Monera

Monera (/məˈnɪərə/) (Greek - μονήρης (monḗrēs), "single", "solitary") is a kingdom that contains unicellular organisms with a prokaryotic cell organization (having no nuclear membrane), such as bacteria. They are single-celled organisms with no true nuclear membrane (prokaryotic organisms).

The taxon Monera was first proposed as a phylum by Ernst Haeckel in 1866. Subsequently, the phylum was elevated to the rank of kingdom in 1925 by Édouard Chatton. The last commonly accepted mega-classification with the taxon Monera was the five-kingdom classification system established by Robert Whittaker in 1969.

Under the three-domain system of taxonomy, introduced by Carl Woese in 1977, which reflects the evolutionary history of life, the organisms found in kingdom Monera have been divided into two domains, Archaea and Bacteria (with Eukarya as the third domain). Furthermore, the taxon Monera is paraphyletic (does not include all descendants of their most-recent common ancestor), as Archaea and Eukarya are currently believed to be more closely related than either is to Bacteria. The term "moneran" is the informal name of members of this group and is still sometimes used (as is the term "prokaryote") to denote a member of either domain.[1]

Most bacteria were classified under Monera; however, Cyanobacteria (often called the blue-green algae) were initially classified under Plantae due to their ability to photosynthesize.

Monera
Scanning electron micrograph of Escherichia coli rods
Scanning electron micrograph of Escherichia coli rods
Scientific classification
Groups included

Bacteria and Archaea

Cladistically included but traditionally excluded taxa

Domain Eukaryota

History

Haeckel's classification

Haeckel arbol bn
Tree of Life in Generelle Morphologie der Organismen (1866)[2]

Traditionally the natural world was classified as animal, vegetable, or mineral as in Systema Naturae. After the development of the microscope, attempts were made to fit microscopic organisms into either the plant or animal kingdoms. In 1675, Antonie van Leeuwenhoek discovered bacteria and called them "animalcules", assigning them to the class Vermes of the Animalia.[3][4][5] Due to the limited tools — the sole references for this group were shape, behaviour, and habitat — the description of genera and their classification was extremely limited, which was accentuated by the perceived lack of importance of the group.[6][7][8]

Ten years after The Origin of Species by Charles Darwin, in 1866 Ernst Haeckel, a supporter of evolution, proposed a three-kingdom system that added the Protista as a new kingdom that contained most microscopic organisms.[2] One of his eight major divisions of Protista was composed of the monerans (called Moneres by Haeckel), which he defined as completely structure-less and homogeneous organisms, consisting only of a piece of plasma. Haeckel's Monera included not only bacterial groups of early discovery but also several small eukaryotic organisms; in fact the genus Vibrio is the only bacterial genus explicitly assigned to the phylum, while others are mentioned indirectly, which led Copeland to speculate that Haeckel considered all bacteria to belong to the genus Vibrio, ignoring other bacterial genera.[7] One notable exception were the members of the modern phylum Cyanobacteria, such as Nostoc, which were placed in the phylum Archephyta of Algae (vide infra: Blue-green algae).

The Neolatin noun Monera and the German noun Moneren/Moneres are derived from the ancient Greek noun moneres, which Haeckel stated meant "simple";[2] however, it actually means "single, solitary".[9] Haeckel also describes the protist genus Monas in the two pages about Monera in his 1866 book.[2] The informal name of a member of the Monera was initially moneron,[10] but later moneran was used.[1]

Due to its lack of features, the phylum was not fully subdivided, but the genera therein were divided into two groups:

  • die Gymnomoneren (no envelope [sic.]): Gymnomonera
    • Protogenes — such as Protogenes primordialis, an unidentified amoeba (eukaryote) and not a bacterium
    • Protamaeba — an incorrectly described/fabricated species
    • Vibrio — a genus of comma-shaped bacteria first described in 1854[11]
    • Bacterium — a genus of rod-shaped bacteria first described in 1828. Haeckel does not explicitly assign this genus to the Monera.
    • Bacillus — a genus of spore-forming rod-shaped bacteria first described in 1835[12] Haeckel does not explicitly assign this genus to the Monera kingdom.
    • Spirochaeta — thin spiral-shaped bacteria first described in 1835 [13] Haeckel does not explicitly assign this genus to the Monera.
    • Spirillum — spiral-shaped bacteria first described in 1832[14] Haeckel does not explicitly assign this genus to the Monera.
    • etc.: Haeckel does provide a comprehensive list.
  • die Lepomoneren (with envelope): Lepomonera
    • Protomonas — identified to a synonym of Monas, a flagellated protozoan, and not a bacterium.[10] The name was reused in 1984 for an unrelated genus of bacteria.[15]
    • Vampyrella — now classed as a eukaryote and not a bacterium.

Subsequent classifications

Like Protista, the Monera classification was not fully followed at first and several different ranks were used and located with animals, plants, protists or fungi. Furthermore, Häkel's classification lacked specificity and was not exhaustive — it in fact covers only a few pages—, consequently a lot of confusion arose even to the point that the Monera did not contain bacterial genera and others according to Huxley.[10] They were first recognized as a kingdom by Enderlein in 1925 (Bakterien-Cyclogenie. de Gruyter, Berlin).

The most popular scheme was created in 1859 by C. Von Nägeli who classified non-phototrophic Bacteria as the class Schizomycetes.[16]

The class Schizomycetes was then emended by Walter Migula (along with the coinage of the genus Pseudomonas in 1894)[17] and others.[18] This term was in dominant use even in 1916 as reported by Robert Earle Buchanan, as it had priority over other terms such as Monera.[19] However, starting with Ferdinand Cohn in 1872 the term bacteria (or in German Bacterien) became prominently used to informally describe this group of species without a nucleus: Bacterium was in fact a genus created in 1828 by Christian Gottfried Ehrenberg[20] Additionally, Cohn divided the bacteria according to shape namely:

  • Spherobacteria for the cocci
  • Microbacteria for the short, non-filamentous rods
  • Desmobacteria for the longer, filamentous rods and Spirobacteria for the spiral forms.

Successively, Cohn created the Schizophyta of Plants, which contained the non-photrophic bacteria in the family Schizomycetes and the phototrophic bacteria (blue green algae/Cyanobacteria) in the Schizophyceae[21] This union of blue green algae and Bacteria was much later followed by Haeckel, who classified the two families in a revised phylum Monera in the Protista.[22]

Stanier and van Neil (1941, The main outlines of bacterial classification. J Bacteriol 42: 437- 466) recognized the Kingdom Monera with two phyla, Myxophyta and Schizomycetae, the latter comprising classes Eubacteriae (3 orders), Myxobacteriae (1 order), and Spirochetae (1 order); Bisset (1962, Bacteria, 2nd ed., Livingston, London) distinguished 1 class and 4 orders: Eubacteriales, Actinomycetales, Streptomycetales, and Flexibacteriales; Orla-Jensen (1909, Die Hauptlinien des naturalischen Bakteriensystems nebst einer Ubersicht der Garungsphenomene. Zentr. Bakt. Parasitenk., II, 22: 305-346) and Bergey et al (1925, Bergey's Manual of Determinative Bacteriology, Baltimore : Williams & Wilkins Co.) with many subsequent editions) also presented classifications.

Rise to prominence

The term Monera became well established in the 20s and 30s when to rightfully increase the importance of the difference between species with a nucleus and without, In 1925, Édouard Chatton divided all living organisms into two empires Prokaryotes and Eukaryotes: the Kingdom Monera being the sole member of the Prokaryotes empire.[23]

The anthropic importance of the crown group of animals, plants and fungi was hard to depose; consequently, several other megaclassification schemes ignored on the empire rank but maintained the kingdom Monera consisting of bacteria, such Copeland in 1938 and Whittaker in 1969.[7][24] The latter classification system was widely followed, in which Robert Whittaker proposed a five kingdom system for classification of living organisms.[24] Whittaker's system placed most single celled organisms into either the prokaryotic Monera or the eukaryotic Protista. The other three kingdoms in his system were the eukaryotic Fungi, Animalia, and Plantae. Whittaker, however, did not believe that all his kingdoms were monophyletic.[25] Whittaker subdivided the kingdom into two branches containing several phyla:

Alternative commonly followed subdivision systems were based on Gram stains. This culminated in the Gibbons and Murray classification of 1978:[26]

  • Gracilicutes (gram negative)
    • Photobacteria (photosynthetic): class Oxyphotobacteriae (water as electron acceptor, includes the order Cyanobacteriales = blue green algae, now phylum Cyanobacteria) and class Anoxyphotobacteriae (anaerobic phototrophs, orders: Rhodospirillales and Chlorobiales
    • Scotobacteria (non-photosynthetic, now the Proteobacteria and other gram negative nonphotosynthetic phyla)
  • Firmacutes [sic] (gram positive, subsequently corrected to Firmicutes[27])
    • several orders such as Bacillales and Actinomycetales (now in the phylum Actinobacteria)
  • Mollicutes (gram variable, e.g. Mycoplasma)
  • Mendocutes (uneven gram stain, "methanogenic bacteria" now known as the Archaea)

Three-domain system

In 1977, a PNAS paper by Carl Woese and George Fox demonstrated that the archaea (initially called archaebacteria) are not significantly closer in relationship to the bacteria than they are to eukaryotes. The paper received front-page coverage in The New York Times,[28] and great controversy initially. The conclusions have since become accepted, leading to replacement of the kingdom Monera with the two domains Bacteria and Archaea.[25][29] A minority of scientists, including Thomas Cavalier-Smith, continue to reject the widely accepted division between these two groups. Cavalier-Smith has published classifications in which the archaebacteria are part of a subkingdom of the Kingdom Bacteria.[30]

Blue-green algae

Although it was generally accepted that one could distinguish prokaryotes from eukaryotes on the basis of the presence of a nucleus, mitosis versus binary fission as a way of reproducing, size, and other traits, the monophyly of the kingdom Monera (or for that matter, whether classification should be according to phylogeny) was controversial for many decades. Although distinguishing between prokaryotes from eukaryotes as a fundamental distinction is often credited to a 1937 paper by Édouard Chatton (little noted until 1962), he did not emphasize this distinction more than other biologists of his era.[25] Roger Stanier and C. B. van Niel believed that the bacteria (a term which at the time did not include blue-green algae) and the blue-green algae had a single origin, a conviction that culminated in Stanier writing in a letter in 1970, "I think it is now quite evident that the blue-green algae are not distinguishable from bacteria by any fundamental feature of their cellular organization".[31] Other researchers, such as E. G. Pringsheim writing in 1949, suspected separate origins for bacteria and blue-green algae. In 1974, the influential Bergey's Manual published a new edition coining the term cyanobacteria to refer to what had been called blue-green algae, marking the acceptance of this group within the Monera.[25]

Summary

Linnaeus
1735[32]
Haeckel
1866[33]
Chatton
1925[23]
Copeland
1938[7]
Whittaker
1969[34]
Woese et al.
1990[35]
Cavalier-Smith
1998[30]
Cavalier-Smith
2015[36]
2 kingdoms 3 kingdoms 2 empires 4 kingdoms 5 kingdoms 3 domains 2 empires, 6 kingdoms 2 empires, 7 kingdoms
(not treated) Protista Prokaryota Monera Monera Bacteria Bacteria Bacteria
Archaea Archaea
Eukaryota Protoctista Protista Eucarya Protozoa Protozoa
Chromista Chromista
Vegetabilia Plantae Plantae Plantae Plantae Plantae
Fungi Fungi Fungi
Animalia Animalia Animalia Animalia Animalia Animalia

Monerans are a group of organisms having prokaryotic structure. Archaea differ from Bacteria in having a different 16Ssrna. They also have a different cell wall structure.

See also

References

  1. ^ a b "Moneran", Encyclopædia Britannica, 2018-02-01, retrieved 2018-11-13
  2. ^ a b c d Ernst Heinrich Philipp August Haeckel (1867). Generelle Morphologie der Organismen. Reimer, Berlin. ISBN 978-1-144-00186-3.
  3. ^ van Leeuwenhoek A (1684). "An abstract of a letter from Mr. Anthony Leevvenhoek at Delft, dated Sep. 17, 1683, Containing Some Microscopical Observations, about Animals in the Scurf of the Teeth, the Substance Call'd Worms in the Nose, the Cuticula Consisting of Scales". Philosophical Transactions. 14 (155–166): 568–574. doi:10.1098/rstl.1684.0030. Retrieved 2007-08-19.
  4. ^ van Leeuwenhoek A (1700). "Part of a Letter from Mr Antony van Leeuwenhoek, concerning the Worms in Sheeps Livers, Gnats, and Animalcula in the Excrements of Frogs" (PDF). Philosophical Transactions. 22 (260–276): 509–518. doi:10.1098/rstl.1700.0013. Retrieved 2007-08-19.
  5. ^ van Leeuwenhoek A (1702). "Part of a Letter from Mr Antony van Leeuwenhoek, F. R. S. concerning Green Weeds Growing in Water, and Some Animalcula Found about Them". Philosophical Transactions. 23 (277–288): 1304–11. doi:10.1098/rstl.1702.0042. Archived from the original on 2010-01-18. Retrieved 2007-08-19.
  6. ^ Don J. Brenner; Noel R. Krieg; James T. Staley (July 26, 2005) [1984(Williams & Wilkins)]. George M. Garrity (ed.). Introductory Essays. Bergey's Manual of Systematic Bacteriology. 2A (2nd ed.). New York: Springer. p. 304. ISBN 978-0-387-24143-2. British Library no. GBA561951.
  7. ^ a b c d Copeland, H. (1938). "The kingdoms of organisms". Quarterly Review of Biology. 13: 383–420. doi:10.1086/394568.
  8. ^ Woese, C. R. (1987). "Bacterial evolution". Microbiological Reviews. 51 (2): 221–271. PMC 373105. PMID 2439888.
  9. ^ μονήρης. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project.
  10. ^ a b c Francis Polkinghorne Pascoe (1880). Zoological classification; a handy book of reference with tables of the subkingdoms, classes, orders, etc., of the animal kingdom, their characters and lists of the families and principal genera. London, J. Van Voorst.
  11. ^ PACINI (F.): Osservazione microscopiche e deduzioni patologiche sul cholera asiatico. Gazette Medicale de Italiana Toscano Firenze, 1854, 6, 405-412.
  12. ^ EHRENBERG (C.G.): Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes. Physikalische Abhandlungen der Koeniglichen Akademie der Wissenschaften zu Berlin aus den Jahren 1833-1835, 1835, pp. 143-336.
  13. ^ EHRENBERG (C.G.): Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes. Abhandlungen der Preussischen Akademie der Wissenschaften (Berlin) aus den Jahre 1833-1835, pp. 143-336.
  14. ^ EHRENBERG (C.G.): Beiträge zur Kenntnis der Organization der Infusorien und ihrer geographischen Verbreitung besonders in Sibirien. Abhandlungen der Koniglichen Akademie der Wissenschaften zu Berlin, 1832, 1830, 1-88.
  15. ^ Protomonas entry in LPSN [Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int J Syst Bacteriol. Microbiology Society. 47 (2): 590–2. doi:10.1099/00207713-47-2-590. ISSN 0020-7713. PMID 9103655. Retrieved 2019-02-23.]
  16. ^ C. Von Nägeli (1857). R. Caspary (ed.). "Bericht über die Verhandlungen der 33. Versammlung deutscher Naturforscher und Aerzte, gehalten in Bonn von 18 bis 24 September 1857" [Report on the negotiations on 33 Meeting of German Natural Scientists and Physicians, held in Bonn, 18 to 24 September 1857]. Botanische Zeitung. 15: 749–776.
  17. ^ Migula W (1894). "Über ein neues System der Bakterien". Arb Bakteriol Inst Karlsruhe. 1: 235–328.
  18. ^ CHESTER F. D. (1897). "Classification of the Schizomycetes". Annual Report Delaware College Agricultural Experiment Station. 9: 62.
  19. ^ Buchanan R E (Nov 1916). "Studies in the Nomenclature and Classification of Bacteria: The Problem of Bacterial Nomenclature". J Bacteriol. 1 (6): 591–6. PMC 378679. PMID 16558720.
  20. ^ Ferdinand Cohn (1872). "Untersuchungen uber Bakterien". Beiträge zur Biologie der Pflanzen. 1. pp. 127–224.
  21. ^ Ferdinand Cohn (1875). "Untersuchungen uber Bakterien". Beiträge zur Biologie der Pflanzen. 1. pp. 141–208.
  22. ^ Ernst Haeckel. The Wonders of Life. Translated by Joseph McCabe. New York and London. I904.
  23. ^ a b Chatton, É. (1925). "Pansporella perplexa. Réflexions sur la biologie et la phylogénie des protozoaires". Annales des Sciences Naturelles - Zoologie et Biologie Animale. 10-VII: 1–84.
  24. ^ a b R H Whittaker (1969). "New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms". Science. 163 (3863): 150–160. Bibcode:1969Sci...163..150W. CiteSeerX 10.1.1.403.5430. doi:10.1126/science.163.3863.150. PMID 5762760.
  25. ^ a b c d Jan Sapp (June 2005). "The Prokaryote-Eukaryote Dichotomy: Meanings and Mythology". Microbiology and Molecular Biology Reviews. 69 (2): 292–305. doi:10.1128/MMBR.69.2.292-305.2005. PMC 1197417. PMID 15944457.
  26. ^ GIBBONS (N.E.) and MURRAY (R.G.E.): Proposals concerning the higher taxa of bacteria. International Journal of Systematic Bacteriology, 1978, 28, 1-6.
  27. ^ MURRAY (R.G.E.): The higher taxa, or, a place for everything...? In: N.R. KRIEG and J.G. HOLT (ed.) Bergey's Manual of Systematic Bacteriology, vol. 1, The Williams & Wilkins Co., Baltimore, 1984, p. 31-34
  28. ^ Lyons, Richard D. (Nov 3, 1977). "Scientists Discover a Form of Life That Predates Higher Organisms". The New York Times. pp. A1, A20.
  29. ^ Holland L. (22 May 1990). "Woese, Carl in the forefront of bacterial evolution revolution". Scientist. 4 (10).
  30. ^ a b Cavalier-Smith, T. (1998). "A revised six-kingdom system of life". Biological Reviews. 73 (03): 203–66. doi:10.1111/j.1469-185X.1998.tb00030.x. PMID 9809012.
  31. ^ Roger Stanier to Peter Raven, 5 November 1970, National Archives of Canada, MG 31, accession J35, vol. 6, as quoted in Sapp, 2005
  32. ^ Linnaeus, C. (1735). Systemae Naturae, sive regna tria naturae, systematics proposita per classes, ordines, genera & species.
  33. ^ Haeckel, E. (1866). Generelle Morphologie der Organismen. Reimer, Berlin.
  34. ^ Whittaker, R. H. (January 1969). "New concepts of kingdoms of organisms". Science. 163 (3863): 150–60. Bibcode:1969Sci...163..150W. doi:10.1126/science.163.3863.150. PMID 5762760.
  35. ^ Woese, C.; Kandler, O.; Wheelis, M. (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4576–9. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744.
  36. ^ Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D.; Kirk, Paul M.; Thuesen, Erik V. (2015). "A higher level classification of all living organisms". PLOS ONE. 10 (4): e0119248. Bibcode:2015PLoSO..1019248R. doi:10.1371/journal.pone.0119248. PMC 4418965. PMID 25923521.

External links

Aethes monera

Aethes monera is a species of moth of the family Tortricidae. It was described by Razowski in 1986. It is found in North America, where it has been recorded from Mexico (Durango), Alberta and Saskatchewan.

Arbejdernes Landsbank

Arbejdernes Landsbank (National Workers Bank) is a Danish bank founded in 1919 with approximately 250.000 customers and 1,075 employees. It is the 7th largest bank in Denmark. As of 2014 the bank has 70 branches in Denmark.

Bacterial taxonomy

Bacterial taxonomy is the taxonomy, i.e. the rank-based classification, of bacteria.

In the scientific classification established by Carl Linnaeus, each species has to be assigned to a genus (binary nomenclature), which in turn is a lower level of a hierarchy of ranks (family, suborder, order, subclass, class, division/phyla, kingdom and domain).

In the currently accepted classification of life, there are three domains (Eukaryotes, Bacteria and Archaea), which, in terms of taxonomy, despite following the same principles have several different conventions between them and between their subdivisions as are studied by different disciplines (botany, zoology, mycology and microbiology), for example in zoology there are type specimens, whereas in microbiology there are type strains.

Basher Dimalaang Manalao

Basher Dimalaang Manalao or known to be Mostaqbal, a Maranao people, Islamic preacher (Ulama or Aleem) and was elected vice-governor then succeeded by law the governor of Lanao del Sur in the Philippines following the death of former governor Mamintal Adiong Sr. in 2004. He took his Islamic degree (Arabic: كوليت) at King Saud University.He owns an organization Philippine Al-Mostaqbal Incorporation educating members about Islamic cultures, future, and science of Qur’an. Dominant members of his organization were women. The organization established a Facebook page named “Mostaqbal Online Channel” with having over 8.5k followers. He had little or no interest in politics.He established a public cemetery called “Maqbara” located at Barangay Guimba, Marawi City, Lanao del Sur in the Philippines during his term as governor of the province. Due to political dispute, he was suspended in 3 months by a petition of Monera Macabangon in 2006. He then returned to the office of governor by the decision of the court.

Bathybius haeckelii

Bathybius haeckelii was a substance that British biologist Thomas Henry Huxley discovered and initially believed to be a form of primordial matter, a source of all organic life. He later admitted his mistake when it proved to be just the product of an inorganic chemical process (precipitation).

In 1868 Huxley studied an old sample of mud from the Atlantic seafloor taken in 1857. When he first examined it, he had found only protozoan cells and placed the sample into a jar of alcohol to preserve it. Now he noticed that the sample contained an albuminous slime that appeared to be criss-crossed with veins.

Huxley thought he had discovered a new organic substance and named it Bathybius haeckelii, in honor of German biologist Ernst Haeckel. Haeckel had theorized about Urschleim ("primordial slime"), a protoplasm from which all life had originated. Huxley thought Bathybius could be that protoplasm, a missing link (in modern terms) between inorganic matter and organic life.

Huxley published a description of Bathybius and also wrote to Haeckel to tell him about it. Haeckel was impressed and flattered and procured a sample for himself. In the next edition of his textbook The History of Creation Haeckel suggested that the substance was constantly coming into being at the bottom of the sea, "monera" arising from nonliving matter due to "physicochemical causes." Huxley asserted in a speech given to the Royal Geographic Society in 1870 that Bathybius undoubtedly formed a continuous mat of living protoplasm that covered the whole ocean floor for thousands of square miles, probably a continuous sheet around the Earth.Sir Charles Wyville Thomson examined some samples in 1869 and regarded them as analogous to mycelium; "no trace of differentiation of organs", "an amorphous sheet of a protein compound, irritable to a low degree and capable of assimilating food... a diffused formless protoplasm."Other scientists were less enthusiastic. George Charles Wallich claimed that Bathybius was a product of chemical disintegration.

In 1872 the Challenger expedition began; it spent three years studying the oceans. The expedition also took soundings at 361 ocean stations. They did not find any sign of Bathybius, despite the claim that it was a nearly universal substance. In 1875 ship's chemist John Young Buchanan analyzed a substance that looked like Bathybius from an earlier collected sample. He noticed that it was a precipitate of calcium sulfate from the seawater that had reacted with the preservative liquid (alcohol), forming a gelatinous ooze which clung to particles as if ingesting them. Buchanan suspected that all the Bathybius samples had been prepared the same way and notified Sir Thomson, now the leader of the expedition. Thomson sent a polite letter to Huxley and told about the discovery.

Huxley realized that he had been too eager and made a mistake. He published part of the letter in Nature and recanted his previous views. Later, during the 1879 meeting of the British Association for the Advancement of Science, he stated that he was ultimately responsible for spreading the theory and convincing others.

Most biologists accepted this acknowledgement of error. Haeckel, however, did not want to abandon the idea of Bathybius because it was so close to proof of his own theories about Urschleim. He claimed without foundation that Bathybius "had been observed" in the Atlantic. Haeckel drew a series of pictures of the evolution of his Urschleim, supposedly based on observations. He continued to support this position until 1883.

Huxley's rival George Charles Wallich claimed that Huxley had committed deliberate fraud and also accused Haeckel of falsifying data. Other opponents of evolution, including George Campbell, 8th Duke of Argyll, tried to use the case as an argument against evolution. The entire affair was a blow to the evolutionary cause, who had posited it as their long-sought evolutionary origin of life from nonliving chemistry by natural processes, without the necessity of divine intervention. In retrospect, their error was in dismissing the necessary role of photosynthesis in supporting the entire food chain of life; and the corresponding requirement for sunlight, abundant at the surface, but absent on the ocean floor.

Branching order of bacterial phyla (Woese, 1987)

There are several models of the Branching order of bacterial phyla, one of these was proposed in 1987 paper by Carl Woese.The branching order proposed by Carl Woese was based on molecular phylogeny, which was considered revolutionary as all preceding models were based on discussions of morphology. (v. Monera). Several models have been proposed since and no consensus is reached at present as to the branching order of the major bacterial lineages.The gene used was the 16S ribosomal DNA.

Domain (biology)

In biological taxonomy, a domain ( or ) (Latin: regio), also superkingdom or empire, is the highest taxonomic rank of organisms in the three-domain system of taxonomy designed by Carl Woese et.al. in 1990.

According to this system, the tree of life consists of three domains: Archaea, Bacteria, and Eukarya. The first two are all prokaryotic microorganisms, or single-celled organisms whose cells have no nucleus. All life that has a nucleus and membrane-bound organelles, and multicellular organisms, is included in the Eukarya.

Euryarchaeota

Euryarchaeota (Greek for "broad old quality") is a phylum of archaea. It is one two phyla of archaea, the other being crenarchaeota. Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines, halobacteria, which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122º C. They are separated from the other archaeans based mainly on rRNA sequences and their unique DNA polymerase.

Gracilicutes

Gracilicutes (Latin: gracilis, slender, and cutis, skin, referring to the cell wall) is a controversial taxon in bacterial taxonomy.

Traditionally gram staining results were most commonly used as a classification tool, consequently until the advent of molecular phylogeny, the Kingdom Monera (as the domains Bacteria and Archaea were known then) was divided into four phyla,

Gracilicutes (gram-negative, it is split in many groups, but some authors still use it in a narrower sense)

Firmacutes [sic] (gram-positive, subsequently corrected to Firmicutes, today it includes the Mollicutes but excludes the Actinobacteria)

Mollicutes (gram variable, posteriorly renamed as Tenericutes, e.g. Mycoplasma)

Mendosicutes (uneven gram stain, "methanogenic bacteria" now known as methanogens and classed as Archaea)This classification system was abandoned in favour of the three-domain system based on molecular phylogeny started by C. Woese.This taxon was revived in 2006 by Cavalier-Smith as an infrakindgom containing the phyla Spirochaetae, Sphingobacteria (FCB), Planctobacteria (PVC), and Proteobacteria. It is a gram-negative clade that branched off from other bacteria just before the evolutionary loss of the outer membrane or capsule, and just after the evolution of flagella. This taxon is not generally accepted and the three-domain system is followed.An almost identical taxon called Hydrobacteria was defined in 2009 using bioinfomatic methods. It is in contrast to the other major group of eubacteria called Terrabacteria. The analysis also altered the internal phylogeny of this group, with PVC-FCB-Spirochaetae placed forming a clade next to Proteobacteria. What was PVC is described as polyphyletic.

Herbert Copeland

Herbert Faulkner Copeland (May 21, 1902 – October 15, 1968) was an American biologist who contributed to the theory of biological kingdoms. He is responsible for the fourth kingdom, Monera. In 1966, he included bacteria and one of the most primitive algae, called blue green algae, under this kingdom.

His father was Edwin Copeland who was also the founder of the College of Agriculture at the University of the Philippines Los Banos and a leading pteridologist.

Kingdom (biology)

In biology, kingdom (Latin: regnum, plural regna) is the second highest taxonomic rank, just below domain. Kingdoms are divided into smaller groups called phyla.

Traditionally, some textbooks from the United States used a system of six kingdoms (Animalia, Plantae, Fungi, Protista, Archaea/Archaebacteria, and Bacteria/Eubacteria) while textbooks in countries like Great Britain, India, Greece, Australia, Latin America and other countries used five kingdoms (Animalia, Plantae, Fungi, Protista and Monera).

Some recent classifications based on modern cladistics have explicitly abandoned the term "kingdom", noting that the traditional kingdoms are not monophyletic, i.e., do not consist of all the descendants of a common ancestor.

List of Ultraman Tiga characters

Ultraman Tiga (ウルトラマンティガ, Urutoraman Tiga) is a Japanese tokusatsu TV show and is the 11th show in the Ultra Series. Produced by Tsuburaya Productions, Ultraman Tiga was aired at 6:00pm and aired between September 7, 1996 to August 30, 1997. Following Tiga's conclusion, the series was succeeded by Ultraman Dyna (ウルトラマンダイナ, Urutoraman Daina) from 7 September 1997 until 30 August 1998.

List of towns and villages in Egypt

This is a list of towns and villages in Egypt. There are 4,496 village municipalities and 199 town municipalities.

Overseas country of France

Overseas country (French: Pays d'outre-mer) is the designation for the overseas collectivity of French Polynesia. French Polynesia was an overseas territory until the constitutional reform on 28 March 2003 created the overseas collectivities. Then, on 27 February 2004 a law was passed giving French Polynesia the particular designation of overseas country while recalling that it belongs to the category of overseas collectivities. However, the Constitutional Council of France ruled that this description was merely a designation and not a legal status, as that would have been unconstitutional.

The territory's new status meant a certain autonomy for French Polynesia in the Pacific region. This translated into the transfer of new areas of legal responsibility (civil law, commercial law, labour law) while protecting existing autonomy in the fields of health, development and

town planning and the environment. In addition, French Polynesia gained the power to oppose the application of laws voted by the French Parliament that do not respect these areas of responsibility. Furthermore, it established French Polynesian citizenship based on permanent residency - a requirement for the right to vote in regional elections. However, France maintains control over justice, security and public order, currency, defence, and foreign policy.

New Caledonia, which has the unique status of a sui generis collectivity, is also sometimes incorrectly referred to as an overseas country. The people of New Caledonia voted against becoming an overseas country and chose to remain part of France in the 2018 New Caledonian independence referendum, although the legislature may choose to hold another referendum in 2020 or 2022.

Photomorphogenesis

In developmental biology, photomorphogenesis is light-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from photosynthesis where light is used as a source of energy. Phytochromes, cryptochromes, and phototropins are photochromic sensory receptors that restrict the photomorphogenic effect of light to the UV-A, UV-B, blue, and red portions of the electromagnetic spectrum.The photomorphogenesis of plants is often studied by using tightly frequency-controlled light sources to grow the plants. There are at least three stages of plant development where photomorphogenesis occurs: seed germination, seedling development, and the switch from the vegetative to the flowering stage (photoperiodism).Most research on photomorphogenesis comes from plants, it occurs in several kingdoms: Fungi, Monera, Protista, and Plantae.

Robert Whittaker

Robert Harding Whittaker (December 27, 1920 – October 20, 1980) was a distinguished American plant ecologist, active in the 1950s to the 1970s. He was the first to propose the five kingdom taxonomic classification of the world's biota into the Animalia, Plantae, Fungi, Protista, and Monera in 1969. He also proposed the Whittaker Biome Classification, which categorized biome-types upon two abiotic factors : temperature and precipitation.

Whittaker was elected to the National Academy of Science in 1974, received the Ecological Society of America's Eminent Ecologist Award in 1981, and was otherwise widely recognized and honored. He collaborated with many other ecologists including George Woodwell (Dartmouth), W. A. Niering, F. H. Bormann (Yale) and G. E. Likens (Cornell), and was particularly active in cultivating international collaborations.

Schizophyte

Schizophyte was a botanical classification proposed by Ferdinand Cohn to describe the class of primitive "plants" that reproduce solely by fission. It has been considered synonymous with the Protophyta of Sachs and the Monera of Haeckel. In modern taxonomy, it is equivalent with the concept of prokaryotes, single-celled microorganisms with no nucleus or other membrane-bound organelles, now divided into the domains Bacteria and Archaea.

Taxonomy (biology)

In biology, taxonomy (from Ancient Greek τάξις (taxis), meaning 'arrangement', and -νομία (-nomia), meaning 'method') is the science of naming, defining (circumscribing) and classifying groups of biological organisms on the basis of shared characteristics. Organisms are grouped together into taxa (singular: taxon) and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a super-group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum (division is sometimes used in botany in place of phylum), class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the founder of the current system of taxonomy, as he developed a system known as Linnaean taxonomy for categorizing organisms and binomial nomenclature for naming organisms.

With the advent of such fields of study as phylogenetics, cladistics, and systematics, the Linnaean system has progressed to a system of modern biological classification based on the evolutionary relationships between organisms, both living and extinct.

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.