Mouth bar

A mouth bar is a bar in a river that is typically created in the middle of a channel in a river delta.[1] It is created by a positive feedback between mid-channel deposition and flow divergence. As the flow diverges near the ocean, sediment settles out in the channel and creates an incipient mouth bar. As flow is routed around the incipient bar, additional sediment is deposited on the incipient bar. This continued process results in the formation of a full-fledged mouth bar, which causes the channel to bifurcate. This continued process leads to the characteristic fractal tree pattern found in some prograding river-dominated deltas.


  1. ^ Edmonds, D. A.; Slingerland, R. L. (2007). "Mechanics of river mouth bar formation: Implications for the morphodynamics of delta distributary networks". Journal of Geophysical Research. 112: F02034. Bibcode:2007JGRF..11202034E. doi:10.1029/2006JF000574.
Avulsion (river)

In sedimentary geology and fluvial geomorphology, avulsion is the rapid abandonment of a river channel and the formation of a new river channel. Avulsions occur as a result of channel slopes that are much less steep than the slope that the river could travel if it took a new course.

Bar (river morphology)

A bar in a river is an elevated region of sediment (such as sand or gravel) that has been deposited by the flow. Types of bars include mid-channel bars (also called braid bars, and common in braided rivers), point bars (common in meandering rivers), and mouth bars (common in river deltas). The locations of bars are determined by the geometry of the river and the flow through it. Bars reflect sediment supply conditions, and can show where sediment supply rate is greater than the transport capacity.

A mid-channel bar, is also often referred to as a braid bar because they are often found in braided river channels. Braided river channels are broad and shallow and found in areas where sediment is easily eroded like at a glacial outwash, or at a mountain front with high sediment loads. These types of river systems are associated with high slope, sediment supply, stream power, shear stress, and bed load transport rates. Braided rivers have complex and unpredictable channel patterns, and sediment size tends to vary among streams. It is these features that are responsible for the formations of braid bars. Braided streams are often overfed with massive amounts of sediment which creates multiple stream channels within one dominant pair of flood bank plains. These channels are separated by mid-channel or braid bars. Anastomosing river channels also create mid-channel bars, however they are typically vegetated bars, making them more permanent than the bars found in a braided river channel which have high rates of change because of the large amounts of non-cohesive sediment, lack of vegetation, and high stream powers found in braided river channels.Bars can also form mid-channel due to snags or logjams. For example, if a stable log is deposited mid-channel in a stream, this obstructs the flow and creates local flow convergence and divergence. This causes erosion on the upstream side of the obstruction and deposition on the downstream side. The deposition that occurs on the downstream side can create a central bar, and an arcuate bar can be formed as flow diverges upstream of the obstruction. Continuous deposition downstream can build up the central bar to form an island. Eventually the logjam can become partially buried, which protects the island from erosion, allowing for vegetation to begin to grow, and stabilize the area even further. Over time, the bar can eventually attach to one side of the channel bank and merge into the flood plain.A point bar is an area of deposition typically found in meandering rivers. Point bars form on the inside of meander bends in meandering rivers. As the flow moves around the inside of the bend in the river, the water slows down because of the shallow flow and low shear stresses there reduce the amount of material that can be carried there. Point bars are usually crescent shaped and located on the inside curve of the river bend. The excess material falls out of transport and, over time, forms a point bar. Point bars are typically found in the slowest moving, shallowest parts of rivers and streams, and are often parallel to the shore and occupy the area farthest from the thalweg, on the outside curve of the river bend in a meandering river. Here, at the deepest and fastest part of the stream is the cut bank, the area of a meandering river channel that continuously undergoes erosion. The faster the water in a river channel, the better it is able to pick up greater amounts of sediment, and larger pieces of sediment, which increases the river's bed load. Over a long enough period of time, the combination of deposition along point bars, and erosion along cut banks can lead to the formation of an oxbow lake.A mouth bar is an elevated region of sediment typically found at a river delta which is located at the mouth of a river where the river flows out to the ocean. Sediment is transported by the river and deposited, mid channel, at the mouth of the river. This occurs because, as the river widens at the mouth, the flow slows, and sediment settles out and is deposited. After initial formation of a river mouth bar, they have the tendency to prograde. This is caused by the pressure from the flow on the upstream face of the bar. This pressure creates erosion on that face of the bar, allowing the flow to transport this sediment over or around, and re-deposit it farther downstream, closer to the ocean. River mouth bars stagnate, or cease to prograde when the water depth above the flow is shallow enough to create a pressure on the upstream side of the bar strong enough to force the flow around the deposit rather than over the top of the bar. This divergent channel flow around either side of the sediment deposit continuously transports sediment, which over time is deposited on either side of this original mid channel deposit. As more and more sediment accumulates across the mouth of the river, it builds up to eventually create a sand bar that has the potential to extend the entire length of the river mouth and block the flow.

Braid bar

Braid bars, or mid-channel bars, are landforms in a river that begin to form when the discharge is low and the river is forced to take the route of less resistance by means of flowing in locations of lowest elevation. Over time, the river begins to erode the outer edges of the bar, causing it to become a higher elevation than the surrounding areas. The water level decreases even more as the river laterally erodes the less cohesive bank material resulting in a widening of the river and a further exposure of the braid bar. As the discharge increases, material may deposit about the braid bar since it is an area in the river of low velocity due to its increased elevation in relation to surrounding areas. During times of extremely high flow, the bars may become covered; only to resurface when the flow decreases. Most braid bars do not remain stable or in one location. However, vegetation succession on braid bars can increase the stability of the landform. They are commonly composed of sand or gravel and typically occur in braided rivers.

Chalk stream

Chalk streams are streams that flow through chalk hills towards the sea. They are typically wide and shallow, and due to the filtering effect of the chalk their waters are alkaline and very clear. Chalk streams are popular with fly fishermen who fish for trout on these rivers.

Cindy Ann Yeilding

Cindy A. Yeilding (born May 23, 1960) is an American geologist from Houston, Texas. Yeilding is currently the Vice President of British Petroleum, America, and has had various other positions at BP in oil and gas, exploration of the Gulf of Mexico, geoscience and Vice President of exploration technology.Yeilding graduated with a Bachelors of Science degree in Geology from Southern Methodist University and later completed her Master’s of Science degree in Geology from the University of North Carolina. Yeilding has given short courses and lectures on exploration with her vast experience in exploration, production and geoscience. Yeilding was also one of the founding members of BP’s AAPG women’s committee and started the women's networking session for Women in Science and Engineering (WISE) at the Offshore Technology Conference.

Coastal geography

Coastal geography is the study of the constantly changing region between the ocean and the land, incorporating both the physical geography (i.e. coastal geomorphology, geology and oceanography) and the human geography (sociology and history) of the coast. It includes understanding coastal weathering processes, particularly wave action, sediment movement and weather, and the ways in which humans interact with the coast


A floodplain or flood plain is an area of land adjacent to a stream or river which stretches from the banks of its channel to the base of the enclosing valley walls, and which experiences flooding during periods of high discharge. The soils usually consist of levees, silts, and sands deposited during floods. Levees are the heaviest materials (usually pebble-size) and they are deposited first; silts and sands are finer materials.

Haim Bar-Lev

Haim "Kidoni" Bar-Lev (Hebrew: חיים בר-לב‎, 16 November 1924 – 7 May 1994) was a military officer during Israel's pre-state and early statehood eras and later a government minister.


An island or isle is any piece of sub-continental land that is surrounded by water. Very small islands such as emergent land features on atolls can be called islets, skerries, cays or keys. An island in a river or a lake island may be called an eyot or ait, and a small island off the coast may be called a holm. A grouping of geographically or geologically related islands is called an archipelago, such as the Philippines.

An island may be described as such, despite the presence of an artificial land bridge; examples are Singapore and its causeway, and the various Dutch delta islands, such as IJsselmonde. Some places may even retain "island" in their names for historical reasons after being connected to a larger landmass by a land bridge or landfill, such as Coney Island and Coronado Island, though these are, strictly speaking, tied islands. Conversely, when a piece of land is separated from the mainland by a man-made canal, for example the Peloponnese by the Corinth Canal or Marble Hill in northern Manhattan during the time between the building of the United States Ship Canal and the filling-in of the Harlem River which surrounded the area, it is generally not considered an island.

There are two main types of islands in the sea: continental and oceanic. There are also artificial islands.

Lake Superior National Estuarine Research Reserve

The Lake Superior National Estuarine Research Reserve is located along the St. Louis River in Douglas County, the northwest corner of Wisconsin, United States. It is one of many National Estuarine Research Reserves. It has an area of 16,697 acres (6,757 ha), and was designated in 2010.

Lilly Arbor Project

The Lilly Arbor Project is a part of an experimental riparian floodplain reforestation and ecological restoration program, located along the White River in Indiana, in the eastern United States.


Mudflats or mud flats, also known as tidal flats, are coastal wetlands that form in intertidal areas where sediments have been deposited by tides or rivers. A recent global analysis suggested they are as extensive globally as mangroves. They are found in sheltered areas such as bays, bayous, lagoons, and estuaries. Mudflats may be viewed geologically as exposed layers of bay mud, resulting from deposition of estuarine silts, clays and marine animal detritus. Most of the sediment within a mudflat is within the intertidal zone, and thus the flat is submerged and exposed approximately twice daily.

In the past tidal flats were considered unhealthy, economically unimportant areas and were often dredged and developed into agricultural land. Several especially shallow mudflat areas, such as the Wadden Sea, are now popular among those practising the sport of mudflat hiking.

On the Baltic Sea coast of Germany in places, mudflats are exposed not by tidal action, but by wind-action driving water away from the shallows into the sea. These wind-affected mudflats are called windwatts in German.

Norfolk Island Pine Trees, Cleveland

The Norfolk Island Pine Trees are a heritage-listed group of trees at 127 Shore Street North, Cleveland, City of Redland, Queensland, Australia. They were added to the Queensland Heritage Register on 21 November 2003.

Oxbow lake

An oxbow lake is a U-shaped lake that forms when a wide meander of a river is cut off, creating a free-standing body of water. This landform is so named for its distinctive curved shape, which resembles the bow pin of an oxbow. In Australia, an oxbow lake is called a billabong, from the indigenous Wiradjuri language. In south Texas, oxbows left by the Rio Grande are called resacas.

The word "oxbow" can also refer to a U-shaped bend in a river or stream, whether or not it is cut off from the main stream.

River delta

A river delta is a landform created by deposition of sediment that is carried by a river as the flow leaves its mouth and enters slower-moving or stagnant water. This occurs where a river enters an ocean, sea, estuary, lake, reservoir, or (more rarely) another river that cannot carry away the supplied sediment. The size and shape of a delta is controlled by the balance between watershed processes that supply sediment, and receiving basin processes that redistribute, sequester, and export that sediment. The size, geometry, and location of the receiving basin also plays an important role in delta evolution. River deltas are important in human civilization, as they are major agricultural production centers and population centers. They can provide coastline defense and can impact drinking water supply. They are also ecologically important, with different species' assemblages depending on their landscape position.

River ecosystem

River ecosystems are flowing waters that drain the landscape, and include the biotic (living) interactions amongst plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions of its many parts. River ecosystems are part of larger watershed networks or catchments, where smaller headwater streams drain into mid-size streams, which progressively drain into larger river networks.

River ecosystems are prime examples of lotic ecosystems. Lotic refers to flowing water, from the Latin lotus, meaning washed. Lotic waters range from springs only a few centimeters wide to major rivers kilometers in width. Much of this article applies to lotic ecosystems in general, including related lotic systems such as streams and springs. Lotic ecosystems can be contrasted with lentic ecosystems, which involve relatively still terrestrial waters such as lakes, ponds, and wetlands. Together, these two ecosystems form the more general study area of freshwater or aquatic ecology.

The following unifying characteristics make the ecology of running waters unique among aquatic habitats.

Flow is unidirectional.

There is a state of continuous physical change.

There is a high degree of spatial and temporal heterogeneity at all scales (microhabitats).

Variability between lotic systems is quite high.

The biota is specialized to live with flow conditions.

Shinumo Quartzite

The Shinumo Quartzite also known as the Shinumo Sandstone, is a Mesoproterozoic rock formation, which outcrops in the eastern Grand Canyon, Coconino County, Arizona. The Shinumo Quartzite consists of a series of massive, cliff-forming sandstones and sedimentary quartzites. Its cliffs contrast sharply with the stair-stepped topography of the underlying Hakatai Shale. Overlying it, dark green to black, fissile, slope-forming shales of the Dox Formation create a well-defined notch. It and other formations of the Unkar Group occur as isolated fault-bound remnants along the main stem of the Colorado River and its tributaries in Grand Canyon. Typically, the Shinumo Quartzite and associated strata of the Unkar Group dip northeast (10°-30°) toward normal faults that dip 60+° toward the southwest. This can be seen at the Palisades fault in the eastern part of the main Unkar Group outcrop area (below East Rim).The Shinumo Quartzite is a middle member of the Unkar Group. The Unkar Group is about 1,600 to 2,200 m (5,200 to 7,200 ft) thick and composed of, in ascending order, the Bass Formation, Hakatai Shale, Shinumo Quartzite, Dox Formation, and Cardenas Basalt. The Unkar Group consists of a sequence of sedimentary rocks that accumulated in a variety of environments ranging from fluvial to shallow-marine. Overall, the strata within it are conformable with the exception of a significant disconformity between the Hakatai Shale and Shinumo Quartzite. The Unkar Group is overlain in ascending order by the Nankoweap Formation, about 113 to 150 m (371 to 492 ft) thick; the Chuar Group, about 1,900 m (6,200 ft) thick; and the Sixtymile Formation, about 60 m (200 ft) thick. The Unkar Group, as the base section of the Grand Canyon Supergroup, overlies deeply eroded granites, gneisses, pegmatites, and schists that comprise Vishnu Basement Rocks.

Stream pool

A stream pool, in hydrology, is a stretch of a river or stream in which the water depth is above average and the water velocity is below average.

Surf zone

As ocean surface waves come closer to shore they break, forming the foamy, bubbly surface called surf. The region of breaking waves defines the surf zone. After breaking in the surf zone, the waves (now reduced in height) continue to move in, and they run up onto the sloping front of the beach, forming an uprush of water called swash. The water then runs back again as backswash. The nearshore zone where wave water comes onto the beach is the surf zone. The water in the surf zone, or breaker zone, is shallow, usually between 5 and 10 m (16 and 33 ft) deep; this causes the waves to be unstable.

Large-scale features
Alluvial rivers
Bedrock river
Regional processes


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.