Octet (computing)

The octet is a unit of digital information in computing and telecommunications that consists of eight bits. The term is often used when the term byte might be ambiguous, as the byte has historically been used for storage units of a variety of sizes.

The term octad(e) for eight bits is no longer common.[1][2]

octet
Unit systemunits derived from bit
Unit ofdigital information, data size
Symbolo 
In primary units of information1 o = 8 bits

Definition

A variable-length sequence of octets, as in Abstract Syntax Notation One (ASN.1), is referred to as an octet string.

The international standard IEC 60027-2, chapter 3.8.2, states that a byte is an octet of bits. However, the unit byte has historically been platform-dependent and has represented various storage sizes in the history of computing. Due to the influence of several major computer architectures and product lines, the byte became overwhelmingly associated with eight bits. This meaning of byte is codified in such standards as ISO/IEC 80000-13. While byte and octet are often used synonymously, those working with certain legacy systems are careful to avoid ambiguity.

Octets can be represented using number systems of varying bases such as the hexadecimal, decimal, or octal number systems. The binary value of all eight bits set (or activated) is 111111112, equal to the hexadecimal value FF16, the decimal value 25510, and the octal value 3778. One octet can be used to represent decimal values ranging from 0 to 255.

The term octet (symbol: o) is often used when the use of byte might be ambiguous. It is frequently used in the Request for Comments (RFC) publications of the Internet Engineering Task Force to describe storage sizes of network protocol parameters. The earliest example is RFC 635 from 1974. In 2000, Bob Bemer claimed to have earlier proposed the usage of the term octet for "8-bit bytes" when he headed software operations for Cie. Bull in France in 1965 to 1966.[3]

In France, French Canada and Romania, octet is used in common language instead of byte when the 8-bit sense is required, for example, a megabyte (MB) is termed a megaoctet (Mo).

Octad

Historically, in Western Europe, the term octad (or octade) was used to specifically denote 8 bits;[2][1] however, this usage is no longer common. Early examples of usage exist in British,[2] Dutch and German sources of the 1960s and 1970s, and throughout the documentation of Philips mainframe computers.[1] Similar terms are triad for a grouping of three and decade for ten.

Unit multiples

Unit multiples of the octet may be formed with SI prefixes and binary prefixes (power of 2 prefixes) as standardized by the International Electrotechnical Commission during 1998.

SI Prefixes
kilooctet (ko) = 103 octets = 1000 octets
megaoctet (Mo) = 106 octets = 1000 ko = 1000000 octets
gigaoctet (Go) = 109 octets = 1000 Mo = 1000000000 octets
teraoctet (To) = 1012 octets = 1000 Go = 1000000000000 octets
petaoctet (Po) = 1015 octets = 1000 To = 1000000000000000 octets
exaoctet (Eo) = 1018 octets = 1000 Po = 1000000000000000000 octets
zettaoctet (Zo) = 1021 octets = 1000 Eo = 1000000000000000000000 octets
yottaoctet (Yo) = 1024 octets = 1000 Zo = 1000000000000000000000000 octets
Binary Prefixes
kibioctet (Kio, also written Ko, as distinct from ko) = 210 octets = 1024 octets
mebioctet (Mio) = 220 octets = 1024 Kio = 1048576 octets
gibioctet (Gio) = 230 octets = 1024 Mio = 1073741824 octets
tebioctet (Tio) = 240 octets = 1024 Gio = 1099511627776 octets
pebioctet (Pio) = 250 octets = 1024 Tio = 1125899906842624 octets
exbioctet (Eio) = 260 octets = 1024 Pio = 1152921504606846976 octets
zebioctet (Zio) = 270 octets = 1024 Eio = 1180591620717411303424 octets
yobioctet (Yio) = 280 octets = 1024 Zio = 1208925819614629174706176 octets

Use in internet protocol addresses

The octet is used to represent Internet Protocol computer network addresses.[4] An IPv4 address consists of four octets, usually shown individually as a series of decimal values ranging from 0 to 255, each separated by a full stop (dot). Using octets with all eight bits set, the representation of the highest numbered IPv4 address is 255.255.255.255.

An IPv6 address consists of sixteen octets, shown using hexadecimal representation (two digits per octet) and using a colon character (:) after each pair of octets (16 bits also known as hextet) for readability, like this FE80:0000:0000:0000:0123:4567:89AB:CDEF. If two or more consecutive octets equal zero they may be replaced by two following colon characters (::) but this can be used only once in a given IPv6 address to avoid ambiguity. The previously given IPv6 address can thus also be written as FE80::0123:4567:89AB:CDEF. In addition leading zeroes may also be omitted as they are not significant bits in the address. Applying this to the previous example mentioned will result in an IPv6 address of FE80::123:4567:89AB:CDEF.

References

  1. ^ a b c "Philips - Philips Data Systems' product range - April 1971" (PDF). Philips. 1971. Archived from the original (PDF) on 2016-03-03. Retrieved 2016-10-03.
  2. ^ a b c Williams, R. H. (1969-01-01). "British Commercial Computer Digest: Pergamon Computer Data Series". Pergamon Press. ISBN 1483122107. 978-1483122106. Retrieved 2015-08-03.
  3. ^ Bemer, Robert William (2000-08-08). "Why is a byte 8 bits? Or is it?". Computer History Vignettes. Retrieved 2017-05-15. […] I came to work for IBM, and saw all the confusion caused by the 64-character limitation. Especially when we started to think about word processing, which would require both upper and lower case. […] I even made a proposal (in view of STRETCH, the very first computer I know of with an 8-bit byte) that would extend the number of punch card character codes to 256 […]. So some folks started thinking about 7-bit characters, but this was ridiculous. With IBM's STRETCH computer as background, handling 64-character words divisible into groups of 8 (I designed the character set for it, under the guidance of Dr. Werner Buchholz, the man who DID coin the term "byte" for an 8-bit grouping). […] It seemed reasonable to make a universal 8-bit character set, handling up to 256. In those days my mantra was "powers of 2 are magic". And so the group I headed developed and justified such a proposal […] The IBM 360 used 8-bit characters, although not ASCII directly. Thus Buchholz's "byte" caught on everywhere. I myself did not like the name for many reasons. The design had 8 bits moving around in parallel. But then came a new IBM part, with 9 bits for self-checking, both inside the CPU and in the tape drives. I exposed this 9-bit byte to the press in 1973. But long before that, when I headed software operations for Cie. Bull in France in 1965-66, I insisted that "byte" be deprecated in favor of "octet". […]
  4. ^ Kozierok, Charles M. (2005-09-20) [2001]. "The TCP/IP Guide - Binary Information and Representation: Bits, Bytes, Nibbles, Octets and Characters - Byte versus Octet". 3.0. Archived from the original on 2017-04-03. Retrieved 2017-04-03.

External links

  • The dictionary definition of octet at Wiktionary
Byte

The byte is a unit of digital information that most commonly consists of eight bits, representing a binary number. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures.

The size of the byte has historically been hardware dependent and no definitive standards existed that mandated the size – byte-sizes from 1 to 48 bits are known to have been used in the past. Early character encoding systems often used six bits, and machines using six-bit and nine-bit bytes were common into the 1960s. These machines most commonly had memory words of 12, 24, 36, 48 or 60 bits, corresponding to two, four, six, eight or 10 six-bit bytes. In this era, bytes in the instruction stream were often referred to as syllables, before the term byte became common.

The modern de-facto standard of eight bits, as documented in ISO/IEC 2382-1:1993, is a convenient power of two permitting the values 0 through 255 for one byte (2 in power of 8 = 256, where zero signifies a number as well). The international standard IEC 80000-13 codified this common meaning. Many types of applications use information representable in eight or fewer bits and processor designers optimize for this common usage. The popularity of major commercial computing architectures has aided in the ubiquitous acceptance of the eight-bit size. Modern architectures typically use 32- or 64-bit words, built of four or eight bytes.

The unit symbol for the byte was designated as the upper-case letter B by the International Electrotechnical Commission (IEC) and Institute of Electrical and Electronics Engineers (IEEE) in contrast to the bit, whose IEEE symbol is a lower-case b. Internationally, the unit octet, symbol o, explicitly denotes a sequence of eight bits, eliminating the ambiguity of the byte.

Base unit
Platform-dependent units
Platform-independent units
Traditional bit units
Traditional byte units
IEC bit units
IEC byte units

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.