Moscovium

Moscovium is a synthetic chemical element with symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. On 28 November 2016, it was officially named after the Moscow Oblast, in which the JINR is situated.[6][7][8]

Moscovium is an extremely radioactive element: its most stable known isotope, moscovium-290, has a half-life of only 0.65 seconds.[9] In the periodic table, it is a p-block transactinide element. It is a member of the 7th period and is placed in group 15 as the heaviest pnictogen, although it has not been confirmed to behave as a heavier homologue of the pnictogen bismuth. Moscovium is calculated to have some properties similar to its lighter homologues, nitrogen, phosphorus, arsenic, antimony, and bismuth, and to be a post-transition metal, although it should also show several major differences from them. In particular, moscovium should also have significant similarities to thallium, as both have one rather loosely bound electron outside a quasi-closed shell. About 100 atoms of moscovium have been observed to date, all of which have been shown to have mass numbers from 287 to 290.

Moscovium,  115Mc
Moscovium
Pronunciation/mɒsˈkoʊviəm/ (mos-KOH-vee-əm)
Mass number290 (most stable isotope)
Moscovium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Bi

Mc

(Uhe)
fleroviummoscoviumlivermorium
Atomic number (Z)115
Groupgroup 15 (pnictogens)
Periodperiod 7
Blockp-block
Element category  unknown chemical properties, but probably a post-transition metal
Electron configuration[Rn] 5f14 6d10 7s2 7p3 (predicted)[1]
Electrons per shell
2, 8, 18, 32, 32, 18, 5 (predicted)
Physical properties
Phase at STPunknown phase (predicted)[1]
Melting point670 K ​(400 °C, ​750 °F) (predicted)[1][2]
Boiling point~1400 K ​(~1100 °C, ​~2000 °F) (predicted)[1]
Density (near r.t.)13.5 g/cm3 (predicted)[2]
Heat of fusion5.90–5.98 kJ/mol (extrapolated)[3]
Heat of vaporization138 kJ/mol (predicted)[2]
Atomic properties
Oxidation states(+1), (+3) (predicted)[1][2]
Ionization energies
  • 1st: 538.3 kJ/mol (predicted)[4]
  • 2nd: 1760 kJ/mol (predicted)[2]
  • 3rd: 2650 kJ/mol (predicted)[2]
  • (more)
Atomic radiusempirical: 187 pm (predicted)[1][2]
Covalent radius156–158 pm (extrapolated)[3]
Other properties
Natural occurrencesynthetic
CAS Number54085-64-2
History
NamingAfter Moscow region
DiscoveryJoint Institute for Nuclear Research and Lawrence Livermore National Laboratory (2003)
Main isotopes of moscovium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
287Mc syn 37 ms α 283Nh
288Mc syn 164 ms α 284Nh
289Mc syn 330 ms[5] α 285Nh
290Mc syn 650 ms[5] α 286Nh

History

RedSquare (pixinn.net)
A view of the famous Red Square in Moscow. The region around the city was honored by the discoverers as "the ancient Russian land that is the home of the Joint Institute for Nuclear Research" and became the namesake of moscovium.

Discovery

The first successful synthesis of moscovium was by a joint team of Russian and American scientists in August 2003 at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. Headed by Russian nuclear physicist Yuri Oganessian, the team included American scientists of the Lawrence Livermore National Laboratory. The researchers on February 2, 2004, stated in Physical Review C that they bombarded americium-243 with calcium-48 ions to produce four atoms of moscovium. These atoms decayed by emission of alpha-particles to nihonium in about 100 milliseconds.[10][11]

The Dubna–Livermore collaboration strengthened their claim to the discoveries of moscovium and nihonium by conducting chemical experiments on the final decay product 268Db. None of the nuclides in this decay chain were previously known, so existing experimental data was not available to support their claim. In June 2004 and December 2005, the presence of a dubnium isotope was confirmed by extracting the final decay products, measuring spontaneous fission (SF) activities and using chemical identification techniques to confirm that they behave like a group 5 element (as dubnium is known to be in group 5 of the periodic table).[1][12] Both the half-life and the decay mode were confirmed for the proposed 268Db, lending support to the assignment of the parent nucleus to moscovium.[12][13] However, in 2011, the IUPAC/IUPAP Joint Working Party (JWP) did not recognize the two elements as having been discovered, because current theory could not distinguish the chemical properties of group 4 and group 5 elements with sufficient confidence.[14] Furthermore, the decay properties of all the nuclei in the decay chain of moscovium had not been previously characterized before the Dubna experiments, a situation which the JWP generally considers "troublesome, but not necessarily exclusive".[14]

Road to confirmation

Two heavier isotopes of moscovium, 289Mc and 290Mc, were discovered in 2009–2010 as daughters of the tennessine isotopes 293Ts and 294Ts; the isotope 289Mc was later also synthesized directly and confirmed to have the same properties as found in the tennessine experiments.[5] The JINR also had plans to study lighter isotopes of moscovium in 2017 by replacing the americium-243 target with the lighter isotope americium-241.[15][16] The 48Ca+243Am reaction producing moscovium is planned to be the first experiment done at the new SHE Factory in 2018 at Dubna to test the systems in preparation for attempts at synthesising elements 119 and 120.[17]

In 2011, the Joint Working Party of international scientific bodies International Union of Pure and Applied Chemistry (IUPAC) and International Union of Pure and Applied Physics (IUPAP) evaluated the 2004 and 2007 Dubna experiments, and concluded that they did not meet the criteria for discovery. Another evaluation of more recent experiments took place within the next few years, and a claim to the discovery of moscovium was again put forward by Dubna.[14] In August 2013, a team of researchers at Lund University and at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany announced they had repeated the 2004 experiment, confirming Dubna's findings.[18][19] Simultaneously, the 2004 experiment had been repeated at Dubna, now additionally also creating the isotope 289Mc that could serve as a cross-bombardment for confirming the discovery of the tennessine isotope 293Ts in 2010.[20] Further confirmation was published by the team at the Lawrence Berkeley National Laboratory in 2015.[21]

In December 2015, the IUPAC/IUPAP Joint Working Party recognized the element's discovery and assigned the priority to the Dubna-Livermore collaboration of 2009–2010, giving them the right to suggest a permanent name for it.[22] While they did not recognise the experiments synthesising 287Mc and 288Mc as persuasive due to the lack of a convincing identification of atomic number via cross-reactions, they recognised the 293Ts experiments as persuasive because its daughter 289Mc had been produced independently and found to exhibit the same properties.[20]

A 2016 study from Lund University and the GSI nevertheless cast some doubt on the syntheses of moscovium and tennessine after the IUPAC/IUPAP Joint Working Party recognized these elements as having been discovered in 2009–2010. It found that the decay chains assigned to the isotopes 287Mc and 288Mc were probably internally consistent, with the uncertainty due to the probable insensitivity of the measurements to very short and very long nuclide lifetimes, incorrect assignments of other decay chains from the 243Am+48Ca reaction to different moscovium isotopes, or uncertainty in the identification of some of the daughters of these moscovium isotopes. On the other hand, the decay chains assigned to 289Mc, the isotope instrumental in the official confirmation of the synthesis of moscovium and tennessine, were found not to be internally consistent. Some subsets of these chains were found to be consistent, suggesting however that their true assignment was to 288Mc, and that their shortness indicated instead new spontaneous fission branches in its daughters 284Nh and 280Rg – or, more likely, undetected electron capture branches in these daughters leading to the even–even nuclides 284Cn and 280Ds, which have a very low barrier to spontaneous fission. While the 294Ts decay chains were found to be congruent, the 293Ts decay chains approved by the JWP were found to probably not be so and require splitting into individual data sets assigned to different tennessine isotopes. It was also found that the set of chains from 293Ts and 289Mc were not congruent. The multiplicity of states found when nuclides that are not even–even undergo alpha decay is not unexpected and contributes to the lack of clarity in the cross-reactions. This study criticised the IUPAC/IUPAP JWP report for overlooking subtleties associated with this issue, and noted that the fact that the only argument for the acceptance of the discoveries of moscovium and tennessine was an almost certainly non-existent link was "problematic".[23][24]

On 8 June 2017, two members of the Dubna team published a journal article answering these criticisms, analysing their data on the nuclides 293Ts and 289Mc with widely accepted statistical methods, noted that the 2016 studies indicating non-congruence produced problematic results when applied to radioactive decay: they excluded from the 90% confidence interval both average and extreme decay times, and the decay chains that would be excluded from the 90% confidence interval they chose were more probable to be observed than those that would be included. The 2017 reanalysis concluded that the observed decay chains of 293Ts and 289Mc were consistent with the assumption that only one nuclide was present at each step of the chain, although it would be desirable to be able to directly measure the mass number of the originating nucleus of each chain as well as the excitation function of the 243Am+48Ca reaction.[25]

Naming

Using Mendeleev's nomenclature for unnamed and undiscovered elements, moscovium is sometimes known as eka-bismuth. In 1979 IUPAC recommended that the placeholder systematic element name ununpentium (with the corresponding symbol of Uup)[26] be used until the discovery of the element is confirmed and a permanent name is decided. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, who called it "element 115", with the symbol of E115, (115) or even simply 115.[1]

On 30 December 2015, discovery of the element was recognized by the International Union of Pure and Applied Chemistry (IUPAC).[27] According to IUPAC recommendations, the discoverer(s) of a new element has the right to suggest a name.[28] A suggested name was langevinium, after Paul Langevin.[29] Later, the Dubna team mentioned the name moscovium several times as one among many possibilities, referring to the Moscow Oblast where Dubna is located.[30][31]

In June 2016, IUPAC endorsed the latter proposal to be formally accepted by the end of the year, which it was on 28 November 2016.[8] The naming made Russia one of two countries[32] with an element named after both itself and its capital. The naming ceremony for moscovium, tennessine, and oganesson was held on 2 March 2017 at the Russian Academy of Sciences in Moscow.[33]

Predicted properties

Nuclear stability and isotopes

Island of Stability derived from Zagrebaev
The expected location of the island of stability. The dotted line is the line of beta stability.

Moscovium is expected to be in the middle of an island of stability centered on copernicium (element 112) and flerovium (element 114): the reasons for the presence of this island, however, are still not well understood.[34][35] Due to the expected high fission barriers, any nucleus within this island of stability exclusively decays by alpha decay and perhaps some electron capture and beta decay.[2] Although the known isotopes of moscovium do not actually have enough neutrons to be on the island of stability, they can be seen to approach the island as in general, the heavier isotopes are the longer-lived ones.[5][12]

The hypothetical isotope 291Mc is an especially interesting case as it has only one neutron more than the heaviest known moscovium isotope, 290Mc. It could plausibly be synthesized as the daughter of 295Ts, which in turn could be made from the reaction 249Bk(48Ca,2n)295Ts.[34] Calculations show that it may have a significant electron capture or positron emission decay mode in addition to alpha decaying and also have a relatively long half-life of several seconds. This would produce 291Fl, 291Nh, and finally 291Cn which is expected to be in the middle of the island of stability and have a half-life of about 1200 years, affording the most likely hope of reaching the middle of the island using current technology. Possible drawbacks are that the cross section of the production reaction of 295Ts is expected to be low and the decay properties of superheavy nuclei this close to the line of beta stability are largely unexplored.[34]

Other possibilities to synthesize nuclei on the island of stability include quasifission (partial fusion followed by fission) of a massive nucleus.[36] Such nuclei tend to fission, expelling doubly magic or nearly doubly magic fragments such as calcium-40, tin-132, lead-208, or bismuth-209.[37] Recently it has been shown that the multi-nucleon transfer reactions in collisions of actinide nuclei (such as uranium and curium) might be used to synthesize the neutron-rich superheavy nuclei located at the island of stability,[36] although formation of the lighter elements nobelium or seaborgium is more favored.[34] One last possibility to synthesize isotopes near the island is to use controlled nuclear explosions to create a neutron flux high enough to bypass the gaps of instability at 258–260Fm and at mass number 275 (atomic numbers 104 to 108), mimicking the r-process in which the actinides were first produced in nature and the gap of instability around radon bypassed.[34] Some such isotopes (especially 291Cn and 293Cn) may even have been synthesized in nature, but would have decayed away far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (about 10−12 the abundance of lead) to be detectable as primordial nuclides today outside cosmic rays.[34]

Physical and atomic

In the periodic table, moscovium is a member of group 15, the pnictogens, below nitrogen, phosphorus, arsenic, antimony, and bismuth. Every previous pnictogen has five electrons in its valence shell, forming a valence electron configuration of ns2np3. In moscovium's case, the trend should be continued and the valence electron configuration is predicted to be 7s27p3;[1] therefore, moscovium will behave similarly to its lighter congeners in many respects. However, notable differences are likely to arise; a largely contributing effect is the spin–orbit (SO) interaction—the mutual interaction between the electrons' motion and spin. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the speed of light.[38] In relation to moscovium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four.[39] The stabilization of the 7s electrons is called the inert pair effect, and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called subshell splitting. Computation chemists see the split as a change of the second (azimuthal) quantum number l from 1 to ​12 and ​32 for the more stabilized and less stabilized parts of the 7p subshell, respectively.[38][a] For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s2
7p2
1/2
7p1
3/2
.[1] These effects cause moscovium's chemistry to be somewhat different from that of its lighter congeners.

The valence electrons of moscovium fall into three subshells: 7s (two electrons), 7p1/2 (two electrons), and 7p3/2 (one electron). The first two of these are relativistically stabilized and hence behave as inert pairs, while the last is relativistically destabilized and can easily participate in chemistry.[1] (The 6d electrons are not destabilized enough to participate chemically, although this may still be possible in the two previous elements nihonium and flerovium.)[2] Thus, the +1 oxidation state should be favored, like Tl+, and consistent with this the first ionization potential of moscovium should be around 5.58 eV, continuing the trend towards lower ionization potentials down the pnictogens.[1] Moscovium and nihonium both have one electron outside a quasi-closed shell configuration that can be delocalized in the metallic state: thus they should have similar melting and boiling points (both melting around 400 °C and boiling around 1100 °C) due to the strength of their metallic bonds being similar.[2] Additionally, the predicted ionization potential, ionic radius (1.5 Å for Mc+; 1.0 Å for Mc3+), and polarizability of Mc+ are expected to be more similar to Tl+ than its true congener Bi3+.[2] Moscovium should be a dense metal due to its high atomic weight, with a density around 13.5 g/cm3.[2] The electron of the hydrogen-like moscovium atom (oxidized so that it only has one electron, Mc114+) is expected to move so fast that it has a mass 1.82 times that of a stationary electron, due to relativistic effects. For comparison, the figures for hydrogen-like bismuth and antimony are expected to be 1.25 and 1.077 respectively.[38]

Chemical

Moscovium is predicted to be the third member of the 7p series of chemical elements and the heaviest member of group 15 in the periodic table, below bismuth. Unlike the two previous 7p elements, moscovium is expected to be a good homologue of its lighter congener, in this case bismuth.[40] In this group, each member is known to portray the group oxidation state of +5 but with differing stability. For nitrogen, the +5 state is mostly a formal explanation of molecules like N2O5: it is very difficult to have five covalent bonds to nitrogen due to the inability of the small nitrogen atom to accommodate five ligands. The +5 state is well represented for the essentially non-relativistic typical pnictogens phosphorus, arsenic, and antimony. However, for bismuth it becomes rare due to the relativistic stabilization of the 6s orbitals known as the inert pair effect, so that the 6s electrons are reluctant to bond chemically. It is expected that moscovium will have an inert pair effect for both the 7s and the 7p1/2 electrons, as the binding energy of the lone 7p3/2 electron is noticeably lower than that of the 7p1/2 electrons. Nitrogen(I) and bismuth(I) are known but rare and moscovium(I) is likely to show some unique properties,[41] probably behaving more like thallium(I) than bismuth(I).[2] Because of spin-orbit coupling, flerovium may display closed-shell or noble gas-like properties; if this is the case, moscovium will likely be typically monovalent as a result, since the cation Mc+ will have the same electron configuration as flerovium, perhaps giving moscovium some alkali metal character.[2] However, the Mc3+ cation would behave like its true lighter homolog Bi3+.[2] The 7s electrons are too stabilized to be able to contribute chemically and hence the +5 state should be impossible and moscovium may be considered to have only three valence electrons.[2] Moscovium would be quite a reactive metal, with a standard reduction potential of −1.5 V for the Mc+/Mc couple.[2]

The chemistry of moscovium in aqueous solution should essentially be that of the Mc+ and Mc3+ ions. The former should be easily hydrolyzed and not be easily complexed with halides, cyanide, and ammonia.[2] Moscovium(I) hydroxide (McOH), carbonate (Mc2CO3), oxalate (Mc2C2O4), and fluoride (McF) should be soluble in water; the sulfide (Mc2S) should be insoluble; and the chloride (McCl), bromide (McBr), iodide (McI), and thiocyanate (McSCN) should be only slightly soluble, so that adding excess hydrochloric acid would not noticeably affect the solubility of moscovium(I) chloride.[2] Mc3+ should be about as stable as Tl3+ and hence should also be an important part of moscovium chemistry, although its closest homolog among the elements should be its lighter congener Bi3+.[2] Moscovium(III) fluoride (McF3) and thiozonide (McS3) should be insoluble in water, similar to the corresponding bismuth compounds, while moscovium(III) chloride (McCl3), bromide (McBr3), and iodide (McI3) should be readily soluble and easily hydrolyzed to form oxyhalides such as McOCl and McOBr, again analogous to bismuth.[2] Both moscovium(I) and moscovium(III) should be common oxidation states and their relative stability should depend greatly on what they are complexed with and the likelihood of hydrolysis.[2]

Like its lighter homologues ammonia, phosphine, arsine, stibine, and bismuthine, moscovine (McH3) is expected to have a trigonal pyramidal molecular geometry, with an Mc–H bond length of 195.4 pm and a H–Mc–H bond angle of 91.8° (bismuthine has bond length 181.7 pm and bond angle 91.9°; stibine has bond length 172.3 pm and bond angle 92.0°).[42] In the predicted aromatic pentagonal planar Mc
5
cluster, analogous to pentazolate (N
5
), the Mc–Mc bond length is expected to be expanded from the extrapolated value of 156–158 pm to 329 pm due to spin–orbit coupling effects.[43]

Experimental chemistry

Unambiguous determination of the chemical characteristics of moscovium has yet to have been established.[44][45] In 2011, experiments were conducted to create nihonium, flerovium, and moscovium isotopes in the reactions between calcium-48 projectiles and targets of americium-243 and plutonium-244. However, the targets included lead and bismuth impurities and hence some isotopes of bismuth and polonium were generated in nucleon transfer reactions. This, while an unforeseen complication, could give information that would help in the future chemical investigation of the heavier homologs of bismuth and polonium, which are respectively moscovium and livermorium.[45] The produced nuclides bismuth-213 and polonium-212m were transported as the hydrides 213BiH3 and 212mPoH2 at 850 °C through a quartz wool filter unit held with tantalum, showing that these hydrides were surprisingly thermally stable, although their heavier congeners McH3 and LvH2 would be expected to be less thermally stable from simple extrapolation of periodic trends in the p-block.[45] Further calculations on the stability and electronic structure of BiH3, McH3, PoH2, and LvH2 are needed before chemical investigations take place. However, moscovium and livermorium are expected to be volatile enough as pure elements for them to be chemically investigated in the near future. The moscovium isotopes 288Mc, 289Mc, and 290Mc may be chemically investigated with current methods, although their short half-lives would make this challenging.[45] Moscovium is the heaviest element that has known isotopes that are long-lived enough for chemical experimentation.[46]

See also

Notes

  1. ^ The quantum number corresponds to the letter in the electron orbital name: 0 to s, 1 to p, 2 to d, etc. See azimuthal quantum number for more information.

References

  1. ^ a b c d e f g h i j k l m Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  3. ^ a b Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. American Chemical Society. 85 (9): 1177–1186. doi:10.1021/j150609a021.
  4. ^ Pershina, Valeria. "Theoretical Chemistry of the Heaviest Elements". In Schädel, Matthias; Shaughnessy, Dawn (eds.). The Chemistry of Superheavy Elements (2nd ed.). Springer Science & Business Media. p. 154. ISBN 9783642374661.
  5. ^ a b c d Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010-04-09). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. American Physical Society. 104 (142502). Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  6. ^ Staff (30 November 2016). "IUPAC Announces the Names of the Elements 113, 115, 117, and 118". IUPAC. Retrieved 1 December 2016.
  7. ^ St. Fleur, Nicholas (1 December 2016). "Four New Names Officially Added to the Periodic Table of Elements". New York Times. Retrieved 1 December 2016.
  8. ^ a b "IUPAC Is Naming The Four New Elements Nihonium, Moscovium, Tennessine, And Oganesson". IUPAC. 2016-06-08. Retrieved 2016-06-08.
  9. ^ Oganessian, Y.T. (2015). "Super-heavy element research". Reports on Progress in Physics. 78 (3): 036301. doi:10.1088/0034-4885/78/3/036301.
  10. ^ Oganessian, Yu. Ts.; Utyonkoy, V. K.; Lobanov, Yu. V.; et al. (2004). "Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)291−x115". Physical Review C. 69 (2): 021601. Bibcode:2004PhRvC..69b1601O. doi:10.1103/PhysRevC.69.021601.
  11. ^ Oganessian; et al. (2003). "Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)291−x115" (PDF). JINR preprints.
  12. ^ a b c "Results of the experiment on chemical identification of Db as a decay product of element 115", Oganessian et al., JINR preprints, 2004. Retrieved on 3 March 2008
  13. ^ Oganessian, Yu. Ts.; Utyonkov, V.; Dmitriev, S.; Lobanov, Yu.; Itkis, M.; Polyakov, A.; Tsyganov, Yu.; Mezentsev, A.; Yeremin, A.; Voinov, A. A.; et al. (2005). "Synthesis of elements 115 and 113 in the reaction 243Am + 48Ca". Physical Review C. 72 (3): 034611. Bibcode:2005PhRvC..72c4611O. doi:10.1103/PhysRevC.72.034611.
  14. ^ a b c Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure Appl. Chem. 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
  15. ^ "Study of heavy and superheavy nuclei (see project 1.5)". Flerov Laboratory of Nuclear Reactions.
  16. ^ "FLNR Scientific Programme: Year 2017". flerovlab.jinr.ru. JINR. 2017. Retrieved 21 September 2017.
  17. ^ Nuclear Physics European Collaboration Committee (2017). "NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics" (PDF). www.esf.org. European Science Foundation. Retrieved 9 January 2018. The new building is ready for installation of the DC-280 cyclotron, the commissioning and testing of the accelerator are ongoing, and the first experiments should begin in 2018. ... The synthesis of isotopes of element Z=115 in the 48Ca+243Am reactions was chosen as the first-day full-scale experiment. During this experiment, the performances of all the systems of the new accelerator and gas-filled separator (GFS-2) will be tested. ... To get access to superheavy nuclides with Z>118 and carry out a detailed study on their properties, a sufficient increase in the beam intensity and the development of separators that provide the necessary background suppression are needed. This is the main goal of the construction of a first-ever SHE Factory.
  18. ^ "Existence of new element confirmed". Lund University. 27 August 2013. Retrieved 10 April 2016.
  19. ^ "Spectroscopy of element 115 decay chains (Accepted for publication on Physical Review Letters on 9 August 2013)". Retrieved 2 September 2013.
  20. ^ a b Karol, Paul J.; Barber, Robert C.; Sherrill, Bradley M.; Vardaci, Emanuele; Yamazaki, Toshimitsu (22 December 2015). "Discovery of the elements with atomic numbers Z = 113, 115 and 117 (IUPAC Technical Report)" (PDF). Pure Appl. Chem. 88 (1–2): 139–153. doi:10.1515/pac-2015-0502. Retrieved 2 April 2016.
  21. ^ Gates, J. M; Gregorich, K. E; Gothe, O. R; Uribe, E. C; Pang, G. K; Bleuel, D. L; Block, M; Clark, R. M; Campbell, C. M; Crawford, H. L; Cromaz, M; Di Nitto, A; Düllmann, Ch. E; Esker, N. E; Fahlander, C; Fallon, P; Farjadi, R. M; Forsberg, U; Khuyagbaatar, J; Loveland, W; MacChiavelli, A. O; May, E. M; Mudder, P. R; Olive, D. T; Rice, A. C; Rissanen, J; Rudolph, D; Sarmiento, L. G; Shusterman, J. A; et al. (2015). "Decay spectroscopy of element 115 daughters: 280Rg→276Mt and 276Mt→Bh". Physical Review C. 92 (2). Bibcode:2015PhRvC..92b1301G. doi:10.1103/PhysRevC.92.021301.
  22. ^ Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118. IUPAC (2015-12-30)
  23. ^ Forsberg, U.; Rudolph, D.; Fahlander, C.; Golubev, P.; Sarmiento, L. G.; Åberg, S.; Block, M.; Düllmann, Ch. E.; Heßberger, F. P.; Kratz, J. V.; Yakushev, A. (9 July 2016). "A new assessment of the alleged link between element 115 and element 117 decay chains" (PDF). Physics Letters B. 760 (2016): 293–6. Bibcode:2016PhLB..760..293F. doi:10.1016/j.physletb.2016.07.008. Retrieved 2 April 2016.
  24. ^ Forsberg, Ulrika; Fahlander, Claes; Rudolph, Dirk (2016). Congruence of decay chains of elements 113, 115, and 117 (PDF). Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. doi:10.1051/epjconf/201613102003.
  25. ^ Zlokazov, V. B.; Utyonkov, V. K. (8 June 2017). "Analysis of decay chains of superheavy nuclei produced in the 249Bk+48Ca and 243Am+48Ca reactions". Journal of Physics G: Nuclear and Particle Physics. 44 (75107): 075107. Bibcode:2017JPhG...44g5107Z. doi:10.1088/1361-6471/aa7293. Retrieved 9 January 2018.
  26. ^ Chatt, J. (1979). "Recommendations for the Naming of Elements of Atomic Numbers Greater than 100". Pure Appl. Chem. 51 (2): 381–384. doi:10.1351/pac197951020381.
  27. ^ "IUPAC - International Union of Pure and Applied Chemistry: Discovery and Assignment of Elements with Atomic Numbers 113, 115, 117 and 118".
  28. ^ Koppenol, W. H. (2002). "Naming of new elements (IUPAC Recommendations 2002)" (PDF). Pure and Applied Chemistry. 74 (5): 787. doi:10.1351/pac200274050787.
  29. ^ "115-ый элемент Унунпентиум может появиться в таблице Менделеева". oane.ws (in Russian). 28 August 2013. Retrieved 23 September 2015. В свою очередь, российские физики предлагают свой вариант – ланжевений (Ln) в честь известного французского физика-теоретика прошлого столетия Ланжевена.
  30. ^ Fedorova, Vera (30 March 2011). "Весенняя сессия Комитета полномочных представителей ОИЯИ". JINR (in Russian). Joint Institute for Nuclear Research. Retrieved 22 September 2015.
  31. ^ Zavyalova, Victoria (25 August 2015). "Element 115, in Moscow's name". Russia & India Report. Retrieved 22 September 2015.
  32. ^ Lutetium, with its original spelling lutecium, is named after Lutecia, the predecessor of present-day city of Paris.
  33. ^ Fedorova, Vera (3 March 2017). "At the inauguration ceremony of the new elements of the Periodic table of D.I. Mendeleev". jinr.ru. Joint Institute for Nuclear Research. Retrieved 4 February 2018.
  34. ^ a b c d e f Zagrebaev, Valeriy; Karpov, Alexander; Greiner, Walter (2013). "Future of superheavy element research: Which nuclei could be synthesized within the next few years?" (PDF). Journal of Physics: Conference Series. 420. IOP Science. pp. 1–15. Retrieved 20 August 2013.
  35. ^ Considine, Glenn D.; Kulik, Peter H. (2002). Van Nostrand's scientific encyclopedia (9th ed.). Wiley-Interscience. ISBN 978-0-471-33230-5. OCLC 223349096.
  36. ^ a b Zagrebaev, V.; Greiner, W. (2008). "Synthesis of superheavy nuclei: A search for new production reactions". Physical Review C. 78 (3): 034610. arXiv:0807.2537. Bibcode:2008PhRvC..78c4610Z. doi:10.1103/PhysRevC.78.034610.
  37. ^ "JINR Annual Reports 2000–2006". JINR. Retrieved 2013-08-27.
  38. ^ a b c Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Springer. pp. 63–67, 83. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  39. ^ Faegri, K.; Saue, T. (2001). "Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding". Journal of Chemical Physics. 115 (6): 2456. Bibcode:2001JChPh.115.2456F. doi:10.1063/1.1385366.
  40. ^ Zaitsevskii, A.; van Wüllen, C.; Rusakov, A.; Titov, A. (September 2007). "Relativistic DFT and ab initio calculations on the seventh-row superheavy elements: E113 - E114" (PDF). jinr.ru. Retrieved 17 February 2018.
  41. ^ Keller, O. L., Jr.; C. W. Nestor, Jr. (1974). "Predicted properties of the superheavy elements. III. Element 115, Eka-bismuth" (PDF). Journal of Physical Chemistry. 78 (19): 1945. doi:10.1021/j100612a015.
  42. ^ Santiago, Régis T.; Haiduke, Roberto L. A. (2018). "Relativistic effects on inversion barriers of pyramidal group 15 hydrides". International Journal of Quantum Chemistry: e25585. doi:10.1002/qua.25585.
  43. ^ Alvarez-Thon, Luis; Inostroza-Pino, Natalia (2018). "Spin–Orbit Effects on Magnetically Induced Current Densities in the M
    5
    (M = N, P, As, Sb, Bi, Mc) Clusters". Journal of Computational Chemistry. 2018 (14): 862. doi:10.1002/jcc.25170.
  44. ^ Düllmann, Christoph E. (2012). "Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry". Radiochimica Acta. 100 (2): 67–74. doi:10.1524/ract.2011.1842.
  45. ^ a b c d Eichler, Robert (2013). "First foot prints of chemistry on the shore of the Island of Superheavy Elements" (PDF). Journal of Physics: Conference Series. IOP Science. 420 (1): 012003. arXiv:1212.4292. Bibcode:2013JPhCS.420a2003E. doi:10.1088/1742-6596/420/1/012003. Retrieved 11 September 2014.
  46. ^ Moody, Ken. "Synthesis of Superheavy Elements". In Schädel, Matthias; Shaughnessy, Dawn (eds.). The Chemistry of Superheavy Elements (2nd ed.). Springer Science & Business Media. pp. 24–8. ISBN 9783642374661.

External links

2003 in science

The year 2003 was an exciting one for new scientific discoveries and technological breakthroughs progress in many scientific fields. Some of the highlights of 2003, which will be further discussed below, include: the anthropologic discovery of 350,000-year-old footprints attesting to the presence of upright-walking humans; SpaceShipOne flight 11P making its first supersonic flight; the observation of a previously unknown element, moscovium was made; and the world's first digital camera with an organic light-emitting diode (OLED) display is released by Kodak.

The year 2003 is also notable for the disintegration of the Columbia Space Shuttle upon its re-entry into earth's atmosphere, a tragic disaster which took the lives of all seven astronauts on board; the Concorde jet made its last flight, bringing to an end the era of civilian supersonic travel, at least for the time being; and the death of Edward Teller, physicist and inventor of the hydrogen bomb.

Darmstadt

Darmstadt (, also UK: , US: , German: [ˈdaɐ̯mʃtat] (listen)) is a city in the state of Hesse in Germany, located in the southern part of the Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt had a population of around 157,437 at the end of 2016. The Darmstadt Larger Urban Zone has 430,993 inhabitants.Darmstadt holds the official title "City of Science" (German: Wissenschaftsstadt) as it is a major centre of scientific institutions, universities, and high-technology companies. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the European Space Operations Centre (ESOC) are located in Darmstadt, as well as GSI Centre for Heavy Ion Research, where several chemical elements such as bohrium (1981), meitnerium (1982), hassium (1984), darmstadtium (1994), roentgenium (1994), and copernicium (1996) were discovered. The existence of the following elements were also confirmed at GSI Centre for Heavy Ion Research: nihonium (2012), flerovium (2009), moscovium (2012), livermorium (2010), and tennessine (2012). The Facility for Antiproton and Ion Research (FAIR) is an international accelerator facility under construction. Darmstadt is also the seat of the world's oldest pharmaceutical company, Merck, which is the city's largest employer.

Darmstadt was formerly the capital of a sovereign country, the Grand Duchy of Hesse and its successor, the People's State of Hesse, a federal state of Germany. As the capital of an increasingly prosperous duchy, the city gained some international prominence and remains one of the wealthiest cities in Europe. In the 20th century, industry (especially chemicals), as well as large science and electronics (later information technology) sectors became increasingly important, and are still a major part of the city's economy. It is also home to the football club SV Darmstadt 98.

Group 10 element

Group 10, numbered by current IUPAC style, is the group of chemical elements in the periodic table that consists of nickel (Ni), palladium (Pd), platinum (Pt), and perhaps also the chemically uncharacterized darmstadtium (Ds). All are d-block transition metals. All known isotopes of darmstadtium are radioactive with short half-lives, and are not known to occur in nature; only minute quantities have been synthesized in laboratories.

Like other groups, the members of this group show patterns in electron configuration, especially in the outermost shells, although for this group they are particularly weak, with palladium being an exceptional case. The relativistic stabilization of the 7s orbital is the explanation to the predicted electron configuration of darmstadtium, which, unusually for this group, conforms to that predicted by the Aufbau principle.

Group 7 element

Group 7, numbered by IUPAC nomenclature, is a group of elements in the periodic table. They are manganese (Mn), technetium (Tc), rhenium (Re), and bohrium (Bh). All known elements of group 7 are transition metals.

Like other groups, the members of this family show patterns in their electron configurations, especially the outermost shells resulting in trends in chemical behavior.

Group 8 element

Group 8 is a group (column) of chemical elements in the periodic table. It consists of iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs). They are all transition metals.

Like other groups, the members of this family show patterns in electron configuration, especially in the outermost shells, resulting in trends in chemical behavior.

"Group 8" is the modern standard designation for this group, adopted by the IUPAC in 1990.In the older group naming systems, this group was combined with group 9 (cobalt, rhodium, iridium, and meitnerium) and group 10 (nickel, palladium, platinum, and darmstadtium) and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system" (and in Mendeleev's original table).

Group 8 (current IUPAC) should not be confused with "group VIIIA" in the CAS system, which is group 18 (current IUPAC), the noble gases.

While groups (columns) of the periodic table are sometimes named after their lighter member (as in "the oxygen group" for group 16), the term iron group does not mean "group 8". Most often, it means a set of adjacent elements on period (row) 4 of the table that includes iron, such as chromium, manganese, iron, cobalt, and nickel; or only the last three; or some other set — depending on the context.

Group 9 element

Group 9 is a group (column) of chemical elements in the periodic table. Members are cobalt (Co), rhodium (Rh), iridium (Ir) and meitnerium (Mt). These are all transition metals in the d-block.

Like other groups, the members of this family show patterns in electron configuration, especially in the outermost shells, resulting in trends in chemical behavior; however, rhodium deviates from the pattern.

"Group 9" is the modern standard designation for this group, adopted by the IUPAC in 1990.In the older group naming systems, this group was combined with group 8 (iron, ruthenium, osmium, and hassium) and group 10 (nickel, palladium, platinum, and darmstadtium) and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system" (and in Mendeleev's original table).

Heavy metals

Heavy metals are generally defined as metals with relatively high densities, atomic weights, or atomic numbers. The criteria used, and whether metalloids are included, vary depending on the author and context. In metallurgy, for example, a heavy metal may be defined on the basis of density, whereas in physics the distinguishing criterion might be atomic number, while a chemist would likely be more concerned with chemical behaviour. More specific definitions have been published, but none of these have been widely accepted. The definitions surveyed in this article encompass up to 96 out of the 118 known chemical elements; only mercury, lead and bismuth meet all of them. Despite this lack of agreement, the term (plural or singular) is widely used in science. A density of more than 5 g/cm3 is sometimes quoted as a commonly used criterion and is used in the body of this article.

The earliest known metals—common metals such as iron, copper, and tin, and precious metals such as silver, gold, and platinum—are heavy metals. From 1809 onwards, light metals, such as magnesium, aluminium, and titanium, were discovered, as well as less well-known heavy metals including gallium, thallium, and hafnium.

Some heavy metals are either essential nutrients (typically iron, cobalt, and zinc), or relatively harmless (such as ruthenium, silver, and indium), but can be toxic in larger amounts or certain forms. Other heavy metals, such as cadmium, mercury, and lead, are highly poisonous. Potential sources of heavy metal poisoning include mining, tailings, industrial wastes, agricultural runoff, occupational exposure, paints and treated timber.

Physical and chemical characterisations of heavy metals need to be treated with caution, as the metals involved are not always consistently defined. As well as being relatively dense, heavy metals tend to be less reactive than lighter metals and have much less soluble sulfides and hydroxides. While it is relatively easy to distinguish a heavy metal such as tungsten from a lighter metal such as sodium, a few heavy metals, such as zinc, mercury, and lead, have some of the characteristics of lighter metals, and, lighter metals such as beryllium, scandium, and titanium, have some of the characteristics of heavier metals.

Heavy metals are relatively scarce in the Earth's crust but are present in many aspects of modern life. They are used in, for example, golf clubs, cars, antiseptics, self-cleaning ovens, plastics, solar panels, mobile phones, and particle accelerators.

Isotopes of moscovium

Moscovium (115Mc) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 288Mc in 2004. There are four known radioisotopes from 287Mc to 290Mc. The longest-lived isotope is 290Mc with a half-life of 0.8 seconds.

Isotopes of nihonium

Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The first isotope to be directly synthesized was 278Nh in 2004. There are 6 known radioisotopes from 278Nh to 286Nh, along with the unconfirmed 290Nh. The longest-lived isotope is 286Nh with a half-life of 8 seconds.

Isotopes of roentgenium

Roentgenium (111Rg) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 272Rg in 1994, which is also the only directly synthesized isotope; all others are decay products of nihonium, moscovium, and tennessine, and possibly copernicium, flerovium, and livermorium. There are 7 known radioisotopes from 272Rg to 282Rg. The longest-lived isotope is 282Rg with a half-life of 2.1 minutes, although the unconfirmed 283Rg and 286Rg may have a longer half-life of about 5.1 minutes and 10.7 minutes respectively.

Livermorium

Livermorium is a synthetic chemical element with symbol Lv and has an atomic number of 116. It is an extremely radioactive element that has only been created in the laboratory and has not been observed in nature. The element is named after the Lawrence Livermore National Laboratory in the United States, which collaborated with the Joint Institute for Nuclear Research (JINR) in Dubna, Russia to discover livermorium during experiments made between 2000 and 2006. The name of the laboratory refers to the city of Livermore, California where it is located, which in turn was named after the rancher and landowner Robert Livermore. The name was adopted by IUPAC on May 30, 2012. 4 isotopes of livermorium are known, with mass numbers between 290 and 293 inclusive; the longest-lived among them is livermorium-293 with a half-life of about 60 milliseconds. A fifth possible isotope with mass number 294 has been reported but not yet confirmed.

In the periodic table, it is a p-block transactinide element. It is a member of the 7th period and is placed in group 16 as the heaviest chalcogen, although it has not been confirmed to behave as the heavier homologue to the chalcogen polonium. Livermorium is calculated to have some similar properties to its lighter homologues (oxygen, sulfur, selenium, tellurium, and polonium), and be a post-transition metal, although it should also show several major differences from them.

Major actinide

Major actinides is a term used in the nuclear power industry that refers to the plutonium and uranium present in used nuclear fuel, as opposed to the minor actinides neptunium, americium, curium, berkelium, and californium.

Minor actinide

The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkelium (element 97), californium (element 98), einsteinium (element 99), and fermium (element 100). The most important isotopes in spent nuclear fuel are neptunium-237, americium-241, americium-243, curium-242 through -248, and californium-249 through -252.

Plutonium and the minor actinides will be responsible for the bulk of the radiotoxicity and heat generation of used nuclear fuel in the medium term (300 to 20,000 years in the future).The plutonium from a power reactor tends to have a greater amount of Pu-241 than the plutonium generated by the lower burnup operations designed to create weapons-grade plutonium. Because the reactor-grade plutonium contains so much Pu-241 the presence of americium-241 makes the plutonium less suitable for making a nuclear weapon. The ingrowth of americium in plutonium is one of the methods for identifying the origin of an unknown sample of plutonium and the time since it was last separated chemically from the americium.

Americium is commonly used in industry as both an alpha particle and as a low photon energy gamma radiation source. For instance it is used in many smoke detectors. Americium can be formed by neutron capture of Pu-239 and Pu-240 forming Pu-241 which then beta decays to Am-241. In general, as the energy of the neutrons increases, the ratio of the fission cross section to the neutron capture cross section changes in favour of fission. Hence if MOX is used in a thermal reactor such as a boiling water reactor (BWR) or pressurized water reactor (PWR) then more americium can be expected in the used fuel than that from a fast neutron reactor.Some of the minor actinides have been found in fallout from bomb tests. See Actinides in the environment for details.

Oganesson

Oganesson is a synthetic chemical element with symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow in Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name is in line with the tradition of honoring a scientist, in this case the nuclear physicist Yuri Oganessian, who has played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a person who was alive at the time of naming, the other being seaborgium; it is also the only element whose namesake is alive today.Oganesson has the highest atomic number and highest atomic mass of all known elements. The radioactive oganesson atom is very unstable, and since 2005, only five (possibly six) atoms of the nuclide 294Og have been detected. Although this allowed very little experimental characterization of its properties and possible compounds, theoretical calculations have resulted in many predictions, including some surprising ones. For example, although oganesson is a member of group 18 – the first synthetic element to be so – it may be significantly reactive, unlike all the other elements of that group (the noble gases). It was formerly thought to be a gas under normal conditions but is now predicted to be a solid due to relativistic effects. On the periodic table of the elements it is a p-block element and the last one of period 7.

Pnictogen

A pnictogen is one of the chemical elements in group 15 of the periodic table. This group is also known as the nitrogen family. It consists of the elements nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi), and perhaps the chemically uncharacterized synthetic element moscovium (Mc).

In modern IUPAC notation, it is called Group 15. In CAS and the old IUPAC systems it was called Group VA and Group VB respectively (pronounced "group five A" and "group five B", "V" for the Roman numeral 5). In the field of semiconductor physics, it is still usually called Group V. The "five" ("V") in the historical names comes from the "pentavalency" of nitrogen, reflected by the stoichiometry of compounds such as N2O5. They have also been called the pentels.

The term pnictogen (or pnigogen) is derived from the Ancient Greek word πνίγειν (pnígein) meaning "to choke", referring to the choking or stifling property of nitrogen gas.

Synthetic element

In chemistry, a synthetic element is a chemical element that does not occur naturally on Earth, and can only be created artificially. So far, 24 synthetic elements have been created (those with atomic numbers 95–118). All are unstable, decaying with half-lives ranging from 15.6 million years to a few hundred microseconds.

Seven other elements were first created artificially and thus considered synthetic, but later discovered to exist naturally (in trace quantities) as well; among them plutonium—first synthesized in 1940—the one best known to laypeople, because of its use in atomic bombs and nuclear reactors.

Transactinide element

In chemistry, transactinide elements (also transactinides, superheavy elements, or super-heavy elements) are the chemical elements with atomic numbers from 104 to 120. Their atomic numbers are immediately greater than those of the actinides, the heaviest of which is lawrencium (atomic number 103).

Glenn T. Seaborg first proposed the actinide concept, which led to the acceptance of the actinide series. He also proposed the transactinide series ranging from element 104 to 121 and the superactinide series approximately spanning elements 122 to 153. The transactinide seaborgium was named in his honor.By definition, transactinide elements are also transuranic elements, i.e. have an atomic number greater than uranium (92).

The transactinide elements all have electrons in the 6d subshell in their ground state. Except for rutherfordium and dubnium, even the longest-lasting isotopes of transactinide elements have extremely short half-lives of minutes or less. The element naming controversy involved the first five or six transactinide elements. These elements thus used systematic names for many years after their discovery had been confirmed. (Usually the systematic names are replaced with permanent names proposed by the discoverers relatively shortly after a discovery has been confirmed.)

Transactinides are radioactive and have only been obtained synthetically in laboratories. None of these elements have ever been collected in a macroscopic sample. Transactinide elements are all named after physicists and chemists or important locations involved in the synthesis of the elements.

IUPAC defines an element to exist if its lifetime is longer than 10−14 seconds, which is the time it takes for the nucleus to form an electron cloud.

Transuranium element

The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements.

UUP

UUP may refer to:

Moscovium, an element formerly known as Ununpentium (Uup)

Ulster Unionist Party, a political party in Northern Ireland

United Utah Party, a political party in the United States

Updated Airspace Use Plan (UUP), an air traffic control status message

Invesco PowerShares (NYSE stock ticker symbol UUP)

Royal Malaysian Police Air Wing Unit (Malay: Unit Udara PDRM (UUP))

uup RNA motif

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.