Orion–Eridanus Superbubble

The Orion–Eridanus Superbubble, or Eridanus Soft X-ray Enhancement is a superbubble located west of the Orion Nebula. The region is formed from overlapping supernova remnants that may be associated with the Orion OB1 stellar association; the bubble is approximately 1200 ly across.[1] It is the nearest superbubble to the Local Bubble containing the Sun, with the respective shock fronts being about 500 ly apart.[1]

The structure was discovered from 21 cm radio observations by Carl Heiles and interstellar optical emission line observations by Reynolds and Ogden in the 1970s.[2]

Orion-Eridanus Bubble
The Orion-Eridanus superbubble in soft X-rays

See also

References

  1. ^ a b Aschenbach, B.; Hermann-Michael Hahn; Joachim Truemper (1998). The invisible sky: ROSAT and the age of X-ray astronomy. Springer. ISBN 978-0-387-94928-4.
  2. ^ Sanders, Robert. "Bursting bubbles in the galactic disk appear to be source of hot gas permeating the Milky Way galaxy and its halo". Berkeley.
Astrophysical X-ray source

Astrophysical X-ray sources are astronomical objects with physical properties which result in the emission of X-rays.

There are a number of types of astrophysical objects which emit X-rays, from galaxy clusters, through black holes in active galactic nuclei (AGN) to galactic objects such as supernova remnants, stars, and binary stars containing a white dwarf (cataclysmic variable stars and super soft X-ray sources), neutron star or black hole (X-ray binaries). Some solar system bodies emit X-rays, the most notable being the Moon, although most of the X-ray brightness of the Moon arises from reflected solar X-rays. A combination of many unresolved X-ray sources is thought to produce the observed X-ray background. The X-ray continuum can arise from bremsstrahlung, either magnetic or ordinary Coulomb, black-body radiation, synchrotron radiation, inverse Compton scattering of lower-energy photons by relativistic electrons, knock-on collisions of fast protons with atomic electrons, and atomic recombination, with or without additional electron transitions.Furthermore, celestial entities in space are discussed as celestial X-ray sources. The origin of all observed astronomical X-ray sources is in, near to, or associated with a coronal cloud or gas at coronal cloud temperatures for however long or brief a period.

Local Bubble

The Local Bubble, or Local Cavity, is a relative cavity in the interstellar medium (ISM) of the Orion Arm in the Milky Way. It contains among others, the Local Interstellar Cloud, which contains the Solar System, and the G-Cloud. It is at least 300 light years across and is defined by its neutral-hydrogen density of about 0.05 atoms/cm3, or approximately one tenth of the average for the ISM in the Milky Way (0.5 atoms/cm3), and one sixth that of the Local Interstellar Cloud (0.3 atoms/cm3).The exceptionally sparse matter, namely gas, of the Local Bubble is the result of supernovae that exploded within the past ten to twenty million years and remains in an excited state, emitting in the X-ray band. It was once thought that the most likely candidate for the remains of this supernova was Geminga, a pulsar in the constellation Gemini. Later, however, it has been suggested that multiple supernovae in subgroup B1 of the Pleiades moving group were more likely responsible, becoming a remnant supershell.

Superbubble

A superbubble or supershell is a cavity which is hundreds of light years across and is populated with hot (106 K) gas atoms, less dense than the surrounding interstellar medium, blown against that medium and carved out by multiple supernovae and stellar winds. The winds, passage and gravity of newly born stars strip superbubbles of any other dust or gas. The Solar System lies near the center of an old superbubble, known as the Local Bubble, whose boundaries can be traced by a sudden rise in dust extinction of exterior stars at distances greater than a few hundred light years.

X-ray astronomy

X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites. X-ray astronomy is the space science related to a type of space telescope that can see farther than standard light-absorption telescopes, such as the Mauna Kea Observatories, via x-ray radiation.

X-ray emission is expected from astronomical objects that contain extremely hot gases at temperatures from about a million kelvin (K) to hundreds of millions of kelvin (MK). Moreover, the maintenance of the E-layer of ionized gas high in the Earth's Thermosphere also suggested a strong extraterrestrial source of X-rays. Although theory predicted that the Sun and the stars would be prominent X-ray sources, there was no way to verify this because Earth's atmosphere blocks most extraterrestrial X-rays. It was not until ways of sending instrument packages to high altitude were developed that these X-ray sources could be studied.

The existence of solar X-rays was confirmed early in the rocket age by V-2s converted to sounding rocket purpose, and the detection of extraterrestrial X-rays has been the primary or secondary mission of multiple satellites since 1958. The first cosmic (beyond the solar system) X-ray source was discovered by a sounding rocket in 1962. Called Scorpius X-1 (Sco X-1) (the first X-ray source found in the constellation Scorpius), the X-ray emission of Scorpius X-1 is 10,000 times greater than its visual emission, whereas that of the Sun is about a million times less. In addition, the energy output in X-rays is 100,000 times greater than the total emission of the Sun in all wavelengths.

Many thousands of X-ray sources have since been discovered. In addition, the space between galaxies in galaxy clusters is filled with a very hot, but very dilute gas at a temperature between 10 and 100 megakelvins (MK). The total amount of hot gas is five to ten times the total mass in the visible galaxies.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.