cobalt (Co), rhodium (Rh), iridium (Ir) and meitnerium (Mt). These are all transition metals in the d-block.

Like other groups, the members of this family show patterns in electron configuration, especially in the outermost shells, resulting in trends in chemical behavior; however, rhodium deviates from the pattern.

"Group 9" is the modern standard designation for this group, adopted by the IUPAC in 1990.In the older group naming systems, this group was combined with group 8 (iron, ruthenium, osmium, and hassium) and group 10 (nickel, palladium, platinum, and darmstadtium) and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system" (and in Mendeleev's original table).


Hassium is a synthetic chemical element with symbol Hs and atomic number 108. It is named after the German state of Hesse. It is a synthetic element and radioactive; the most stable known isotope, 270Hs, has a half-life of approximately 10 seconds.

In the periodic table of the elements, it is a d-block transactinide element. Hassium is a member of the 7th period and belongs to the group 8 elements: it is thus the sixth member of the 6d series of transition metals. Chemistry experiments have confirmed that hassium behaves as the heavier homologue to osmium in group 8. The chemical properties of hassium are characterized only partly, but they compare well with the chemistry of the other group 8 elements. In bulk quantities, hassium is expected to be a silvery metal that reacts readily with oxygen in the air, forming a volatile tetroxide.


Iridium is a chemical element with symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, iridium is the second-densest metal (after osmium) with a density of 22.56 g/cm3 as defined by experimental X-ray crystallography. At room temperature and standard atmospheric pressure, iridium has a density of 22.65 g/cm3, 0.04 g/cm3 higher than osmium measured the same way. It is the most corrosion-resistant metal, even at temperatures as high as 2000 °C. Although only certain molten salts and halogens are corrosive to solid iridium, finely divided iridium dust is much more reactive and can be flammable.

Iridium was discovered in 1803 among insoluble impurities in natural platinum. Smithson Tennant, the primary discoverer, named iridium for the Greek goddess Iris, personification of the rainbow, because of the striking and diverse colors of its salts. Iridium is one of the rarest elements in Earth's crust, with annual production and consumption of only three tonnes. 191Ir and 193Ir are the only two naturally occurring isotopes of iridium, as well as the only stable isotopes; the latter is the more abundant.

The most important iridium compounds in use are the salts and acids it forms with chlorine, though iridium also forms a number of organometallic compounds used in industrial catalysis, and in research. Iridium metal is employed when high corrosion resistance at high temperatures is needed, as in high-performance spark plugs, crucibles for recrystallization of semiconductors at high temperatures, and electrodes for the production of chlorine in the chloralkali process. Iridium radioisotopes are used in some radioisotope thermoelectric generators.

Iridium is found in meteorites in much higher abundance than in the Earth's crust. For this reason, the unusually high abundance of iridium in the clay layer at the Cretaceous–Paleogene boundary gave rise to the Alvarez hypothesis that the impact of a massive extraterrestrial object caused the extinction of dinosaurs and many other species 66 million years ago. Similarly, an iridium anomaly in core samples from the Pacific Ocean suggested the Eltanin impact of about 2.5 million years ago.

It is thought that the total amount of iridium in the planet Earth is much higher than that observed in crustal rocks, but as with other platinum-group metals, the high density and tendency of iridium to bond with iron caused most iridium to descend below the crust when the planet was young and still molten.

Isotope geochemistry

Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements. Variations in isotopic abundance are measured by isotope ratio mass spectrometry, and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between them.

Stable isotope geochemistry is largely concerned with isotopic variations arising from mass-dependent isotope fractionation, whereas radiogenic isotope geochemistry is concerned with the products of natural radioactivity.

Isotopes of osmium

Osmium (76Os) has seven naturally occurring isotopes, six of which are stable: 184Os, 187Os, 188Os, 189Os, 190Os, and (most abundant) 192Os. The other natural isotope, 186Os, has an extremely long half-life (2×1015 years) and for practical purposes can be considered to be stable as well. 187Os is the daughter of 187Re (half-life 4.56×1010 years) and is most often measured in an 187Os/188Os ratio. This ratio, as well as the 187Re/188Os ratio, have been used extensively in dating terrestrial as well as meteoric rocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. However, the most notable application of Os in dating has been in conjunction with iridium, to analyze the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago.

There are also 30 artificial radioisotopes, the longest-lived of which is 194Os with a half-life of six years; all others have half-lives under 94 days. There are also nine known nuclear isomers, the longest-lived of which is 191mOs with a half-life of 13.10 hours.


Osmiridium and iridosmine are natural alloys of the elements osmium and iridium, with traces of other platinum-group metals.

Osmiridium has been defined as containing a higher proportion of iridium, with iridosmine containing more osmium. However, as the content of the natural Os-Ir alloys varies considerably, the constituent percentages of specimens often reflects the reverse situation of osmiridium describing specimens containing a higher proportion of osmium and iridosmine specimens containing more iridium.

Osmium(IV) chloride

Osmium(IV) chloride or osmium tetrachloride is the inorganic compound composed of osmium and chlorine with the empirical formula OsCl4. It exists in two polymorphs (crystalline forms). The compound is used to prepare other osmium complexes.

Osmium (album)

Osmium is the debut album of American funk band Parliament, led by George Clinton. The album has a psychedelic soul sound with a spirit of experimentation that is more similar to early Funkadelic than the later R&B-inspired Parliament albums. It was originally released in September 1970 on Invictus Records. The original vinyl release contained a glossy lyric sheet.

Since its re-release in 1990, Osmium has been distributed numerous times by various labels in the U.S., Europe and Japan, sometimes under alternate titles that have included Rhenium and First Thangs. A number of these reissues have featured material that was not included on the original album, such as unreleased tracks and singles that were recorded around the same time as Osmium.

The personnel for this album included the five Parliaments singers and the five backing musicians known as Funkadelic. The same personnel also recorded as Funkadelic, releasing that act's self-titled debut album also in 1970. After the release of Osmium, contractual difficulties prevented further recording under the name Parliament until 1974, when Clinton signed that act to Casablanca Records and positioned it as an R&B-inspired counterpoint to the more rock-oriented Funkadelic.

The yodeling that arguably uniquely identifies one of De La Soul's early hits, "Potholes in My Lawn" (which eventually appeared on De La Soul's 3 Feet High and Rising), comes from Osmium's "Little Ole Country Boy".This is the only Parliament album that Ruth Copeland worked on.

Osmium dioxide

Osmium dioxide is an inorganic compound with the formula OsO2. It exists as brown to black crystalline powder, but single crystals are golden and exhibit metallic conductivity. The compound crystallizes in the rutile structural motif, i.e. the connectivity is very similar to that in the mineral rutile.

Osmium hexafluoride

Osmium hexafluoride, also osmium(VI) fluoride, (OsF6) is a compound of osmium and fluorine, and one of the seventeen known binary hexafluorides.

Osmium tetroxide

Osmium tetroxide (also osmium(VIII) oxide) is the chemical compound with the formula OsO4. The compound is noteworthy for its many uses, despite its toxicity and the rarity of osmium. It also has a number of interesting properties, one being that the solid is volatile. The compound is colourless, but most samples appear yellow. This is most likely due to the presence of the impurity OsO2, which is yellow-brown in colour.

Platinum group

The platinum-group metals (abbreviated as the PGMs; alternatively, the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs)) are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block (groups 8, 9, and 10, periods 5, 6 and 7).The six platinum-group metals are ruthenium, rhodium, palladium, osmium, iridium, and platinum. They have similar physical and chemical properties, and tend to occur together in the same mineral deposits. However they can be further subdivided into the iridium-group platinum-group elements (IPGEs: Os, Ir, Ru) and the palladium-group platinum-group elements (PPGEs: Rh, Pt, Pd) based on their behaviour in geological systems.The three elements above the platinum group in the periodic table (iron, nickel and cobalt) are all ferromagnetic, these being the only known transition metals with this property.

Rhenium–osmium dating

Rhenium-Osmium dating is a form of radiometric dating based on the beta decay of the isotope 187Re to 187Os. This normally occurs with a half-life of 41.6 × 109 y, but studies using fully ionised 187Re atoms have found that this can decrease to only 33 y. Both rhenium and osmium are strongly siderophilic (iron loving), while Re is also chalcophilic (sulfur loving) making it useful in dating sulfide ores such as gold and Cu-Ni deposits.

This dating method is based on an isochron calculated based on isotopic ratios measured using N-TIMS (Negative – Thermal Ionization Mass Spectrometry).


Ruthenium is a chemical element with symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals. Russian-born scientist of Baltic-German ancestry Karl Ernst Claus discovered the element in 1844 at Kazan State University and named it after the Latin name of his homeland, Ruthenia. Ruthenium is usually found as a minor component of platinum ores; the annual production has risen from about 19 tonnes in 2009 to some 35.5 tonnes in 2017. Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst. A new application of ruthenium is as the capping layer for extreme ultraviolet photomasks. Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario and in pyroxenite deposits in South Africa.

Sharpless asymmetric dihydroxylation

Sharpless asymmetric dihydroxylation (also called the Sharpless bishydroxylation) is the chemical reaction of an alkene with osmium tetroxide in the presence of a chiral quinine ligand to form a vicinal diol.

It is common practice to perform this reaction using a catalytic amount of osmium tetroxide, which after reaction is regenerated with reoxidants such as potassium ferricyanide or N-methylmorpholine N-oxide. This dramatically reduces the amount of the highly toxic and very expensive osmium tetroxide needed. These four reagents are commercially available premixed ("AD-mix"). The mixture containing (DHQ)2-PHAL is called AD-mix-α, and the mixture containing (DHQD)2-PHAL is called AD-mix-β.Such chiral diols are important in organic synthesis. The introduction of chirality into nonchiral reactants through usage of chiral catalysts is an important concept in organic synthesis. This reaction was developed principally by K. Barry Sharpless building on the already known racemic Upjohn dihydroxylation, for which he was awarded a share of the 2001 Nobel Prize in Chemistry.

Smithson Tennant

Smithson Tennant FRS (30 November 1761 – 22 February 1815) was an English chemist.

Tennant is best known for his discovery of the elements iridium and osmium, which he found in the residues from the solution of platinum ores in 1803. He also contributed to the proof of the identity of diamond and charcoal. The mineral tennantite is named after him.


Staining is an auxiliary technique used in microscopy to enhance contrast in the microscopic image. Stains and dyes are frequently used in biology and medicine to highlight structures in biological tissues for viewing, often with the aid of different microscopes. Stains may be used to define and examine bulk tissues (highlighting, for example, muscle fibers or connective tissue), cell populations (classifying different blood cells, for instance), or organelles within individual cells.

In biochemistry it involves adding a class-specific (DNA, proteins, lipids, carbohydrates) dye to a substrate to qualify or quantify the presence of a specific compound. Staining and fluorescent tagging can serve similar purposes. Biological staining is also used to mark cells in flow cytometry, and to flag proteins or nucleic acids in gel electrophoresis.

Simple staining is staining with only one stain/dye. There are various kinds of multiple staining, many of which are examples of counterstaining, differential staining, or both, including double staining and triple staining.

Staining is not limited to biological materials, it can also be used to study the morphology of other materials for example the lamellar structures of semi-crystalline polymers or the domain structures of block copolymers.

Osmium compounds

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.