Neon-burning process

The neon-burning process (nuclear decay) is a set of nuclear fusion reactions that take place in massive stars (at least 8 Solar masses). Neon burning requires high temperatures and densities (around 1.2×109 K or 100 KeV and 4×109 kg/m3).

At such high temperatures photodisintegration becomes a significant effect, so some neon nuclei decompose, releasing alpha particles:[1]

20
10
Ne
 
γ  →  16
8
O
 
4
2
He
20
10
Ne
 
4
2
He
 
→  24
12
Mg
 
γ

Alternatively:

20
10
Ne
 
n  →  21
10
Ne
 
γ
21
10
Ne
 
4
2
He
 
→  24
12
Mg
 
n

where the neutron consumed in the first step is regenerated in the second.

Neon burning takes place after carbon burning has consumed all carbon in the core and built up a new oxygen-neon-sodium-magnesium core. The core ceases producing fusion energy and contracts. This contraction increases density and temperature up to the ignition point of neon burning. The increased temperature around the core allows carbon to burn in a shell, and there will be shells burning helium and hydrogen outside.

During neon burning, oxygen and magnesium accumulate in the central core while neon is consumed. After a few years the star consumes all its neon and the core ceases producing fusion energy and contracts. Again, gravitational pressure takes over and compresses the central core, increasing its density and temperature until the oxygen-burning process can start.

See also

References

  1. ^ Clayton, Donald. Principles of Stellar Evolution and Nucleosynthesis, (1983)

External links

Carbon-burning process

The carbon-burning process or carbon fusion is a set of nuclear fusion reactions that take place in the cores of massive stars (at least 8 M ⊙ {\displaystyle {\begin{smallmatrix}M_{\odot }\end{smallmatrix}}} at birth) that combines carbon into other elements. It requires high temperatures (> 5×108 K or 50 keV) and densities (> 3×109 kg/m3).

These figures for temperature and density are only a guide. More massive stars burn their nuclear fuel more quickly, since they have to offset greater gravitational forces to stay in (approximate) hydrostatic equilibrium. That generally means higher temperatures, although lower densities, than for less massive stars. To get the right figures for a particular mass, and a particular stage of evolution, it is necessary to use a numerical stellar model computed with computer algorithms. Such models are continually being refined based on nuclear physics experiments (which measure nuclear reaction rates) and astronomical observations (which include direct observation of mass loss, detection of nuclear products from spectrum observations after convection zones develop from the surface to fusion-burning regions – known as dredge-up events – and so bring nuclear products to the surface, and many other observations relevant to models).

Index of physics articles (N)

The index of physics articles is split into multiple pages due to its size.

To navigate by individual letter use the table of contents below.

Isotopes of oxygen

There are three known stable isotopes of oxygen (8O): 16O, 17O, and 18O.

Radioactive isotopes ranging from 11O to 26O have also been characterized, all short-lived. The longest-lived radioisotope is 15O with a half-life of 122.24 seconds, while the shortest-lived isotope is 12O with a half-life of 580(30)×10−24 seconds (the half-life of the unbound 11O was not measured).

Outline of astronomy

The following outline is provided as an overview of and topical guide to astronomy:

Astronomy – studies the universe beyond Earth, including its formation and development, and the evolution, physics, chemistry, meteorology, and motion of celestial objects (such as galaxies, planets, etc.) and phenomena that originate outside the atmosphere of Earth (such as the cosmic background radiation).

Oxygen

Oxygen is the chemical element with the symbol O and atomic number 8, meaning its nucleus has 8 protons. The number of neutrons varies according to the isotope: the stable isotopes have 8, 9, or 10 neutrons. Oxygen is a member of the chalcogen group on the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O2. Diatomic oxygen gas constitutes 20.8% of the Earth's atmosphere. As compounds including oxides, the element makes up almost half of the Earth's crust.

Dioxygen is used in cellular respiration and many major classes of organic molecules in living organisms contain oxygen, such as proteins, nucleic acids, carbohydrates, and fats, as do the major constituent inorganic compounds of animal shells, teeth, and bone. Most of the mass of living organisms is oxygen as a component of water, the major constituent of lifeforms. Oxygen is continuously replenished in Earth's atmosphere by photosynthesis, which uses the energy of sunlight to produce oxygen from water and carbon dioxide. Oxygen is too chemically reactive to remain a free element in air without being continuously replenished by the photosynthetic action of living organisms. Another form (allotrope) of oxygen, ozone (O3), strongly absorbs ultraviolet UVB radiation and the high-altitude ozone layer helps protect the biosphere from ultraviolet radiation. However, ozone present at the surface is a byproduct of smog and thus a pollutant.

Oxygen was isolated by Michael Sendivogius before 1604, but it is commonly believed that the element was discovered independently by Carl Wilhelm Scheele, in Uppsala, in 1773 or earlier, and Joseph Priestley in Wiltshire, in 1774. Priority is often given for Priestley because his work was published first. Priestley, however, called oxygen "dephlogisticated air", and did not recognize it as a chemical element. The name oxygen was coined in 1777 by Antoine Lavoisier, who first recognized oxygen as a chemical element and correctly characterized the role it plays in combustion.

Common uses of oxygen include production of steel, plastics and textiles, brazing, welding and cutting of steels and other metals, rocket propellant, oxygen therapy, and life support systems in aircraft, submarines, spaceflight and diving.

Oxygen-16

Oxygen-16 (16O) is a stable isotope of oxygen, having 8 neutrons and 8 protons in its nucleus. It has a mass of 15.99491461956 u. Oxygen-16 is the most abundant isotope of oxygen and accounts for 99.762% of oxygen's natural abundance. The relative and absolute abundance of 16O are high because it is a principal product of stellar evolution and because it is a primordial isotope, meaning it can be made by stars that were initially made exclusively of hydrogen. Most 16O is synthesized at the end of the helium fusion process in stars; the triple-alpha process creates 12C, which captures an additional 4He to make 16O. The neon-burning process creates additional 16O.

Oxygen-burning process

The oxygen-burning process is a set of nuclear fusion reactions that take place in massive stars that have used up the lighter elements in their cores. Oxygen-burning is preceded by the neon-burning process and succeeded by the silicon-burning process. As the neon-burning process ends, the core of the star contracts and heats until it reaches the ignition temperature for oxygen burning. Oxygen burning reactions are similar to those of carbon burning; however, they must occur at higher temperatures and densities due to the larger Coulomb barrier of oxygen. Oxygen in the core ignites in the temperature range of (1.5–2.6)×109 K and in the density range of (2.6–6.7)×109g/cm3. The principal reactions are given below, where the branching ratios assume that the deuteron channel is open (at high temperatures):

Near 2×109K, the oxygen burning reaction rate is approximately 2.8×10−12(T9/2)33, where T9 is the temperature in billions of Kelvin. Overall, the major products of the oxygen-burning process are 28Si, 32,33,34S, 35,37Cl, 36,38Ar, 39,41K, and 40,42Ca. Of these, 28Si and 32S constitute 90% of the final composition. The oxygen fuel within the core of the star is exhausted after 0.01–5 years depending on the star's mass and other parameters. The silicon-burning process which follows creates iron, but this iron cannot react further to create energy to support the star.

During the oxygen-burning process, proceeding outward, there is an oxygen-burning shell, followed by a neon shell, a carbon shell, a helium shell, and a hydrogen shell. The oxygen-burning process is the last nuclear reaction in the star's core which does not proceed via the alpha process.

Potassium

Potassium is a chemical element with the symbol K (from Neo-Latin kalium) and atomic number 19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmospheric oxygen to form flaky white potassium peroxide in only seconds of exposure. It was first isolated from potash, the ashes of plants, from which its name derives. In the periodic table, potassium is one of the alkali metals, all of which have a single valence electron in the outer electron shell, that is easily removed to create an ion with a positive charge – a cation, that combines with anions to form salts. Potassium in nature occurs only in ionic salts. Elemental potassium reacts vigorously with water, generating sufficient heat to ignite hydrogen emitted in the reaction, and burning with a lilac-colored flame. It is found dissolved in sea water (which is 0.04% potassium by weight), and occurs in many minerals such as orthoclase, a common constituent of granites and other igneous rocks.

Potassium is chemically very similar to sodium, the previous element in group 1 of the periodic table. They have a similar first ionization energy, which allows for each atom to give up its sole outer electron. That they are different elements that combine with the same anions to make similar salts was suspected in 1702, and was proven in 1807 using electrolysis. Naturally occurring potassium is composed of three isotopes, of which 40K is radioactive. Traces of 40K are found in all potassium, and it is the most common radioisotope in the human body.

Potassium ions are vital for the functioning of all living cells. The transfer of potassium ions across nerve cell membranes is necessary for normal nerve transmission; potassium deficiency and excess can each result in numerous signs and symptoms, including an abnormal heart rhythm and various electrocardiographic abnormalities. Fresh fruits and vegetables are good dietary sources of potassium. The body responds to the influx of dietary potassium, which raises serum potassium levels, with a shift of potassium from outside to inside cells and an increase in potassium excretion by the kidneys.

Most industrial applications of potassium exploit the high solubility in water of potassium compounds, such as potassium soaps. Heavy crop production rapidly depletes the soil of potassium, and this can be remedied with agricultural fertilizers containing potassium, accounting for 95% of global potassium chemical production.

Star

A star is an astronomical object consisting of a luminous spheroid of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the estimated 300 sextillion (3×1023) stars in the Universe are invisible to the naked eye from Earth, including all stars outside our galaxy, the Milky Way.

For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and then radiates into outer space. Almost all naturally occurring elements heavier than helium are created by stellar nucleosynthesis during the star's lifetime, and for some stars by supernova nucleosynthesis when it explodes. Near the end of its life, a star can also contain degenerate matter. Astronomers can determine the mass, age, metallicity (chemical composition), and many other properties of a star by observing its motion through space, its luminosity, and spectrum respectively. The total mass of a star is the main factor that determines its evolution and eventual fate. Other characteristics of a star, including diameter and temperature, change over its life, while the star's environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram (H–R diagram). Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined.

A star's life begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. When the stellar core is sufficiently dense, hydrogen becomes steadily converted into helium through nuclear fusion, releasing energy in the process. The remainder of the star's interior carries energy away from the core through a combination of radiative and convective heat transfer processes. The star's internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun's will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements at the core or in shells around the core. As the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled later as new stars. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or, if it is sufficiently massive, a black hole.

Binary and multi-star systems consist of two or more stars that are gravitationally bound and generally move around each other in stable orbits. When two such stars have a relatively close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy.

Stellar nucleosynthesis

Stellar nucleosynthesis is the theory explaining the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions between atoms within stars. Stellar nucleosynthesis has occurred continuously since the original creation of hydrogen, helium and lithium during the Big Bang. It is a highly predictive theory that today yields excellent agreement between calculations based upon it and the observed abundances of the elements. It explains why the observed abundances of elements in the universe grow over time and why some elements and their isotopes are much more abundant than others. The theory was initially proposed by Fred Hoyle in 1946, who later refined it in 1954. Further advances were made, especially to nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret Burbidge, Geoffrey Burbidge, William Alfred Fowler and Hoyle in their famous 1957 B2FH paper, which became one of the most heavily cited papers in astrophysics history.

Stars evolve because of changes in their composition (the abundance of their constituent elements) over their lifespans, first by burning hydrogen (main sequence star), then helium (red giant star), and progressively burning higher elements. However, this does not by itself significantly alter the abundances of elements in the universe as the elements are contained within the star. Later in its life, a low-mass star will slowly eject its atmosphere via stellar wind, forming a planetary nebula, while a higher–mass star will eject mass via a sudden catastrophic event called a supernova. The term supernova nucleosynthesis is used to describe the creation of elements during the evolution and explosion of a pre-supernova massive star (12–35 times the mass of the sun). Those massive stars are the most prolific source of new isotopes from carbon (Z = 6) to nickel (Z = 28).

The advanced sequence of burning fuels is driven by gravitational collapse and its associated heating, resulting in the subsequent burning of carbon, oxygen and silicon. However, most of the nucleosynthesis in the mass range A = 28–56 (from silicon to nickel) is actually caused by the upper layers of the star collapsing onto the core, creating a compressional shock wave rebounding outward. The shock front briefly raises temperatures by roughly 50%, thereby causing furious burning for about a second. This final burning in massive stars, called explosive nucleosynthesis or supernova nucleosynthesis, is the final epoch of stellar nucleosynthesis.

A stimulus to the development of the theory of nucleosynthesis was the discovery of variations in the abundances of elements found in the universe. The need for a physical description was already inspired by the relative abundances of isotopes of the chemical elements in the solar system. Those abundances, when plotted on a graph as a function of atomic number of the element, have a jagged sawtooth shape that varies by factors of tens of millions (see history of nucleosynthesis theory). This suggested a natural process that is not random. A second stimulus to understanding the processes of stellar nucleosynthesis occurred during the 20th century, when it was realized that the energy released from nuclear fusion reactions accounted for the longevity of the Sun as a source of heat and light.

Type II supernova

A Type II supernova (plural: supernovae or supernovas) results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun (M☉) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies.

Stars generate energy by the nuclear fusion of elements. Unlike the Sun, massive stars possess the mass needed to fuse elements that have an atomic mass greater than hydrogen and helium, albeit at increasingly higher temperatures and pressures, causing increasingly shorter stellar life spans. The degeneracy pressure of electrons and the energy generated by these fusion reactions are sufficient to counter the force of gravity and prevent the star from collapsing, maintaining stellar equilibrium. The star fuses increasingly higher mass elements, starting with hydrogen and then helium, progressing up through the periodic table until a core of iron and nickel is produced. Fusion of iron or nickel produces no net energy output, so no further fusion can take place, leaving the nickel–iron core inert. Due to the lack of energy output creating outward thermal pressure, the core contracts due to gravity until the overlying weight of the star can be supported largely by electron degeneracy pressure.

When the compacted mass of the inert core exceeds the Chandrasekhar limit of about 1.4 M☉, electron degeneracy is no longer sufficient to counter the gravitational compression. A cataclysmic implosion of the core takes place within seconds. Without the support of the now-imploded inner core, the outer core collapses inwards under gravity and reaches a velocity of up to 23% of the speed of light and the sudden compression increases the temperature of the inner core to up to 100 billion kelvins. Neutrons and neutrinos are formed via reversed beta-decay, releasing about 1046 joules (100 foe) in a ten-second burst. Also, the collapse of the inner core is halted by neutron degeneracy, causing the implosion to rebound and bounce outward. The energy of this expanding shock wave is sufficient to disrupt the overlying stellar material and accelerate it to escape velocity, forming a supernova explosion. The shock wave and extremely high temperature and pressure rapidly dissipate but are present for long enough to allow for a brief period during which the

production of elements heavier than iron occurs. Depending on initial size of the star, the remnants of the core form a neutron star or a black hole. Because of the underlying mechanism, the resulting supernova is also described as a core-collapse supernova.

There exist several categories of Type II supernova explosions, which are categorized based on the resulting light curve—a graph of luminosity versus time—following the explosion. Type II-L supernovae show a steady (linear) decline of the light curve following the explosion, whereas Type II-P display a period of slower decline (a plateau) in their light curve followed by a normal decay. Type Ib and Ic supernovae are a type of core-collapse supernova for a massive star that has shed its outer envelope of hydrogen and (for Type Ic) helium. As a result, they appear to be lacking in these elements.

Radioactive
decay
Stellar
nucleosynthesis
Other
processes

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.