Nature Structural & Molecular Biology

Nature Structural & Molecular Biology is a monthly peer-reviewed scientific journal publishing research articles, reviews, news, and commentaries in structural and molecular biology, with an emphasis on papers that further a "functional and mechanistic understanding of how molecular components in a biological process work together".[1]

It is published by the Nature Publishing Group and was established in 1994 under the title Nature Structural Biology, obtaining its current title in January 2004. Like other Nature journals, there is no external editorial board, with editorial decisions being made by an in-house team, although peer review by external expert referees forms a part of the review process.

Articles are archived online in text and PDF formats; access is by subscription only.[2]

According to the Journal Citation Reports, the journal had a 2014 impact factor of 13.309, ranking it 7th out of 289 journals in the category "Biochemistry & Molecular Biology",[3] 2nd out of 73 journals in the category "Biophysics",[4] and 12th out of 184 journals in the category "Cell Biology".[5]

Nature Structural & Molecular Biology
Nat Struct Mol Biol cover
DisciplineStructural biology, molecular biology
LanguageEnglish
Edited byInês Chen
Publication details
Former name(s)
Nature Structural Biology
Publication history
Nature Structural Biology (1994–2003); Nature Structural & Molecular Biology (2004–present)
Publisher
FrequencyMonthly
12.595
Standard abbreviations
Nat. Struct. Mol. Biol.
Indexing
CODENNSMBCU
ISSN1545-9993 (print)
1545-9985 (web)
LCCN2003215440
OCLC no.52847740
Links

References

  1. ^ Nature Structural & Molecular Biology: About the Journal (accessed 5 January 2011)
  2. ^ Nature Structural & Molecular Biology: Guide to Authors (accessed 5 January 2011)
  3. ^ "Journals Ranked by Impact: Biochemistry & Molecular Biology". 2014 Journal Citation Reports. Web of Science (Science ed.). Thomson Reuters. 2015.
  4. ^ "Journals Ranked by Impact: Biophysics". 2014 Journal Citation Reports. Web of Science (Science ed.). Thomson Reuters. 2015.
  5. ^ "Journals Ranked by Impact: Cell Biology". 2014 Journal Citation Reports. Web of Science (Science ed.). Thomson Reuters. 2015.

External links

Autotaxin

Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase family member 2 (E-NPP 2), is an enzyme that in humans is encoded by the ENPP2 gene.

Clostridium perfringens alpha toxin

Clostridium perfringens alpha toxin is a toxin produced by the bacterium Clostridium perfringens (C. perfringens) and is responsible for gas gangrene and myonecrosis in infected tissues. The toxin also possesses hemolytic activity.

DYNLL1

Dynein light chain 1, cytoplasmic is a protein that in humans is encoded by the DYNLL1 gene.

Nature Nanotechnology

Nature Nanotechnology is a monthly peer-reviewed scientific journal published by Nature Publishing Group. It was established in October 2006. The editor-in-chief is Fabio Pulizzi. It covers all aspects of nanoscience and nanotechnology.

Nature Neuroscience

Nature Neuroscience is a monthly scientific journal published by Nature Publishing Group. Its focus is original research papers relating specifically to neuroscience and was established in May 1998. According to the Journal Citation Reports, Nature Neuroscience had a 2016 impact factor of 17.839.

Nucleosome

A nucleosome is a basic unit of DNA packaging in eukaryotes, consisting of a segment of DNA wound in sequence around eight histone protein cores. This structure is often compared to thread wrapped around a spool.Nucleosomes form the fundamental repeating units of eukaryotic chromatin, which is used to pack the large eukaryotic genomes into the nucleus while still ensuring appropriate access to it (in mammalian cells approximately 2 m of linear DNA have to be packed into a nucleus of roughly 10 µm diameter). Nucleosomes are folded through a series of successively higher order structures to eventually form a chromosome; this both compacts DNA and creates an added layer of regulatory control, which ensures correct gene expression. Nucleosomes are thought to carry epigenetically inherited information in the form of covalent modifications of their core histones. Nucleosome positions in the genome are not random, and it is important to know where each nucleosome is located because this determines the accessibility of the DNA to regulatory proteins. Nucleosomes were first observed as particles in the electron microscope by Don and Ada Olins in 1974, and their existence and structure (as histone octamers surrounded by approximately 200 base pairs of DNA) were proposed by Roger Kornberg. The role of the nucleosome as a general gene repressor was demonstrated by Lorch et al. in vitro, and by Han and Grunstein in vivo in 1987 and 1988, respectively.The nucleosome core particle consists of approximately 146 base pairs (bp) of DNA wrapped in 1.67 left-handed superhelical turns around a histone octamer, consisting of 2 copies each of the core histones H2A, H2B, H3, and H4. Core particles are connected by stretches of "linker DNA", which can be up to about 80 bp long. Technically, a nucleosome is defined as the core particle plus one of these linker regions; however the word is often synonymous with the core particle. Genome-wide nucleosome positioning maps are now available for many model organisms including mouse liver and brain.Linker histones such as H1 and its isoforms are involved in chromatin compaction and sit at the base of the nucleosome near the DNA entry and exit binding to the linker region of the DNA. Non-condensed nucleosomes without the linker histone resemble "beads on a string of DNA" under an electron microscope.In contrast to most eukaryotic cells, mature sperm cells largely use protamines to package their genomic DNA, most likely to achieve an even higher packaging ratio. Histone equivalents and a simplified chromatin structure have also been found in Archea, suggesting that eukaryotes are not the only organisms that use nucleosomes.

Phenylalanine hydroxylase

Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine. PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH4, a pteridine cofactor) and a non-heme iron for catalysis. During the reaction, molecular oxygen is heterolytically cleaved with sequential incorporation of one oxygen atom into BH4 and phenylalanine substrate.

Phenylalanine hydroxylase is the rate-limiting enzyme of the metabolic pathway that degrades excess phenylalanine. Research on phenylalanine hydroxylase by Seymour Kaufman led to the discovery of tetrahydrobiopterin as a biological cofactor. The enzyme is also interesting from a human health perspective because mutations in PAH, the encoding gene, can lead to phenylketonuria, a severe metabolic disorder.

SWI/SNF

In molecular biology, SWI/SNF (SWItch/Sucrose Non-Fermentable), is a nucleosome remodeling complex found in eukaryotes. In simpler terms, it is a group of proteins that associate to remodel the way DNA is packaged. It is composed of several proteins – products of the SWI and SNF genes (SWI1, SWI2/SNF2, SWI3, SWI5, SWI6) as well as other polypeptides. It possesses a DNA-stimulated ATPase activity and can destabilise histone-DNA interactions in reconstituted nucleosomes in an ATP-dependent manner, though the exact nature of this structural change is unknown.

The human analogs of SWI/SNF are BAF (SWI/SNF-A) and PBAF (SWI/SNF-B). BAF in turn stands for "BRG1- or HBRM-associated factors", and PBAF is for "polybromo-associated BAF".

Sidgwick

Sidgwick may refer to:

Mary Sidgwick Benson (1841–1918), English hostess and wife of Edward Benson, the Archbishop of Canterbury

Eleanor Mildred Sidgwick (1845–1936), English activist for higher education of women and wife of Henry Sidgwick

Henry Sidgwick (1838–1900), English philosopher

Nevil Sidgwick (1873–1952), English chemist

Robert Sidgwick (1851–1934), English cricketer

Synaptotagmin

Synaptotagmins (SYTs) constitute a family of membrane-trafficking proteins that are characterized by an N-terminal transmembrane region (TMR), a variable linker, and two C-terminal C2 domains - C2A and C2B. There are 15 members in the mammalian synaptotagmin family. There are several C2-domain containing protein families that are related to synaptotagmins, including transmembrane (Ferlins, Extended-Synaptotagmin (E-Syt) membrane proteins, and MCTPs) and soluble (RIMS1 and RIMS2, UNC13D, synaptotagmin-related proteins and B/K) proteins. The family includes synaptotagmin 1, a Ca2+ sensor in the membrane of the pre-synaptic axon terminal, coded by gene SYT1.

Tectivirus

Tectiviridae is a family of viruses with three genera. Gram-negative bacteria serve as natural hosts. There are currently four species in this genus including the type species Enterobacteria phage PRD1. Tectiviruses have no head-tail structure, but are capable of producing tail-like tubes of ~ 60×10 nm upon adsorption or after chloroform treatment. The name is derived from Latin tectus (meaning 'covered').

Tor.com

Tor.com is an online science fiction and fantasy magazine published by Tor Books, as well as an imprint of Tor Books.

UBE2V2

Ubiquitin-conjugating enzyme E2 variant 2 is a protein that in humans is encoded by the UBE2V2 gene. Ubiquitin-conjugating enzyme E2 variant proteins constitute a distinct subfamily within the E2 protein family.

Ubiquitin ligase

A ubiquitin ligase (also called an E3 ubiquitin ligase) is a protein that recruits an E2 ubiquitin-conjugating enzyme that has been loaded with ubiquitin, recognizes a protein substrate, and assists or directly catalyzes the transfer of ubiquitin from the E2 to the protein substrate. The ubiquitin is attached to a lysine on the target protein by an isopeptide bond. E3 ligases interact with both the target protein and the E2 enzyme, and so impart substrate specificity to the E2. Commonly, E3s polyubiquitinate their substrate with Lys48-linked chains of ubiquitin, targeting the substrate for destruction by the proteasome. However, many other types of linkages are possible and alter a protein's activity, interactions, or localization. Ubiquitination by E3 ligases regulates diverse areas such as cell trafficking, DNA repair, and signaling and is of profound importance in cell biology. E3 ligases are also key players in cell cycle control, mediating the degradation of cyclins, as well as cyclin dependent kinase inhibitor proteins. The human genome encodes over 600 putative E3 ligases, allowing for tremendous diversity in substrates.

W. H. Freeman and Company

W. H. Freeman and Company is an imprint of Macmillan Higher Education, a division of Macmillan Publishers. Macmillan publishes monographs and textbooks for the sciences under the imprint.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.