Natural satellite

Most of the 194 known natural satellites of the planets and dwarf planets are irregular moons, while only 19 are large enough to be round. Ganymede, followed by Titan, Callisto, Io and Earth's Moon are the largest natural satellites in the Solar System (see List of natural satellites § List).

Small bodies of the Solar System
25 solar system objects smaller than Earth
Moons of solar system v7

A natural satellite or moon is, in the most common usage, an astronomical body that orbits a planet or minor planet (or sometimes another small Solar System body).

In the Solar System there are six planetary satellite systems containing 185 known natural satellites.[1][2] Four IAU-listed dwarf planets are also known to have natural satellites: Pluto, Haumea, Makemake, and Eris.[3] As of September 2018, there are 334 other minor planets known to have moons.[4]

The Earth–Moon system is unique in that the ratio of the mass of the Moon to the mass of Earth is much greater than that of any other natural-satellite–planet ratio in the Solar System (although there are minor-planet systems with even greater ratios, notably the PlutoCharon system). At 3,474 km (2,158 miles) across, the Moon is 0.27 times the diameter of Earth.[5]

Terminology

The first known natural satellite was the Moon, but it was considered a "planet" until Copernicus' introduction of De revolutionibus orbium coelestium in 1543. Until the discovery of the Galilean satellites in 1610, however, there was no opportunity for referring to such objects as a class. Galileo chose to refer to his discoveries as Planetæ ("planets"), but later discoverers chose other terms to distinguish them from the objects they orbited.

The first to use of the term satellite to describe orbiting bodies was the German astronomer Johannes Kepler in his pamphlet Narratio de Observatis a se quatuor Iouis satellitibus erronibus ("Narration About Four Satellites of Jupiter Observed") in 1610. He derived the term from the Latin word satelles, meaning "guard", "attendant", or "companion", because the satellites accompanied their primary planet in their journey through the heavens.[6]

The term satellite thus became the normal one for referring to an object orbiting a planet, as it avoided the ambiguity of "moon". In 1957, however, the launching of the artificial object Sputnik created a need for new terminology. Sputnik was created by Soviet Union, and it was the first satellite ever.[6] The terms man-made satellite and artificial moon were very quickly abandoned in favor of the simpler satellite, and as a consequence, the term has become linked primarily with artificial objects flown in space – including, sometimes, even those not in orbit around a planet.

Because of this shift in meaning, the term moon, which had continued to be used in a generic sense in works of popular science and in fiction, has regained respectability and is now used interchangeably with natural satellite, even in scientific articles. When it is necessary to avoid both the ambiguity of confusion with Earth's natural satellite the Moon and the natural satellites of the other planets on the one hand, and artificial satellites on the other, the term natural satellite (using "natural" in a sense opposed to "artificial") is used. To further avoid ambiguity, the convention is to capitalize the word Moon when referring to Earth's natural satellite, but not when referring to other natural satellites.

Many authors define "satellite" or "natural satellite" as orbiting some planet or minor planet, synonymous with "moon" – by such a definition all natural satellites are moons, but Earth and other planets are not satellites.[7][8][9] A few recent authors define "moon" as "a satellite of a planet or minor planet", and "planet" as "a satellite of a star" – such authors consider Earth as a "natural satellite of the sun".[10][11][12]

Definition of a moon

Moon, Earth size comparison
Size comparison of Earth and the Moon

There is no established lower limit on what is considered a "moon". Every natural celestial body with an identified orbit around a planet of the Solar System, some as small as a kilometer across, has been considered a moon, though objects a tenth that size within Saturn's rings, which have not been directly observed, have been called moonlets. Small asteroid moons (natural satellites of asteroids), such as Dactyl, have also been called moonlets.[13]

The upper limit is also vague. Two orbiting bodies are sometimes described as a double planet rather than primary and satellite. Asteroids such as 90 Antiope are considered double asteroids, but they have not forced a clear definition of what constitutes a moon. Some authors consider the Pluto–Charon system to be a double (dwarf) planet. The most common dividing line on what is considered a moon rests upon whether the barycentre is below the surface of the larger body, though this is somewhat arbitrary, because it depends on distance as well as relative mass.

Origin and orbital characteristics

Occulting Enceladus PIA10500
Two moons: Saturn's natural satellite Dione occults Enceladus

The natural satellites orbiting relatively close to the planet on prograde, uninclined circular orbits (regular satellites) are generally thought to have been formed out of the same collapsing region of the protoplanetary disk that created its primary.[14][15] In contrast, irregular satellites (generally orbiting on distant, inclined, eccentric and/or retrograde orbits) are thought to be captured asteroids possibly further fragmented by collisions. Most of the major natural satellites of the Solar System have regular orbits, while most of the small natural satellites have irregular orbits.[16] The Moon[17] and possibly Charon[18] are exceptions among large bodies in that they are thought to have originated by the collision of two large proto-planetary objects (see the giant impact hypothesis). The material that would have been placed in orbit around the central body is predicted to have reaccreted to form one or more orbiting natural satellites. As opposed to planetary-sized bodies, asteroid moons are thought to commonly form by this process. Triton is another exception; although large and in a close, circular orbit, its motion is retrograde and it is thought to be a captured dwarf planet.

Temporary satellites

The capture of an asteroid from a heliocentric orbit is not always permanent. According to simulations, temporary satellites should be a common phenomenon.[19][20] The only observed example is 2006 RH120, which was a temporary satellite of Earth for nine months in 2006 and 2007.[21][22]

Tidal locking

Most regular moons (natural satellites following relatively close and prograde orbits with small orbital inclination and eccentricity) in the Solar System are tidally locked to their respective primaries, meaning that the same side of the natural satellite always faces its planet. The only known exception is Saturn's natural satellite Hyperion, which rotates chaotically because of the gravitational influence of Titan.

In contrast, the outer natural satellites of the giant planets (irregular satellites) are too far away to have become locked. For example, Jupiter's Himalia, Saturn's Phoebe, and Neptune's Nereid have rotation periods in the range of ten hours, whereas their orbital periods are hundreds of days.

Satellites of satellites

Rhean rings PIA10246 Full res
Artist impression of Rhea's proposed rings

No "moons of moons" or subsatellites (natural satellites that orbit a natural satellite of a planet) are currently known as of 2019. In most cases, the tidal effects of the planet would make such a system unstable.

However, calculations performed after the recent detection[23] of a possible ring system around Saturn's moon Rhea indicate that satellites orbiting Rhea could have stable orbits. Furthermore, the suspected rings are thought to be narrow,[24] a phenomenon normally associated with shepherd moons. However, targeted images taken by the Cassini spacecraft failed to detect rings around Rhea.[25]

It has also been proposed that Saturn's moon Iapetus had a satellite in the past; this is one of several hypotheses that have been put forward to account for its equatorial ridge.[26]

Trojan satellites

Two natural satellites are known to have small companions at both their L4 and L5 Lagrangian points, sixty degrees ahead and behind the body in its orbit. These companions are called trojan moons, as their orbits are analogous to the trojan asteroids of Jupiter. The trojan moons are Telesto and Calypso, which are the leading and following companions, respectively, of the Saturnian moon Tethys; and Helene and Polydeuces, the leading and following companions of the Saturnian moon Dione.

Asteroid satellites

The discovery of 243 Ida's natural satellite Dactyl in the early 1990s confirmed that some asteroids have natural satellites; indeed, 87 Sylvia has two. Some, such as 90 Antiope, are double asteroids with two comparably sized components.

Shape

Masses of all moons in the Solar System
The relative masses of the natural satellites of the Solar System. Mimas, Enceladus, and Miranda are too small to be visible at this scale. All the irregularly shaped natural satellites, even added together, would also be too small to be visible.

Neptune's moon Proteus is the largest irregularly shaped natural satellite. All other known natural satellites that are at least the size of Uranus's Miranda have lapsed into rounded ellipsoids under hydrostatic equilibrium, i.e. are "round/rounded satellites". The larger natural satellites, being tidally locked, tend toward ovoid (egg-like) shapes: squat at their poles and with longer equatorial axes in the direction of their primaries (their planets) than in the direction of their motion. Saturn's moon Mimas, for example, has a major axis 9% greater than its polar axis and 5% greater than its other equatorial axis. Methone, another of Saturn's moons, is only around 3 km in diameter and visibly egg-shaped. The effect is smaller on the largest natural satellites, where their own gravity is greater relative to the effects of tidal distortion, especially those that orbit less massive planets or, as in the case of the Moon, at greater distances.

Name Satellite of Difference in axes
km
% of mean
diameter
Mimas Saturn 33.4 (20.4 / 13.0) 8.4 (5.1 / 3.3)
Enceladus Saturn 16.6 3.3
Miranda Uranus 14.2 3.0
Tethys Saturn 25.8 2.4
Io Jupiter 29.4 0.8
The Moon Earth 4.3 0.1

Geological activity

Of the nineteen known natural satellites in the Solar System that are large enough to have lapsed into hydrostatic equilibrium, several remain geologically active today. Io is the most volcanically active body in the Solar System, while Europa, Enceladus, Titan and Triton display evidence of ongoing tectonic activity and cryovolcanism. In the first three cases, the geological activity is powered by the tidal heating resulting from having eccentric orbits close to their giant-planet primaries. (This mechanism would have also operated on Triton in the past, before its orbit was circularized.) Many other natural satellites, such as Earth's Moon, Ganymede, Tethys and Miranda, show evidence of past geological activity, resulting from energy sources such as the decay of their primordial radioisotopes, greater past orbital eccentricities (due in some cases to past orbital resonances), or the differentiation or freezing of their interiors. Enceladus and Triton both have active features resembling geysers, although in the case of Triton solar heating appears to provide the energy. Titan and Triton have significant atmospheres; Titan also has hydrocarbon lakes. Four of the largest natural satellites, Europa, Ganymede, Callisto, and Titan, are thought to have subsurface oceans of liquid water, while smaller Enceladus may have localized subsurface liquid water.

Natural satellites of the Solar System

Euler diagram of solar system bodies
Euler diagram showing the types of bodies in the Solar System.

Of the objects within our Solar System known to have natural satellites, there are 76 in the asteroid belt (five with two each), four Jupiter trojans, 39 near-Earth objects (two with two satellites each), and 14 Mars-crossers.[4] There are also 84 known natural satellites of trans-Neptunian objects.[4] Some 150 additional small bodies have been observed within the rings of Saturn, but only a few were tracked long enough to establish orbits. Planets around other stars are likely to have satellites as well, and although numerous candidates have been detected to date, none have yet been confirmed.

Of the inner planets, Mercury and Venus have no natural satellites; Earth has one large natural satellite, known as the Moon; and Mars has two tiny natural satellites, Phobos and Deimos. The giant planets have extensive systems of natural satellites, including half a dozen comparable in size to Earth's Moon: the four Galilean moons, Saturn's Titan, and Neptune's Triton. Saturn has an additional six mid-sized natural satellites massive enough to have achieved hydrostatic equilibrium, and Uranus has five. It has been suggested that some satellites may potentially harbour life.[27]

Among the identified dwarf planets, Ceres has no known natural satellites. Pluto has the relatively large natural satellite Charon and four smaller natural satellites; Styx, Nix, Kerberos, and Hydra.[28] Haumea has two natural satellites, and Eris and Makemake have one each. The Pluto–Charon system is unusual in that the center of mass lies in open space between the two, a characteristic sometimes associated with a double-planet system.

The seven largest natural satellites in the Solar System (those bigger than 2,500 km across) are Jupiter's Galilean moons (Ganymede, Callisto, Io, and Europa), Saturn's moon Titan, Earth's moon, and Neptune's captured natural satellite Triton. Triton, the smallest of these, has more mass than all smaller natural satellites together. Similarly in the next size group of nine natural satellites, between 1,000 km and 1,600 km across, Titania, Oberon, Rhea, Iapetus, Charon, Ariel, Umbriel, Dione, and Tethys, the smallest, Tethys, has more mass than all smaller natural satellites together. As well as the natural satellites of the various planets, there are also over 80 known natural satellites of the dwarf planets, minor planets and other small Solar System bodies. Some studies estimate that up to 15% of all trans-Neptunian objects could have satellites.

The following is a comparative table classifying the natural satellites in the Solar System by diameter. The column on the right includes some notable planets, dwarf planets, asteroids, and trans-Neptunian objects for comparison. The natural satellites of the planets are named after mythological figures. These are predominantly Greek, except for the Uranian natural satellites, which are named after Shakespearean characters. The nineteen bodies massive enough to have achieved hydrostatic equilibrium are in bold in the table below. Minor planets and satellites suspected but not proven to have achieved a hydrostatic equilibrium are italicized in the table below.

Mean
diameter
(km)
Satellites of planets Satellites of dwarf planets Satellites of
other
minor planets
Non-satellites
for comparison
Earth Mars Jupiter Saturn Uranus Neptune Pluto Makemake Haumea Eris
4,000–6,000 Ganymede
Callisto
Titan Mercury
3,000–4,000 Moon Io
Europa
2,000–3,000 Triton Eris
Pluto
1,000–2,000 Rhea
Iapetus
Dione
Tethys
Titania
Oberon
Umbriel
Ariel
Charon Makemake
Haumea
2007 OR10,
Quaoar
500–1,000 Enceladus Dysnomia Sedna, Ceres,
Salacia, Orcus,
Pallas, Vesta
many more TNOs
250–500 Mimas
Hyperion
Miranda Proteus
Nereid
Hiʻiaka Orcus I Vanth
Salacia I Actaea
10 Hygiea
704 Interamnia
87 Sylvia
and many others
100–250 Amalthea
Himalia
Thebe
Phoebe
Janus
Epimetheus
Sycorax
Puck
Portia
Larissa
Galatea
Despina
S/2015 (136472) 1 Namaka S/2005 (82075) 1
Sila–Nunam I
Ceto I Phorcys
Patroclus I Menoetius
~21 more moons of TNOs
3 Juno
15760 Albion
5 Astraea
42355 Typhon
and many others
50–100 Elara
Pasiphae
Prometheus
Pandora
Caliban
Juliet
Belinda
Cressida
Rosalind
Desdemona
Bianca
Thalassa
Halimede
Neso
Naiad
Quaoar I Weywot
90 Antiope I
Typhon I Echidna
Logos I Zoe
5 more moons of TNOs
90 Antiope
58534 Logos
253 Mathilde
and many others
25–50 Carme
Metis
Sinope
Lysithea
Ananke
Siarnaq
Helene
Albiorix
Atlas
Pan
Ophelia
Cordelia
Setebos
Prospero
Perdita
Stephano
Sao
Laomedeia
Psamathe
Hydra
Nix[29]
Kalliope I Linus 1036 Ganymed
243 Ida
and many others
10–25 Phobos
Deimos
Leda
Adrastea
Telesto
Paaliaq
Calypso
Ymir
Kiviuq
Tarvos
Ijiraq
Erriapus
Mab
Cupid
Francisco
Ferdinand
Margaret
Trinculo
Neptune XIV Kerberos
Styx
762 Pulcova I
Sylvia I Romulus
624 Hektor I Skamandrios
Eugenia I Petit-Prince
121 Hermione I
283 Emma I
1313 Berna I
107 Camilla I
433 Eros
1313 Berna
and many others
< 10 63 moons 36 moons Sylvia II Remus
Ida I Dactyl
and many others
many

Visual summary

Solar System moons
Ganymede g1 true-edit1
Two Halves of Titan
Callisto (cropped)-1
Io highest resolution true color (non-edit version)
FullMoon2010 (cropped)-1
Europa-moon
Triton Voyager 2
Ganymede
(moon of Jupiter)
Titan
(moon of Saturn)
Callisto
(moon of Jupiter)
Io
(moon of Jupiter)
Moon
(moon of Earth)
Europa
(moon of Jupiter)
Triton
(moon of Neptune)
Titania (moon) color, edited
PIA07763 Rhea full globe5
Voyager 2 picture of Oberon
Iapetus as seen by the Cassini probe - 20071008 (cropped)
Charon in Color (HQ)
PIA00040 Umbrielx2.47
Color Image of Ariel as seen from Voyager 2
Titania
(moon of Uranus)
Rhea
(moon of Saturn)
Oberon
(moon of Uranus)
Iapetus
(moon of Saturn)
Charon
(moon of Pluto)
Umbriel
(moon of Uranus)
Ariel
(moon of Uranus)
Dione color south
PIA18317-SaturnMoon-Tethys-Cassini-20150411
PIA17202-SaturnMoon-Enceladus-ApproachingFlyby-20151028-cropped
PIA18185 Miranda's Icy Face
Proteus Voyager 2 cropped
Mimas PIA12568
Hyperion in natural colours
Dione
(moon of Saturn)
Tethys
(moon of Saturn)
Enceladus
(moon of Saturn)
Miranda
(moon of Uranus)
Proteus
(moon of Neptune)
Mimas
(moon of Saturn)
Hyperion
(moon of Saturn)
Phoebe cassini
PIA12714 Janus crop
Amalthea (moon)
PIA09813 Epimetheus S. polar region
Thebe
Prometheus 12-26-09a
PIA21055 - Pandora Up Close (cropped)
Phoebe
(moon of Saturn)
Janus
(moon of Saturn)
Amalthea
(moon of Jupiter)
Epimetheus
(moon of Saturn)
Thebe
(moon of Jupiter)
Prometheus
(moon of Saturn)
Pandora
(moon of Saturn)
Hydra (moon) from 231 000 kilometres
Leading hemisphere of Helene - 20110618
Nix best view-true color
Atlas (NASA)
Telesto cassini closeup
N00151485 Calypso crop
Phobos colour 2008
Hydra
(moon of Pluto)
Helene
(moon of Saturn)
Nix
(moon of Pluto)
Atlas
(moon of Saturn)
Telesto
(moon of Saturn)
Calypso
(moon of Saturn)
Phobos
(moon of Mars)
Deimos-MRO
Methone PIA14633
Dactyl-HiRes
Deimos
(moon of Mars)
Methone
(moon of Saturn)
Dactyl
(moon of Ida)

See also

Moons of planets

Moons of dwarf planets and small Solar System bodies

References

  1. ^ Sheppard, Scott S. "The Jupiter Satellite and Moon Page". Departament of Terrestrial Magnetism at Carniege Institution for science. Retrieved 2018-03-08.
  2. ^ "How Many Solar System Bodies". NASA/JPL Solar System Dynamics. Retrieved 2012-01-26.
  3. ^ "Planet and Satellite Names and Discoverers". International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN). Retrieved 2012-01-27.
  4. ^ a b c Wm. Robert Johnston (2018-09-30). "Asteroids with Satellites". Johnston's Archive. Retrieved 2018-10-22.
  5. ^ Glenday, Craig (2014). Guinness World Records 2014. p. 186. ISBN 978-1908843159.
  6. ^ a b "Early History – First Satellites". www.jpl.nasa.gov. Retrieved 2018-02-08.
  7. ^ Kenneth R. Lang. "The Cambridge Guide to the Solar System". 2011. p. 15. quote: "Any object that orbits a planet is now called a satellite, and a natural satellite is also now called a moon."
  8. ^ Therese Encrenaz, et. al. "The Solar System". 2004. p. 30.
  9. ^ Tilman Spohn, Doris Breuer, Torrence Johnson. "Encyclopedia of the Solar System". 2014. p. 18.
  10. ^ David Andrew Weintraub. "Is Pluto a Planet?: A Historical Journey Through the Solar System". p. 65 quote: "... the general concept of a "moon" as a satellite of a planet and "planet" as a satellite of a star."
  11. ^ "Satellite". wwww.merriam-webster.com. Merriam Webster. Retrieved 16 November 2015.
  12. ^ Stillman, Dan. "What Is a Satellite?". www.nasa.gov. NASA. Retrieved 16 November 2015.
  13. ^ F. Marchis, et al. (2005). "Discovery of the triple asteroidal system 87 Sylvia". Nature. 436 (7052): 822–24. Bibcode:2005Natur.436..822M. doi:10.1038/nature04018. PMID 16094362.
  14. ^ Canup, Robin M.; Ward, William R. (2008-12-30). Origin of Europa and the Galilean Satellites. University of Arizona Press. p. 59. arXiv:0812.4995. Bibcode:2009euro.book...59C. ISBN 978-0816528448.
  15. ^ D'Angelo, G.; Podolak, M. (2015). "Capture and Evolution of Planetesimals in Circumjovian Disks". The Astrophysical Journal. 806 (1): 29–. arXiv:1504.04364. Bibcode:2015ApJ...806..203D. doi:10.1088/0004-637X/806/2/203.
  16. ^ Encyclopedia of the Solar System, page 366, Academic Press, 2007, Lucy-Ann Adams McFadden, Paul Robert Weissman, Torrence V. Johnson
  17. ^ Canup, RM & Asphaug, E (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature. 412 (6848): 708–12. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. PMID 11507633.
  18. ^ Stern, SA; Weaver, HA; Steffl, AJ; Mutchler, MJ; et al. (2006). "A giant impact origin for Pluto's small natural satellites and satellite multiplicity in the Kuiper belt". Nature. 439 (7079): 946–49. Bibcode:2006Natur.439..946S. doi:10.1038/nature04548. PMID 16495992.
  19. ^ Camille M. Carlisle (30 December 2011). "Pseudo-moons Orbit Earth". Sky & Telescope.
  20. ^ Fedorets, Grigori; Granvik, Mikael; Jedicke, Robert (15 March 2017). "Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system". Icarus. 285: 83–94. Bibcode:2017Icar..285...83F. doi:10.1016/j.icarus.2016.12.022.
  21. ^ "2006 RH120 ( = 6R10DB9) (A second moon for the Earth?)". Great Shefford Observatory. 14 September 2017. Archived from the original on 2015-02-06. Retrieved 2017-11-13.
  22. ^ Roger W. Sinnott (17 April 2007). "Earth's "Other Moon"". Sky & Telescope. Archived from the original on 2012-08-27. Retrieved 2017-11-13.
  23. ^ G.H. Jones, E. Roussos, N. Krupp, U. Beckmann, A.J. Coates, F. Crar, I. Dandouras, V. Dikarev & M.K. Dougherty, P. Garnier, C.J. Hansen, A.R. Hendrix, G.B. Hospodarsky, R.E. Johnson, S. Kempf, K.K. Khurana, S.M. Krimigis, H. Krüger, W.S. Kurth, A. Lagg, H.J. McAndrews, D.G. Mitchell, C. Paranicas, F. Postberg, C.T. Russell, J. Saur, M. Seiß, F. Spahn, R. Srama, D.F. Strobel, R. Tokar, J.-E. Wahlund, R.J. Wilson, J. Woch, D. Young. "The Dust Halo of Saturn's Largest Icy Moon, Rhea – Jones et al. 319 (5868): 1380 – Science". Bibcode:2008Sci...319.1380J. doi:10.1126/science.1151524. Retrieved 2018-03-08.CS1 maint: Multiple names: authors list (link) Pdf
  24. ^ Jeff Hecht (6 March 2008). "Saturn satellite reveals first moon rings". New Scientist. Retrieved 2018-03-08.
  25. ^ "Cassini imaging search rules out rings around Rhea – Tiscareno – 2010". Geophysical Research Letters – Wiley Online Library. Agu.org. arXiv:1008.1764. Bibcode:2010GeoRL..3714205T. doi:10.1029/2010GL043663. Retrieved 2018-03-08.
  26. ^ "How Iapetus, Saturn's outermost moon, got its ridge". Retrieved 2018-03-08.
  27. ^ Woo, Marcus (27 January 2015). "Why We're Looking for Alien Life on Moons, Not Just Planets". Wired. Retrieved 27 January 2015.
  28. ^ "Hubble Discovers New Pluto Moon". ESA/Hubble Press Release. Retrieved 13 July 2012.
  29. ^ "How Big Is Pluto? New Horizons Settles Decades-Long Debate". NASA.

External links

All moons

Jupiter's moons

Saturn's moons

Actaea (moon)

Actaea, officially (120347) Salacia I Actaea, is the single known natural satellite of the classical Kuiper belt object 120347 Salacia. Its diameter is estimated 300 km, which is ⅓ of the diameter of Salacia; thus, Salacia and Actaea are viewed by some to be a binary object. Given that the following size estimates are correct, Actaea is about the sixth-biggest known moon of a trans-Neptunian object, after Charon (1212 km), Dysnomia (685 km), Vanth (378 km), Ilmarë (361 km) and Hiʻiaka (320 km).

Deimos (moon)

Deimos (systematic designation: Mars II) is the smaller and outermost of the two natural satellites of the planet Mars, the other being Phobos. Deimos has a mean radius of 6.2 km (3.9 mi) and takes 30.3 hours to orbit Mars. Deimos is 23,460 km (14,580 mi) from Mars, much further than Mars's other moon, Phobos. It is named for Deimos who in Greek mythology is the twin brother of Phobos, and personifies terror.

Exosphere

The exosphere (Ancient Greek: ἔξω éxō "outside, external, beyond", Ancient Greek: σφαῖρα sphaĩra "sphere") is a thin, atmosphere-like volume surrounding a planet or natural satellite where molecules are gravitationally bound to that body, but where the density is too low for them to behave as a gas by colliding with each other. In the case of bodies with substantial atmospheres, such as Earth's atmosphere, the exosphere is the uppermost layer, where the atmosphere thins out and merges with interplanetary space. It is located directly above the thermosphere. Very little is known about it due to lack of research. Mercury, the Moon and the Galilean satellites of Jupiter have Surface Boundary exospheres, which are exospheres without a denser atmosphere underneath.

Geographical pole

A geographical pole is either of the two points on a rotating body (planet, dwarf planet, natural satellite, sphere...etc) where its axis of rotation intersects its surface. As with Earth's North and South Poles, they are usually called that body's "north pole" and "south pole", one lying 90 degrees in one direction from the body's equator and the other lying 90 degrees in the opposite direction from the equator.

Every planet has geographical poles. If, like the Earth, a body generates a magnetic field, it will also possess magnetic poles.Perturbations in a body's rotation mean that geographical poles wander slightly on its surface. The Earth's North and South Poles, for example, move by a few metres over periods of a few years. As cartography requires exact and unchanging coordinates, the averaged locations of geographical poles are taken as fixed cartographic poles and become the points where the body's great circles of longitude intersect.

Habitability of natural satellites

The habitability of natural satellites is a measure of the potential of natural satellites to have environments hospitable to life. Habitable environments do not necessarily harbor life. Planetary habitability is an emerging study which is considered important to astrobiology for several reasons, foremost being that natural satellites are predicted to greatly outnumber planets and that it is hypothesized that habitability factors are likely to be similar to those of planets. There are, however, key environmental differences which have a bearing on moons as potential sites for extraterrestrial life.

The strongest candidates for natural satellite habitability are currently icy satellites such as those of Jupiter and Saturn—Europa and Enceladus respectively, although if life exists in either place, it would probably be confined to subsurface habitats. Historically, life on Earth was thought to be strictly a surface phenomenon, but recent studies have shown that up to half of Earth's biomass could live below the surface. Europa and Enceladus exist outside the circumstellar habitable zone which has historically defined the limits of life within the Solar System as the zone in which water can exist as liquid at the surface. In the Solar System's habitable zone, there are only three natural satellites—the Moon, and Mars's moons Phobos and Deimos (although some estimates show Mars and its moons to be slightly outside the habitable zone) —none of which sustain an atmosphere or water in liquid form. Tidal forces are likely to play as significant a role providing heat as stellar radiation in the potential habitability of natural satellites.Exomoons are not yet confirmed to exist. Detecting them is extremely difficult, because current methods are limited to transit timing. It is possible that some of their attributes could be determined by similar methods as those of transiting planets. Despite this, some scientists estimate that there are as many habitable exomoons as habitable exoplanets. Given the general planet-to-satellite(s) mass ratio of 10,000, large Saturn or Jupiter sized gas planets in the habitable zone are thought to be the best candidates to harbour Earth-like moons.

Hydrosphere

The hydrosphere (from Greek ὕδωρ hydōr, "water" and σφαῖρα sphaira, "sphere") is the combined mass of water found on, under, and above the surface of a planet, minor planet or natural satellite. Although the hydrosphere has been around for longer than 4 billion years, it continues to change in size. This is caused by sea floor spreading and continental drift, which rearranges the land and ocean. It has been estimated that there are 1,386 million cubic kilometers of water on Earth. This includes water in liquid and frozen forms in groundwater, oceans, lakes and streams. Saltwater accounts for 97.5% of this amount. Fresh water accounts for only 2.5%. Of this fresh water, 68.9% is in the form of ice and permanent snow cover in the Arctic, the Antarctic, and mountain glaciers. 30.8% is in the form of fresh groundwater. Only 0.3% of the fresh water on Earth is in easily accessible lakes, reservoirs and river systems. The total mass of the Earth's hydrosphere is about 1.4 × 1018 tonnes, which is about 0.023% of Earth's total mass. About 20 × 1012 tonnes of this is in Earth's atmosphere (for practical purposes, 1 cubic meter of water weighs one tonne). Approximately 71% of Earth's surface, an area of some 361 million square kilometers (139.5 million square miles), is covered by ocean. The average salinity of Earth's oceans is about 35 grams of salt per kilogram of sea water (3.5%).

Hypothetical astronomical object

A hypothetical astronomical object is an astronomical object (such as a star, planet or moon) that is believed or speculated to exist or to have existed but whose existence has not been scientifically proven. Such objects have been hypothesized throughout recorded history. For example, in the 5th century BCE, the philosopher Philolaus "defined a hypothetical astronomical object which he called the Central Fire", around which he proposed other celestial bodies (including the Sun) moved.

Iapetus (moon)

Iapetus (; Greek: Ιαπετός), or occasionally Japetus , is the third-largest natural satellite of Saturn, eleventh-largest in the Solar System, and the largest body in the Solar System known not to be in hydrostatic equilibrium. Iapetus is best known for its dramatic "two-tone" coloration. Discoveries by the Cassini mission in 2007 revealed several other unusual features, such as a massive equatorial ridge running three-quarters of the way around the moon.

Irregular moon

In astronomy, an irregular moon, irregular satellite or irregular natural satellite is a natural satellite following a distant, inclined, and often eccentric and retrograde orbit. They have been captured by their parent planet, unlike regular satellites, which formed in orbit around them.

As of July 2018, 125 irregular moons are known, orbiting all four of the outer planets (Jupiter, Saturn, Uranus and Neptune). The largest of each planet are Himalia of Jupiter, Phoebe of Saturn, Sycorax of Uranus, and Triton of Neptune. It is currently thought that the irregular satellites were captured from heliocentric orbits near their current locations, shortly after the formation of their parent planet. An alternative theory, that they originated further out in the Kuiper belt, is not supported by current observations.

Jupiter LXIII

Jupiter LXIII, originally known as S/2017 J 2, is an outer natural satellite of Jupiter. It was discovered by Scott S. Sheppard and his team in 2017, but not announced until July 17, 2018 via a Minor Planet Electronic Circular from the Minor Planet Center. It is about 2 kilometers in diameter and orbits at a semi-major axis of about 23,303,000 km with an inclination of about 166.4°. It belongs to the Carme group.

Jupiter LXV

Jupiter LXV, originally known as S/2017 J 4, is an outer natural satellite of Jupiter. It was discovered by Scott S. Sheppard and his team in 2017, but not announced until July 17, 2018 via a Minor Planet Electronic Circular from the Minor Planet Center. It is about 3 kilometers in diameter and orbits at a semi-major axis of about 11,525,000 km with an inclination of about 28.15°. It belongs to the Himalia group.

Jupiter LXVI

Jupiter LXVI, originally known as S/2017 J 5, is an outer natural satellite of Jupiter. It was discovered by Scott S. Sheppard and his team in 2017, but not announced until July 17, 2018 via a Minor Planet Electronic Circular from the Minor Planet Center. It is about 2 kilometers in diameter and orbits at a semi-major axis of about 23,232,000 km with an inclination of about 164.3°. It belongs to the Carme group.

Lithosphere

A lithosphere (Ancient Greek: λίθος [lithos] for "rocky", and σφαίρα [sphaira] for "sphere") is the rigid, outermost shell of a terrestrial-type planet, or natural satellite, that is defined by its rigid mechanical properties. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of thousands of years or greater. The outermost shell of a rocky planet, the crust, is defined on the basis of its chemistry and mineralogy.

The study of past and current formations of landscapes is called geomorphology.

Moon

The Moon is an astronomical body that orbits planet Earth and is Earth's only permanent natural satellite. It is the fifth-largest natural satellite in the Solar System, and the largest among planetary satellites relative to the size of the planet that it orbits (its primary). The Moon is after Jupiter's satellite Io the second-densest satellite in the Solar System among those whose densities are known.

The Moon is thought to have formed about 4.51 billion years ago, not long after Earth. The most widely accepted explanation is that the Moon formed from the debris left over after a giant impact between Earth and a Mars-sized body called Theia.

The Moon is in synchronous rotation with Earth, and thus always shows the same side to Earth, the near side. The near side is marked by dark volcanic maria that fill the spaces between the bright ancient crustal highlands and the prominent impact craters. After the Sun, the Moon is the second-brightest regularly visible celestial object in Earth's sky. Its surface is actually dark, although compared to the night sky it appears very bright, with a reflectance just slightly higher than that of worn asphalt. Its gravitational influence produces the ocean tides, body tides, and the slight lengthening of the day.

The Moon's average orbital distance is 384,402 km (238,856 mi), or 1.28 light-seconds. This is about thirty times the diameter of Earth. The Moon's apparent size in the sky is almost the same as that of the Sun, since the star is about 400 times the lunar distance and diameter. Therefore, the Moon covers the Sun nearly precisely during a total solar eclipse. This matching of apparent visual size will not continue in the far future because the Moon's distance from Earth is gradually increasing.

The Moon was first reached in September 1959 by the Soviet Union's Luna 2, an unmanned spacecraft. The United States' NASA Apollo program achieved the only manned lunar missions to date, beginning with the first manned orbital mission by Apollo 8 in 1968, and six manned landings between 1969 and 1972, with the first being Apollo 11. These missions returned lunar rocks which have been used to develop a geological understanding of the Moon's origin, internal structure, and the Moon's later history. Since the Apollo 17 mission in 1972, the Moon has been visited only by unmanned spacecraft.

Both the Moon's natural prominence in the earthly sky and its regular cycle of phases as seen from Earth have provided cultural references and influences for human societies and cultures since time immemorial. Such cultural influences can be found in language, lunar calendar systems, art, and mythology.

Moons of Pluto

The dwarf planet Pluto has five moons down to a detection limit of about 1 km in diameter. In order of distance from Pluto, they are Charon, Styx, Nix, Kerberos, and Hydra. Charon, the largest of the five moons, is mutually tidally locked with Pluto, and is massive enough that Pluto–Charon is sometimes considered a double dwarf planet.

Phobos (moon)

Phobos ( FOH-bəs, -⁠boss, from Greek Φόβος; systematic designation: Mars I) is the innermost and larger of the two natural satellites of Mars, the other being Deimos. Both moons were discovered in 1877 by American astronomer Asaph Hall.

Phobos is a small, irregularly shaped object with a mean radius of 11 km (7 mi) and is seven times as massive as the outer moon, Deimos. Phobos is named after the Greek god Phobos, a son of Ares (Mars) and Aphrodite (Venus) and the personification of horror (cf. phobia).

Phobos orbits 6,000 km (3,700 mi) from the Martian surface, closer to its primary body than any other known planetary moon. It is so close that it orbits Mars much faster than Mars rotates, and completes an orbit in just 7 hours and 39 minutes. As a result, from the surface of Mars it appears to rise in the west, move across the sky in 4 hours and 15 minutes or less, and set in the east, twice each Martian day.

Phobos is one of the least reflective bodies in the Solar System, with an albedo of just 0.071. Surface temperatures range from about −4 °C (25 °F) on the sunlit side to −112 °C (−170 °F) on the shadowed side. The defining surface feature is the large impact crater, Stickney, which takes up a substantial proportion of the moon's surface. In November 2018, astronomers concluded that the many grooves on Phobos were caused by boulders ejected from the asteroid impact that created Stickney crater that rolled around on the surface of the moon.Images and models indicate that Phobos may be a rubble pile held together by a thin crust, and that it is being torn apart by tidal interactions. Phobos gets closer to Mars by about 2 meters every one hundred years, and it is predicted that within 30 to 50 million years it will either collide with the planet, or break up into a planetary ring.

Regular moon

In astronomy, a regular moon is a natural satellite following a relatively close and prograde orbit with little orbital inclination or eccentricity. They are believed to have formed in orbit about their primary, as opposed to irregular moons, which were captured.

There are at least 57 regular satellites of the eight planets: one at Earth, eight at Jupiter, 23 named regular moons at Saturn (not counting hundreds or thousands of moonlets), 18 known at Uranus, and 7 small regular moons at Neptune (Neptune's largest moon Triton appears to have been captured). It is thought that Pluto's five moons and Haumea's two were formed in orbit about those dwarf planets out of debris created in giant collisions.

Small Solar System body

A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies' ".

This encompasses all comets and all minor planets other than those that are dwarf planets. Thus SSSBs are: the comets; the classical asteroids, with the exception of the dwarf planet Ceres; the trojans; and the centaurs and trans-Neptunian objects, with the exception of the dwarf planets Pluto, Haumea, Makemake, and Eris and others that may turn out to be dwarf planets.

Subsatellite

A subsatellite is a natural satellite (or an artificial satellite) that orbits a natural satellite, i.e. a "moon of a moon", also known as a moonmoon, submoon, or grandmoon.It is inferred from the empirical study of natural satellites in the Solar System that subsatellites may be elements of planetary systems. In the Solar System, the giant planets have large collections of natural satellites. The majority of detected exoplanets are giant planets; at least one, Kepler-1625b, may have a very large exomoon, named Kepler-1625b I. Therefore, it is reasonable to assume that subsatellites may exist in the Solar System, and in planetary systems beyond the Solar System.

Nonetheless, no "moon of a moon" or subsatellite is known as of 2018 in the Solar System or beyond the Solar System. In most cases, the tidal effects of the planet would make such a system unstable.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.