Molybdenum

Molybdenum is a chemical element with symbol Mo and atomic number 42. The name is from Neo-Latin molybdaenum, from Ancient Greek Μόλυβδος molybdos, meaning lead, since its ores were confused with lead ores.[7] Molybdenum minerals have been known throughout history, but the element was discovered (in the sense of differentiating it as a new entity from the mineral salts of other metals) in 1778 by Carl Wilhelm Scheele. The metal was first isolated in 1781 by Peter Jacob Hjelm.[8]

Molybdenum does not occur naturally as a free metal on Earth; it is found only in various oxidation states in minerals. The free element, a silvery metal with a gray cast, has the sixth-highest melting point of any element. It readily forms hard, stable carbides in alloys, and for this reason most of world production of the element (about 80%) is used in steel alloys, including high-strength alloys and superalloys.

Most molybdenum compounds have low solubility in water, but when molybdenum-bearing minerals contact oxygen and water, the resulting molybdate ion MoO2−
4
is quite soluble. Industrially, molybdenum compounds (about 14% of world production of the element) are used in high-pressure and high-temperature applications as pigments and catalysts.

Molybdenum-bearing enzymes are by far the most common bacterial catalysts for breaking the chemical bond in atmospheric molecular nitrogen in the process of biological nitrogen fixation. At least 50 molybdenum enzymes are now known in bacteria, plants, and animals, although only bacterial and cyanobacterial enzymes are involved in nitrogen fixation. These nitrogenases contain molybdenum in a form different from other molybdenum enzymes, which all contain fully oxidized molybdenum in a molybdenum cofactor. These various molybdenum cofactor enzymes are vital to the organisms, and molybdenum is an essential element for life in all higher eukaryote organisms, though not in all bacteria.

Molybdenum,  42Mo
Molybdenum crystaline fragment and 1cm3 cube
General properties
Pronunciation/məˈlɪbdənəm/ (mə-LIB-dən-əm)
Appearancegray metallic
Standard atomic weight (Ar, standard)95.95(1)[1]
Molybdenum in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Cr

Mo

W
niobiummolybdenumtechnetium
Atomic number (Z)42
Groupgroup 6
Periodperiod 5
Blockd-block
Element category  transition metal
Electron configuration[Kr] 4d5 5s1
Electrons per shell
2, 8, 18, 13, 1
Physical properties
Phase at STPsolid
Melting point2896 K ​(2623 °C, ​4753 °F)
Boiling point4912 K ​(4639 °C, ​8382 °F)
Density (near r.t.)10.28 g/cm3
when liquid (at m.p.)9.33 g/cm3
Heat of fusion37.48 kJ/mol
Heat of vaporization598 kJ/mol
Molar heat capacity24.06 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2742 2994 3312 3707 4212 4879
Atomic properties
Oxidation states−4, −2, −1, +1,[2] +2, +3, +4, +5, +6 (a strongly acidic oxide)
ElectronegativityPauling scale: 2.16
Ionization energies
  • 1st: 684.3 kJ/mol
  • 2nd: 1560 kJ/mol
  • 3rd: 2618 kJ/mol
Atomic radiusempirical: 139 pm
Covalent radius154±5 pm
Color lines in a spectral range
Spectral lines of molybdenum
Other properties
Crystal structurebody-centered cubic (bcc)
Body-centered cubic crystal structure for molybdenum
Speed of sound thin rod5400 m/s (at r.t.)
Thermal expansion4.8 µm/(m·K) (at 25 °C)
Thermal conductivity138 W/(m·K)
Thermal diffusivity54.3 mm2/s (at 300 K)[3]
Electrical resistivity53.4 nΩ·m (at 20 °C)
Magnetic orderingparamagnetic[4]
Magnetic susceptibility+89.0·10−6 cm3/mol (298 K)[5]
Young's modulus329 GPa
Shear modulus126 GPa
Bulk modulus230 GPa
Poisson ratio0.31
Mohs hardness5.5
Vickers hardness1400–2740 MPa
Brinell hardness1370–2500 MPa
CAS Number7439-98-7
History
DiscoveryCarl Wilhelm Scheele (1778)
First isolationPeter Jacob Hjelm (1781)
Main isotopes of molybdenum
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
92Mo 14.65% stable
93Mo syn 4×103 y ε 93Nb
94Mo 9.19% stable
95Mo 15.87% stable
96Mo 16.67% stable
97Mo 9.58% stable
98Mo 24.29% stable
99Mo syn 65.94 h β 99mTc
γ
100Mo 9.74% 7.8×1018 y ββ 100Ru

Characteristics

Physical properties

In its pure form, molybdenum is a silvery-grey metal with a Mohs hardness of 5.5, and a standard atomic weight of 95.95 g/mol.[9][10] It has a melting point of 2,623 °C (4,753 °F); of the naturally occurring elements, only tantalum, osmium, rhenium, tungsten, and carbon have higher melting points.[7] It has one of the lowest coefficients of thermal expansion among commercially used metals.[11] The tensile strength of molybdenum wires increases about 3 times, from about 10 to 30 GPa, when their diameter decreases from ~50–100 nm to 10 nm.[12]

Chemical properties

Molybdenum is a transition metal with an electronegativity of 2.16 on the Pauling scale. It does not visibly react with oxygen or water at room temperature. Weak oxidation of molybdenum starts at 300 °C (572 °F); bulk oxidation occurs at temperatures above 600 °C, resulting in molybdenum trioxide. Like many heavier transition metals, molybdenum shows little inclination to form a cation in aqueous solution, although the Mo3+ cation is known under carefully controlled conditions.[13]

Isotopes

There are 35 known isotopes of molybdenum, ranging in atomic mass from 83 to 117, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. Of these naturally occurring isotopes, only molybdenum-100 is unstable.[14]

Molybdenum-98 is the most abundant isotope, comprising 24.14% of all molybdenum. Molybdenum-100 has a half-life of about 1019 y and undergoes double beta decay into ruthenium-100. Molybdenum isotopes with mass numbers from 111 to 117 all have half-lives of approximately 150 ns.[14][15] All unstable isotopes of molybdenum decay into isotopes of niobium, technetium, and ruthenium.[15]

As also noted below, the most common isotopic molybdenum application involves molybdenum-99, which is a fission product. It is a parent radioisotope to the short-lived gamma-emitting daughter radioisotope technetium-99m, a nuclear isomer used in various imaging applications in medicine.[16] In 2008, the Delft University of Technology applied for a patent on the molybdenum-98-based production of molybdenum-99.[17]

Compounds

Molybdenum forms chemical compounds in oxidation states from -II to +VI. Higher oxidation states are more relevant to its terrestrial occurrence and its biological roles, mid-level oxidation states are often associated with metal clusters, and very low oxidation states are typically associated with organomolybdenum compounds. Mo and W chemistry shows strong similarities. The relative rarity of molybdenum(III), for example, contrasts with the pervasiveness of the chromium(III) compounds. The highest oxidation state is seen in molybdenum(VI) oxide (MoO3), whereas the normal sulfur compound is molybdenum disulfide MoS2.[18]

Oxidation
state
Example[19]
−2 Na
2
[Mo
2
(CO)
10
]
0 Mo(CO)
6
+1 Na[C
6
H
6
Mo]
+2 MoCl
2
+3 Na
3
[Mo(CN)]
6
+4 MoS
2
+5 MoCl
5
+6 MoF
6
Phosphotungstate-3D-polyhedra
Keggin structure of the phosphomolybdate anion (P[Mo12O40]3−), an example of a polyoxometalate

From the perspective of commerce, the most important compounds are molybdenum disulfide (MoS
2
) and molybdenum trioxide (MoO
3
). The black disulfide is the main mineral. It is roasted in air to give the trioxide:[18]

2 MoS
2
+ 7 O
2
→ 2 MoO
3
+ 4 SO
2

The trioxide, which is volatile at high temperatures, is the precursor to virtually all other Mo compounds as well as alloys. Molybdenum has several oxidation states, the most stable being +4 and +6 (bolded in the table at left).

Molybdenum(VI) oxide is soluble in strong alkaline water, forming molybdates (MoO42−). Molybdates are weaker oxidants than chromates. They tend to form structurally complex oxyanions by condensation at lower pH values, such as [Mo7O24]6− and [Mo8O26]4−. Polymolybdates can incorporate other ions, forming polyoxometalates.[20] The dark-blue phosphorus-containing heteropolymolybdate P[Mo12O40]3− is used for the spectroscopic detection of phosphorus.[21] The broad range of oxidation states of molybdenum is reflected in various molybdenum chlorides:[18]

  • Molybdenum(II) chloride MoCl2, which exists as the hexamer Mo6Cl12 and the related dianion [Mo6Cl14]2-.
  • Molybdenum(III) chloride MoCl3, a dark red solid, which converts to the anion trianionic complex [MoCl6]3-.
  • Molybdenum(IV) chloride MoCl4, a black solid, which adopts a polymeric structure.
  • Molybdenum(V) chloride MoCl5 dark green solid that adopts a dimeric structure.

Molybdenum(VI) chloride MoCl6 is not known, although the molybdenum hexafluoride is well characterized.

Like chromium and some other transition metals, molybdenum forms quadruple bonds, such as in Mo2(CH3COO)4 and [Mo2Cl8]4−, which also has a quadruple bond.[18][22]

The oxidation state 0 is possible with carbon monoxide as ligand, such as in molybdenum hexacarbonyl, Mo(CO)6.[18]

History

Molybdenite—the principal ore from which molybdenum is now extracted—was previously known as molybdena. Molybdena was confused with and often utilized as though it were graphite. Like graphite, molybdenite can be used to blacken a surface or as a solid lubricant.[23] Even when molybdena was distinguishable from graphite, it was still confused with the common lead ore PbS (now called galena); the name comes from Ancient Greek Μόλυβδος molybdos, meaning lead.[11] (The Greek word itself has been proposed as a loanword from Anatolian Luvian and Lydian languages).[24]

Although (reportedly) molybdenum was deliberately alloyed with steel in one 14th-century Japanese sword (mfd. ca. 1330), that art was never employed widely and was later lost.[25][26] In the West in 1754, Bengt Andersson Qvist examined a sample of molybdenite and determined that it did not contain lead and thus was not galena.[27]

By 1778 Swedish chemist Carl Wilhelm Scheele stated firmly that molybdena was (indeed) neither galena nor graphite.[28][29] Instead, Scheele correctly proposed that molybdena was an ore of a distinct new element, named molybdenum for the mineral in which it resided, and from which it might be isolated. Peter Jacob Hjelm successfully isolated molybdenum using carbon and linseed oil in 1781.[11][30]

For the next century, molybdenum had no industrial use. It was relatively scarce, the pure metal was difficult to extract, and the necessary techniques of metallurgy were immature.[31][32][33] Early molybdenum steel alloys showed great promise of increased hardness, but efforts to manufacture the alloys on a large scale were hampered with inconsistent results, a tendency toward brittleness, and recrystallization. In 1906, William D. Coolidge filed a patent for rendering molybdenum ductile, leading to applications as a heating element for high-temperature furnaces and as a support for tungsten-filament light bulbs; oxide formation and degradation require that molybdenum be physically sealed or held in an inert gas.[34] In 1913, Frank E. Elmore developed a froth flotation process to recover molybdenite from ores; flotation remains the primary isolation process.[35]

During World War I, demand for molybdenum spiked; it was used both in armor plating and as a substitute for tungsten in high speed steels. Some British tanks were protected by 75 mm (3 in) manganese steel plating, but this proved to be ineffective. The manganese steel plates were replaced with much lighter 25 mm (1.0 in) molybdenum steel plates allowing for higher speed, greater maneuverability, and better protection.[11] The Germans also used molybdenum-doped steel for heavy artillery, like in the super-heavy howitzer Big Bertha,[36] because traditional steel melts at the temperatures produced by the propellant of the one ton shell.[37] After the war, demand plummeted until metallurgical advances allowed extensive development of peacetime applications. In World War II, molybdenum again saw strategic importance as a substitute for tungsten in steel alloys.[38]

Occurrence and production

Molly Hill molybdenite
Molybdenite on quartz

Molybdenum is the 54th most abundant element in the Earth's crust and the 25th most abundant element in its oceans, with an average of 10 parts per billion; it is the 42nd most abundant element in the Universe.[11][39] The Russian Luna 24 mission discovered a molybdenum-bearing grain (1 × 0.6 µm) in a pyroxene fragment taken from Mare Crisium on the Moon.[40] The comparative rarity of molybdenum in the Earth's crust is offset by its concentration in a number of water-insoluble ores, often combined with sulfur in the same way as copper, with which it is often found. Though molybdenum is found in such minerals as wulfenite (PbMoO4) and powellite (CaMoO4), the main commercial source is molybdenite (MoS2). Molybdenum is mined as a principal ore and is also recovered as a byproduct of copper and tungsten mining.[7]

The world's production of molybdenum was 250,000 tonnes in 2011, the largest producers being China (94,000 t), the United States (64,000 t), Chile (38,000 t), Peru (18,000 t) and Mexico (12,000 t). The total reserves are estimated at 10 million tonnes, and are mostly concentrated in China (4.3 Mt), the US (2.7 Mt) and Chile (1.2 Mt). By continent, 93% of world molybdenum production is about evenly shared between North America, South America (mainly in Chile), and China. Europe and the rest of Asia (mostly Armenia, Russia, Iran and Mongolia) produce the remainder.[41]

Molybdenum world production
World production trend

In molybdenite processing, the ore is first roasted in air at a temperature of 700 °C (1,292 °F). The process gives gaseous sulfur dioxide and the molybdenum(VI) oxide:[18]

2 MoS2 + 7 O2 → 2 MoO3 + 4 SO2

The oxidized ore is then usually extracted with aqueous ammonia to give ammonium molybdate:

MoO3 + 2 NH3 + H2O → (NH4)2(MoO4)

Copper, an impurity in molybdenite, is less soluble in ammonia. To completely remove it from the solution, it is precipitated with hydrogen sulfide.[18] Ammonium molybdate converts to ammonium dimolybdate, which is isolated as a solid. Heating this solid gives molybdenum trioxide:[42]

(NH4)2Mo2O7 → 2 MoO3 + 2 NH3 + H2O

Crude trioxide can be further purified by sublimation at 1,100 °C (2,010 °F).

Metallic molybdenum is produced by reduction of the oxide with hydrogen:

MoO3 + 3 H2 → Mo + 3 H2O

The molybdenum for steel production is reduced by the aluminothermic reaction with addition of iron to produce ferromolybdenum. A common form of ferromolybdenum contains 60% molybdenum.[18][43]

Molybdenum had a value of approximately $30,000 per tonne as of August 2009. It maintained a price at or near $10,000 per tonne from 1997 through 2003, and reached a peak of $103,000 per tonne in June 2005.[44] In 2008, the London Metal Exchange announced that molybdenum would be traded as a commodity.[45]

History of molybdenum mining

Historically, the Knaben mine in southern Norway, opened in 1885, was the first dedicated molybdenum mine. It was closed in 1973 but was reopened in 2007.[46] and now produces 100,000 kilograms (98 long tons; 110 short tons) of molybdenum disulfide per year. Large mines in Colorado (such as the Henderson mine and the Climax mine)[47] and in British Columbia yield molybdenite as their primary product, while many porphyry copper deposits such as the Bingham Canyon Mine in Utah and the Chuquicamata mine in northern Chile produce molybdenum as a byproduct of copper mining.

Applications

Alloys

Plate of Molybdenum Copper
A plate of molybdenum copper alloy

About 86% of molybdenum produced is used in metallurgy, with the rest used in chemical applications. The estimated global use is structural steel 35%, stainless steel 25%, chemicals 14%, tool & high-speed steels 9%, cast iron 6%, molybdenum elemental metal 6%, and superalloys 5%.[48]

Molybdenum can withstand extreme temperatures without significantly expanding or softening, making it useful in environments of intense heat, including military armor, aircraft parts, electrical contacts, industrial motors, and filaments.[11][49]

Most high-strength steel alloys (for example, 41xx steels) contain 0.25% to 8% molybdenum.[7] Even in these small portions, more than 43,000 tonnes of molybdenum are used each year in stainless steels, tool steels, cast irons, and high-temperature superalloys.[39]

Molybdenum is also valued in steel alloys for its high corrosion resistance and weldability.[39][41] Molybdenum contributes corrosion resistance to type-300 stainless steels (specifically type-316) and especially so in the so-called superaustenitic stainless steels (such as alloy AL-6XN, 254SMO and 1925hMo). Molybdenum increases lattice strain, thus increasing the energy required to dissolve iron atoms from the surface. Molybdenum is also used to enhance the corrosion resistance of ferritic (for example grade 444) and martensitic (for example 1.4122 and 1.4418) stainless steels.

Because of its lower density and more stable price, molybdenum is sometimes used in place of tungsten.[39] An example is the 'M' series of high-speed steels such as M2, M4 and M42 as substitution for the 'T' steel series, which contain tungsten. Molybdenum can also be used as a flame-resistant coating for other metals. Although its melting point is 2,623 °C (4,753 °F), molybdenum rapidly oxidizes at temperatures above 760 °C (1,400 °F) making it better-suited for use in vacuum environments.[49]

TZM (Mo (~99%), Ti (~0.5%), Zr (~0.08%) and some C) is a corrosion-resisting molybdenum superalloy that resists molten fluoride salts at temperatures above 1,300 °C (2,370 °F). It has about twice the strength of pure Mo, and is more ductile and more weldable, yet in tests it resisted corrosion of a standard eutectic salt (FLiBe) and salt vapors used in molten salt reactors for 1100 hours with so little corrosion that it was difficult to measure.[50][51]

Other molybdenum-based alloys that do not contain iron have only limited applications. For example, because of its resistance to molten zinc, both pure molybdenum and molybdenum-tungsten alloys (70%/30%) are used for piping, stirrers and pump impellers that come into contact with molten zinc.[52]

Other applications as a pure element

  • Molybdenum powder is used as a fertilizer for some plants, such as cauliflower[39]
  • Elemental molybdenum is used in NO, NO2, NOx analyzers in power plants for pollution controls. At 350 °C (662 °F), the element acts as a catalyst for NO2/NOx to form NO molecules for detection by infrared light.[53]
  • Molybdenum anodes replace tungsten in certain low voltage X-ray sources for specialized uses such as mammography[54]
  • The radioactive isotope molybdenum-99 is used to generate technetium-99m, used for medical imaging[55] The isotope is handled and stored as the molybdate.[56]

Compounds (14% of global use)

  • Molybdenum disulfide (MoS2) is used as a solid lubricant and a high-pressure high-temperature (HPHT) anti-wear agent. It forms strong films on metallic surfaces and is a common additive to HPHT greases — in the event of a catastrophic grease failure, a thin layer of molybdenum prevents contact of the lubricated parts.[57] It also has semiconducting properties with distinct advantages over traditional silicon or graphene in electronics applications.[58] MoS2 is also used as a catalyst in hydrocracking of petroleum fractions containing nitrogen, sulfur and oxygen.[59]
  • Molybdenum disilicide (MoSi2) is an electrically conducting ceramic with primary use in heating elements operating at temperatures above 1500 °C in air.[60]
  • Molybdenum trioxide (MoO3) is used as an adhesive between enamels and metals.[28] Lead molybdate (wulfenite) co-precipitated with lead chromate and lead sulfate is a bright-orange pigment used with ceramics and plastics.[61]
  • The molybdenum-based mixed oxides are versatile catalysts in the chemical industry. Some examples are the catalysts for the selective oxidation of propylene to acrolein and acrylic acid, the ammoxidation of propylene to acrylonitrile.[62][63] Suitable catalysts and process for the direct selective oxidation of propane to acrylic acid are being researched.[64][65][66][67]
  • Ammonium heptamolybdate is used in biological staining.
  • Molybdenum coated soda lime glass is used in CIGS (copper indium gallium selenide) solar cells, called CIGS solar cells.
  • Phosphomolybdic acid is a stain used in thin-layer chromatography.

Biological role

Mo-containing enzymes

Molybdenum is an essential element in most organisms. In fact a scarcity of molybdenum in the Earth's early oceans may have strongly influenced evolution of eukaryotic life (which includes all plants and animals).[68]

At least 50 molybdenum-containing enzymes have been identified, mostly in bacteria.[69][70] those enzymes include aldehyde oxidase, sulfite oxidase and xanthine oxidase.[11] With one exception, Mo in proteins is bound by molybdopterin to give the molybdenum cofactor.[71]

In terms of function, molybdoenzymes catalyze the oxidation and sometimes reduction of certain small molecules in the process of regulating nitrogen, sulfur, and carbon.[72] In some animals, and in humans, the oxidation of xanthine to uric acid, a process of purine catabolism, is catalyzed by xanthine oxidase, a molybdenum-containing enzyme. The activity of xanthine oxidase is directly proportional to the amount of molybdenum in the body. However, an extremely high concentration of molybdenum reverses the trend and can act as an inhibitor in both purine catabolism and other processes. Molybdenum concentration also affects protein synthesis, metabolism, and growth.[73]

Mo is as a component in most nitrogenases. Among molybdoenzymes, nitrogenases are unique in lacking the molybdopterin.[74][75] Nitrogenases catalyze the production of ammonia from atmospheric nitrogen:

The biosynthesis of the FeMoco active site is highly complex.[76]

FeMoco cluster
Structure of the FeMoco active site of nitrogenase.
Molybdenum cofactor
The molybdenum cofactor (pictured) is composed of a molybdenum-free organic complex called molybdopterin, which has bound an oxidized molybdenum(VI) atom through adjacent sulfur (or occasionally selenium) atoms. Except for the ancient nitrogenases, all known Mo-using enzymes use this cofactor.

Molybdate is transported in the body as MoO42−.[73]

Human metabolism and deficiency

Molybdenum is an essential trace dietary element.[77] Four mammalian Mo-dependent enzymes are known, all of them harboring a pterin-based molybdenum cofactor (Moco) in their active site: sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and mitochondrial amidoxime reductase.[78] People severely deficient in molybdenum have poorly functioning sulfite oxidase and are prone to toxic reactions to sulfites in foods.[79][80] The human body contains about 0.07 mg of molybdenum per kilogram of body weight,[81] with higher concentrations in the liver and kidneys and lower in the vertebrae.[39] Molybdenum is also present within human tooth enamel and may help prevent its decay.[82]

Acute toxicity has not been seen in humans, and the toxicity depends strongly on the chemical state. Studies on rats show a median lethal dose (LD50) as low as 180 mg/kg for some Mo compounds.[83] Although human toxicity data is unavailable, animal studies have shown that chronic ingestion of more than 10 mg/day of molybdenum can cause diarrhea, growth retardation, infertility, low birth weight, and gout; it can also affect the lungs, kidneys, and liver.[84][85] Sodium tungstate is a competitive inhibitor of molybdenum. Dietary tungsten reduces the concentration of molybdenum in tissues.[39]

Low soil concentration of molybdenum in a geographical band from northern China to Iran results in a general dietary molybdenum deficiency, and is associated with increased rates of esophageal cancer.[86][87] Compared to the United States, which has a greater supply of molybdenum in the soil, people living in those areas have about 16 times greater risk for esophageal squamous cell carcinoma.[88]

Molybdenum deficiency has also been reported as a consequence of non-molybdenum supplemented total parenteral nutrition (complete intravenous feeding) for long periods of time. It results in high blood levels of sulfite and urate, in much the same way as molybdenum cofactor deficiency. However (presumably since pure molybdenum deficiency from this cause occurs primarily in adults), the neurological consequences are not as marked as in cases of congenital cofactor deficiency.[89]

Related diseases

A congenital molybdenum cofactor deficiency disease, seen in infants, is an inability to synthesize molybdenum cofactor, the heterocyclic molecule discussed above that binds molybdenum at the active site in all known human enzymes that use molybdenum. The resulting deficiency results in high levels of sulfite and urate, and neurological damage.[90][91]

Copper-molybdenum antagonism

High levels of molybdenum can interfere with the body's uptake of copper, producing copper deficiency. Molybdenum prevents plasma proteins from binding to copper, and it also increases the amount of copper that is excreted in urine. Ruminants that consume high levels of molybdenum suffer from diarrhea, stunted growth, anemia, and achromotrichia (loss of fur pigment). These symptoms can be alleviated by copper supplements, either dietary and injection.[92] The effective copper deficiency can be aggravated by excess sulfur.[39][93]

Copper reduction or deficiency can also be deliberately induced for therapeutic purposes by the compound ammonium tetrathiomolybdate, in which the bright red anion tetrathiomolybdate is the copper-chelating agent. Tetrathiomolybdate was first used therapeutically in the treatment of copper toxicosis in animals. It was then introduced as a treatment in Wilson's disease, a hereditary copper metabolism disorder in humans; it acts both by competing with copper absorption in the bowel and by increasing excretion. It has also been found to have an inhibitory effect on angiogenesis, potentially by inhibiting the membrane translocation process that is dependent on copper ions.[94] This is a promising avenue for investigation of treatments for cancer, age-related macular degeneration, and other diseases that involve a pathologic proliferation of blood vessels.[95][96]

Dietary recommendations

In 2000, the then U.S. Institute of Medicine (now the National Academy of Medicine, NAM) updated its Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for molybdenum. If there is not sufficient information to establish EARs and RDAs, an estimate designated Adequate Intake (AI) is used instead.

An AI of 2 micrograms (μg) of molybdenum per day was established for infants up to 6 months of age, and 3 μg/day from 7 to 12 months of age, both for males and females. For older children and adults, the following daily RDAs have been established for molybdenum: 17 μg from 1 to 3 years of age, 22 μg from 4 to 8 years, 34 μg from 9 to 13 years, 43 μg from 14 to 18 years, and 45 μg for persons 19 years old and older. All these RDAs are valid for both sexes. Pregnant or lactating females from 14 to 50 years of age have a higher daily RDA of 50 μg of molybdenum.

As for safety, the NAM sets tolerable upper intake levels (ULs) for vitamins and minerals when evidence is sufficient. In the case of molybdenum, the UL is 2000 μg/day. Collectively the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes (DRIs).[97]

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI and UL defined the same as in United States. For women and men ages 15 and older the AI is set at 65 μg/day. Pregnant and lactating women have the same AI. For children aged 1–14 years, the AIs increase with age from 15 to 45 μg/day. The adult AIs are higher than the U.S. RDAs,[98] but on the other hand, the European Food Safety Authority reviewed the same safety question and set its UL at 600 μg/day, which is much lower than the U.S. value.[99]

For U.S. food and dietary supplement labeling purposes, the amount in a serving is expressed as a percent of Daily Value (%DV). For molybdenum labeling purposes 100% of the Daily Value was 75 μg, but as of May 27, 2016 it was revised to 45 μg.[100] A table of the old and new adult Daily Values is provided at Reference Daily Intake. The original deadline to be in compliance was July 28, 2018, but on September 29, 2017 the Food and Drug Administration (FDA) released a proposed rule that extended the deadline to January 1, 2020 for large companies and January 1, 2021 for small companies.[101]

Food sources

Average daily intake varies between 120 and 240 μg/day, which is higher than dietary recommendations.[84] Pork, lamb, and beef liver each have approximately 1.5 parts per million of molybdenum. Other significant dietary sources include green beans, eggs, sunflower seeds, wheat flour, lentils, cucumbers, and cereal grain.[11]

Precautions

Molybdenum dusts and fumes, generated by mining or metalworking, can be toxic, especially if ingested (including dust trapped in the sinuses and later swallowed).[83] Low levels of prolonged exposure can cause irritation to the eyes and skin. Direct inhalation or ingestion of molybdenum and its oxides should be avoided.[102][103] OSHA regulations specify the maximum permissible molybdenum exposure in an 8-hour day as 5 mg/m3. Chronic exposure to 60 to 600 mg/m3 can cause symptoms including fatigue, headaches and joint pains.[104] At levels of 5000 mg/m3, molybdenum is immediately dangerous to life and health.[105]

See also

References

  1. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. ^ "Molybdenum: molybdenum(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  3. ^ Lindemann, A.; Blumm, J. (2009). Measurement of the Thermophysical Properties of Pure Molybdenum. 3. 17th Plansee Seminar.
  4. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  5. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  6. ^ "Molybdenum: molybdenum(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  7. ^ a b c d Lide, David R., ed. (1994). "Molybdenum". CRC Handbook of Chemistry and Physics. 4. Chemical Rubber Publishing Company. p. 18. ISBN 0-8493-0474-1.
  8. ^ "It's Elemental - The Element Molybdenum". education.jlab.org. Retrieved 2018-07-03.
  9. ^ Wieser, M. E.; Berglund, M. (2009). "Atomic weights of the elements 2007 (IUPAC Technical Report)" (PDF). Pure and Applied Chemistry. 81 (11): 2131–2156. doi:10.1351/PAC-REP-09-08-03.
  10. ^ Meija, J.; et al. (2013). "Current Table of Standard Atomic Weights in Alphabetical Order: Standard Atomic weights of the elements". Commission on Isotopic Abundances and Atomic Weights. Archived from the original on 2014-04-29.CS1 maint: BOT: original-url status unknown (link)
  11. ^ a b c d e f g h Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 262–266. ISBN 0-19-850341-5.
  12. ^ Shpak, Anatoly P.; Kotrechko, Sergiy O.; Mazilova, Tatjana I.; Mikhailovskij, Igor M. (2009). "Inherent tensile strength of molybdenum nanocrystals". Science and Technology of Advanced Materials. 10 (4): 045004. Bibcode:2009STAdM..10d5004S. doi:10.1088/1468-6996/10/4/045004. PMC 5090266. PMID 27877304.
  13. ^ Parish, R. V. (1977). The Metallic Elements. New York: Longman. pp. 112, 133. ISBN 978-0-582-44278-8.
  14. ^ a b Audi, Georges; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. Atomic Mass Data Center. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
  15. ^ a b Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics. 11. CRC. pp. 87–88. ISBN 0-8493-0487-3.
  16. ^ Armstrong, John T. (2003). "Technetium". Chemical & Engineering News. Retrieved 2009-07-07.
  17. ^ Wolterbeek, Hubert Theodoor; Bode, Peter "A process for the production of no-carrier added 99Mo". European Patent EP2301041 (A1) ― 2011-03-30. Retrieved on 2012-06-27.
  18. ^ a b c d e f g h Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 1096–1104. ISBN 3-11-007511-3.
  19. ^ Schmidt, Max (1968). "VI. Nebengruppe". Anorganische Chemie II (in German). Wissenschaftsverlag. pp. 119–127.
  20. ^ Pope, Michael T.; Müller, Achim (1997). "Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines". Angewandte Chemie International Edition. 30: 34–48. doi:10.1002/anie.199100341.
  21. ^ Nollet, Leo M. L., ed. (2000). Handbook of water analysis. New York, NY: Marcel Dekker. pp. 280–288. ISBN 978-0-8247-8433-1.
  22. ^ Walton, Richard A.; Fanwick, Phillip E.; Girolami, Gregory S.; Murillo, Carlos A.; Johnstone, Erik V. (2014). Girolami, Gregory S.; Sattelberger, Alfred P., eds. Inorganic Syntheses: Volume 36. John Wiley & Sons, Inc. pp. 78–81. doi:10.1002/9781118744994.ch16/summary. ISBN 9781118744994.
  23. ^ Lansdown, A. R. (1999). Molybdenum disulphide lubrication. Tribology and Interface Engineering. 35. Elsevier. ISBN 978-0-444-50032-8.
  24. ^ Melchert, Craig. "Greek mólybdos as a Loanword from Lydian" (PDF). University of North Carolina at Chapel Hill. Retrieved 2011-04-23.
  25. ^ International Molybdenum Association, "Molybdenum History"
  26. ^ Institute, American Iron and Steel (1948). Accidental use of molybdenum in old sword led to new alloy.
  27. ^ Van der Krogt, Peter (2006-01-10). "Molybdenum". Elementymology & Elements Multidict. Retrieved 2007-05-20.
  28. ^ a b Gagnon, Steve. "Molybdenum". Jefferson Science Associates, LLC. Retrieved 2007-05-06.
  29. ^ Scheele, C. W. K. (1779). "Versuche mit Wasserbley;Molybdaena". Svenska vetensk. Academ. Handlingar. 40: 238.
  30. ^ Hjelm, P. J. (1788). "Versuche mit Molybdäna, und Reduction der selben Erde". Svenska vetensk. Academ. Handlingar. 49: 268.
  31. ^ Hoyt, Samuel Leslie (1921). Metallography. 2. McGraw-Hill.
  32. ^ Krupp, Alfred; Wildberger, Andreas (1888). The metallic alloys: A practical guide for the manufacture of all kinds of alloys, amalgams, and solders, used by metal-workers ... with an appendix on the coloring of alloys. H.C. Baird & Co. p. 60.
  33. ^ Gupta, C. K. (1992). Extractive Metallurgy of Molybdenum. CRC Press. ISBN 978-0-8493-4758-0.
  34. ^ Reich, Leonard S. (2002-08-22). The Making of American Industrial Research: Science and Business at Ge and Bell, 1876–1926. p. 117. ISBN 9780521522373.
  35. ^ Vokes, Frank Marcus (1963). Molybdenum deposits of Canada. p. 3.
  36. ^ Chemical properties of molibdenum - Health effects of molybdenum - Environmental effects of molybdenum. lenntech.com
  37. ^ Sam Kean. The Disappearing Spoon. Page 88–89
  38. ^ Millholland, Ray (August 1941). "Battle of the Billions: American industry mobilizes machines, materials, and men for a job as big as digging 40 Panama Canals in one year". Popular Science: 61.
  39. ^ a b c d e f g h Considine, Glenn D., ed. (2005). "Molybdenum". Van Nostrand's Encyclopedia of Chemistry. New York: Wiley-Interscience. pp. 1038–1040. ISBN 978-0-471-61525-5.
  40. ^ Jambor, J.L.; et al. (2002). "New mineral names" (PDF). American Mineralogist. 87: 181.
  41. ^ a b "Molybdenum Statistics and Information". U.S. Geological Survey. 2007-05-10. Retrieved 2007-05-10.
  42. ^ Sebenik, Roger F. et al. (2005) "Molybdenum and Molybdenum Compounds" in Ullmann's Encyclopedia of Chemical Technology. Wiley-VCH, Weinheim. doi:10.1002/14356007.a16_655
  43. ^ Gupta, C. K. (1992). Extractive Metallurgy of Molybdenum. CRC Press. pp. 1–2. ISBN 978-0-8493-4758-0.
  44. ^ "Dynamic Prices and Charts for Molybdenum". InfoMine Inc. 2007. Retrieved 2007-05-07.
  45. ^ "LME to launch minor metals contracts in H2 2009". London Metal Exchange. 2008-09-04. Archived from the original on 2012-07-22. Retrieved 2009-07-28.CS1 maint: BOT: original-url status unknown (link)
  46. ^ Langedal, M. (1997). "Dispersion of tailings in the Knabena—Kvina drainage basin, Norway, 1: Evaluation of overbank sediments as sampling medium for regional geochemical mapping". Journal of Geochemical Exploration. 58 (2–3): 157–172. doi:10.1016/S0375-6742(96)00069-6.
  47. ^ Coffman, Paul B. (1937). "The Rise of a New Metal: The Growth and Success of the Climax Molybdenum Company". The Journal of Business of the University of Chicago. 10: 30. doi:10.1086/232443.
  48. ^ Pie chart of world Mo uses. London Metal Exchange.
  49. ^ a b "Molybdenum". AZoM.com Pty. Limited. 2007. Retrieved 2007-05-06.
  50. ^ Smallwood, Robert E. (1984). "TZM Moly Alloy". ASTM special technical publication 849: Refractory metals and their industrial applications: a symposium. ASTM International. p. 9. ISBN 9780803102033.
  51. ^ "Compatibility of Molybdenum-Base Alloy TZM, with LiF-BeF2-ThF4-UF4". Oak Ridge National Laboratory Report. December 1969. Retrieved 2010-09-02.
  52. ^ Cubberly, W. H.; Bakerjian, Ramon (1989). Tool and manufacturing engineers handbook. Society of Manufacturing Engineers. p. 421. ISBN 978-0-87263-351-3.
  53. ^ Lal, S.; Patil, R. S. (2001). "Monitoring of atmospheric behaviour of NOx from vehicular traffic". Environmental Monitoring and Assessment. 68 (1): 37–50. doi:10.1023/A:1010730821844. PMID 11336410.
  54. ^ Lancaster, Jack L. "Ch. 4: Physical determinants of contrast". Physics of Medical X-Ray Imaging (PDF). University of Texas Health Science Center. Archived from the original (PDF) on 2015-10-10.
  55. ^ Gray, Theodore (2009). The Elements. Black Dog & Leventhal. pp. 105–107. ISBN 1-57912-814-9.
  56. ^ Gottschalk, A. (1969). "Technetium-99m in clinical nuclear medicine". Annual Review of Medicine. 20 (1): 131–40. doi:10.1146/annurev.me.20.020169.001023. PMID 4894500.
  57. ^ Winer, W. (1967). "Molybdenum disulfide as a lubricant: A review of the fundamental knowledge". Wear. 10 (6): 422–452. doi:10.1016/0043-1648(67)90187-1.
  58. ^ "New transistors: An alternative to silicon and better than graphene". Physorg.com. January 30, 2011. Retrieved 2011-01-30.
  59. ^ Topsøe, H.; Clausen, B. S.; Massoth, F. E. (1996). Hydrotreating Catalysis, Science and Technology. Berlin: Springer-Verlag.
  60. ^ Moulson, A. J.; Herbert, J. M. (2003). Electroceramics: materials, properties, applications. John Wiley and Sons. p. 141. ISBN 0-471-49748-7.
  61. ^ International Molybdenum Association. imoa.info.
  62. ^ Fierro, J. G. L., ed. (2006). Metal Oxides, Chemistry and Applications. CRC Press. pp. 414–455.
  63. ^ Centi, G.; Cavani, F.; Trifiro, F. (2001). Selective Oxidation by Heterogeneous Catalysis. Kluwer Academic/Plenum Publishers. pp. 363–384.
  64. ^ Csepei, L.-I. (2011). "Kinetic studies of propane oxidation on Mo and V based mixed oxide catalysts" (PDF). PhD Thesis, Technische Universität Berlin.
  65. ^ Naumann d'Alnoncourt, Raoul; Csepei, Lénárd-István; Hävecker, Michael; Girgsdies, Frank; Schuster, Manfred E.; Schlögl, Robert; Trunschke, Annette (March 2014). "The reaction network in propane oxidation over phase-pure MoVTeNb M1 oxide catalysts" (PDF). Journal of Catalysis. 311: 369–385. doi:10.1016/j.jcat.2013.12.008.
  66. ^ Amakawa, Kazuhiko; Kolen'Ko, Yury V.; Villa, Alberto; Schuster, Manfred E/; Csepei, Lénárd-István; Weinberg, Gisela; Wrabetz, Sabine; Naumann d'Alnoncourt, Raoul; Girgsdies, Frank; Prati, Laura; Schlögl, Robert; Trunschke, Annette (7 June 2013). "Multifunctionality of Crystalline MoV(TeNb) M1 Oxide Catalysts in Selective Oxidation of Propane and Benzyl Alcohol". ACS Catalysis. 3 (6): 1103–1113. doi:10.1021/cs400010q.
  67. ^ Hävecker, Michael; Wrabetz, Sabine; Kröhnert, Jutta; Csepei, Lenard-Istvan; Naumann d'Alnoncourt, Raoul; Kolen'Ko, Yury V.; Girgsdies, Frank; Schlögl, Robert; Trunschke, Annette (January 2012). "Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid" (PDF). Journal of Catalysis. 285 (1): 48–60. doi:10.1016/j.jcat.2011.09.012.
  68. ^ Scott, C.; Lyons, T. W.; Bekker, A.; Shen, Y.; Poulton, S. W.; Chu, X.; Anbar, A. D. (2008). "Tracing the stepwise oxygenation of the Proterozoic ocean". Nature. 452 (7186): 456–460. Bibcode:2008Natur.452..456S. doi:10.1038/nature06811. PMID 18368114.
  69. ^ Enemark, John H.; Cooney, J. Jon A.; Wang, Jun-Jieh; Holm, R. H. (2004). "Synthetic Analogues and Reaction Systems Relevant to the Molybdenum and Tungsten Oxotransferases". Chem. Rev. 104 (2): 1175–1200. doi:10.1021/cr020609d. PMID 14871153.
  70. ^ Mendel, Ralf R.; Bittner, Florian (2006). "Cell biology of molybdenum". Biochimica et Biophysica Acta. 1763 (7): 621–635. doi:10.1016/j.bbamcr.2006.03.013. PMID 16784786.
  71. ^ Russ Hille, James Hall, Partha Basu (2014). "The Mononuclear Molybdenum Enzymes". Chem. Rev. 114: 3963–4038. doi:10.1021/cr400443z.CS1 maint: Uses authors parameter (link)
  72. ^ Kisker, C.; Schindelin, H.; Baas, D.; Rétey, J.; Meckenstock, R. U.; Kroneck, P. M. H. (1999). "A structural comparison of molybdenum cofactor-containing enzymes" (PDF). FEMS Microbiol. Rev. 22 (5): 503–521. doi:10.1111/j.1574-6976.1998.tb00384.x. PMID 9990727.
  73. ^ a b Mitchell, Phillip C. H. (2003). "Overview of Environment Database". International Molybdenum Association. Archived from the original on 2007-10-18. Retrieved 2007-05-05.
  74. ^ Mendel, Ralf R. (2013). "Chapter 15 Metabolism of Molybdenum". In Banci, Lucia. Metallomics and the Cell. Metal Ions in Life Sciences. 12. Springer. doi:10.1007/978-94-007-5561-10_15. ISBN 978-94-007-5560-4. electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  75. ^ Chi Chung, Lee; Markus W., Ribbe; Yilin, Hu (2014). "Chapter 7. Cleaving the N,N Triple Bond: The Transformation of Dinitrogen to Ammonia by Nitrogenases". In Peter M.H. Kroneck; Martha E. Sosa Torres. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences. 14. Springer. pp. 147–174. doi:10.1007/978-94-017-9269-1_6.
  76. ^ Dos Santos, Patricia C.; Dean, Dennis R. (2008). "A newly discovered role for iron-sulfur clusters". PNAS. 105 (33): 11589–11590. Bibcode:2008PNAS..10511589D. doi:10.1073/pnas.0805713105. PMC 2575256. PMID 18697949.
  77. ^ Schwarz, Guenter; Belaidi, Abdel A. (2013). "Chapter 13. Molybdenum in Human Health and Disease". In Astrid Sigel; Helmut Sigel; Roland K. O. Sigel. Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences. 13. Springer. pp. 415–450. doi:10.1007/978-94-007-7500-8_13.
  78. ^ Mendel, Ralf R. (2009). "Cell biology of molybdenum". BioFactors. 35 (5): 429–34. doi:10.1002/biof.55. PMID 19623604.
  79. ^ Blaylock Wellness Report, February 2010, page 3.
  80. ^ Cohen, H. J.; Drew, R. T.; Johnson, J. L.; Rajagopalan, K. V. (1973). "Molecular Basis of the Biological Function of Molybdenum. The Relationship between Sulfite Oxidase and the Acute Toxicity of Bisulfite and SO2". Proceedings of the National Academy of Sciences of the United States of America. 70 (12 Pt 1–2): 3655–3659. Bibcode:1973PNAS...70.3655C. doi:10.1073/pnas.70.12.3655. PMC 427300. PMID 4519654.
  81. ^ Holleman, Arnold F.; Wiberg, Egon (2001). Inorganic chemistry. Academic Press. p. 1384. ISBN 0-12-352651-5.
  82. ^ Curzon, M. E. J.; Kubota, J.; Bibby, B. G. (1971). "Environmental Effects of Molybdenum on Caries". Journal of Dental Research. 50 (1): 74–77. doi:10.1177/00220345710500013401.
  83. ^ a b "Risk Assessment Information System: Toxicity Summary for Molybdenum". Oak Ridge National Laboratory. Archived from the original on September 19, 2007. Retrieved 2008-04-23.
  84. ^ a b Coughlan, M. P. (1983). "The role of molybdenum in human biology". Journal of Inherited Metabolic Disease. 6 (S1): 70–77. doi:10.1007/BF01811327. PMID 6312191.
  85. ^ Barceloux‌, Donald G.; Barceloux, Donald (1999). "Molybdenum". Clinical Toxicology. 37 (2): 231–237. doi:10.1081/CLT-100102422. PMID 10382558.
  86. ^ Yang, Chung S. (1980). "Research on Esophageal Cancer in China: a Review" (PDF). Cancer Research. 40 (8 Pt 1): 2633–44. PMID 6992989.
  87. ^ Nouri, Mohsen; Chalian, Hamid; Bahman, Atiyeh; Mollahajian, Hamid; et al. (2008). "Nail Molybdenum and Zinc Contents in Populations with Low and Moderate Incidence of Esophageal Cancer" (PDF). Archives of Iranian Medicine. 11: 392.
  88. ^ Taylor, Philip R.; Li, Bing; Dawsey, Sanford M.; Li, Jun-Yao; Yang, Chung S.; Guo, Wande; Blot, William J. (1994). "Prevention of Esophageal Cancer: The Nutrition Intervention Trials in Linxian, China" (PDF). Cancer Research. 54 (7 Suppl): 2029s–2031s. PMID 8137333.
  89. ^ Abumrad, N. N. (1984). "Molybdenum—is it an essential trace metal?". Bulletin of the New York Academy of Medicine. 60 (2): 163–71. PMC 1911702. PMID 6426561.
  90. ^ Smolinsky, B; Eichler, S. A.; Buchmeier, S.; Meier, J. C.; Schwarz, G. (2008). "Splice-specific Functions of Gephyrin in Molybdenum Cofactor Biosynthesis". Journal of Biological Chemistry. 283 (25): 17370–9. doi:10.1074/jbc.M800985200. PMID 18411266.
  91. ^ Reiss, J. (2000). "Genetics of molybdenum cofactor deficiency". Human Genetics. 106 (2): 157–63. doi:10.1007/s004390051023. PMID 10746556.
  92. ^ Suttle, N. F. (1974). "Recent studies of the copper-molybdenum antagonism". Proceedings of the Nutrition Society. CABI Publishing. 33 (3): 299–305. doi:10.1079/PNS19740053. PMID 4617883.
  93. ^ Hauer, Gerald Copper deficiency in cattle. Bison Producers of Alberta. Accessed Dec. 16, 2010.
  94. ^ Nickel, W (2003). "The Mystery of nonclassical protein secretion, a current view on cargo proteins and potential export routes". Eur. J. Biochem. 270 (10): 2109–2119. doi:10.1046/j.1432-1033.2003.03577.x. PMID 12752430.
  95. ^ Brewer GJ; Hedera, P.; Kluin, K. J.; Carlson, M.; Askari, F.; Dick, R. B.; Sitterly, J.; Fink, J. K. (2003). "Treatment of Wilson disease with ammonium tetrathiomolybdate: III. Initial therapy in a total of 55 neurologically affected patients and follow-up with zinc therapy". Arch Neurol. 60 (3): 379–85. doi:10.1001/archneur.60.3.379. PMID 12633149.
  96. ^ Brewer, G. J.; Dick, R. D.; Grover, D. K.; Leclaire, V.; Tseng, M.; Wicha, M.; Pienta, K.; Redman, B. G.; Jahan, T.; Sondak, V. K.; Strawderman, M.; LeCarpentier, G.; Merajver, S. D. (2000). "Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study". Clinical Cancer Research. 6 (1): 1–10. PMID 10656425.
  97. ^ Institute of Medicine (2000). "Molybdenum". Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: The National Academies Press. pp. 420–441.
  98. ^ "Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies" (PDF). 2017.
  99. ^ Tolerable Upper Intake Levels For Vitamins And Minerals (PDF), European Food Safety Authority, 2006
  100. ^ "Federal Register May 27, 2016 Food Labeling: Revision of the Nutrition and Supplement Facts Labels. FR page 33982" (PDF).
  101. ^ "Changes to the Nutrition Facts Panel - Compliance Date"
  102. ^ "Material Safety Data Sheet – Molybdenum". The REMBAR Company, Inc. 2000-09-19. Archived from the original on March 23, 2007. Retrieved 2007-05-13.
  103. ^ "Material Safety Data Sheet – Molybdenum Powder". CERAC, Inc. 1994-02-23. Archived from the original on 2011-07-08. Retrieved 2007-10-19.
  104. ^ "NIOSH Documentation for ILDHs Molybdenum". National Institute for Occupational Safety and Health. 1996-08-16. Retrieved 2007-05-31.
  105. ^ "CDC – NIOSH Pocket Guide to Chemical Hazards – Molybdenum". www.cdc.gov. Retrieved 2015-11-20.

External links

41xx steel

41xx steel is a family of SAE steel grades, as specified by the Society of Automotive Engineers (SAE). Alloying elements include chromium and molybdenum, and as a result these materials are often informally referred to as chromoly steel (common variant stylings include chrome-moly, cro-moly, CrMo, CRMO, CR-MOLY, and similar). They have an excellent strength to weight ratio and are considerably stronger and harder than standard 1020 steel, but are not easily welded (requiring thermal treatment both before and after welding to avoid cold cracking).While these grades of steel do contain chromium, it is not in great enough quantities to provide the corrosion resistance found in stainless steel.

Examples of applications for 4130, 4140 and 4145 include structural tubing, bicycle frames, tubes for transportation of pressurized gases, firearm parts, clutch and flywheel components, and roll cages. 4150 stands out as being one of the steels accepted for use in M16 rifle and M4 carbine barrels by the United States military. These steels are also used in aircraft parts and therefore 41xx grade structural tubing is sometimes referred to as "aircraft tubing".

Group 6 element

Group 6, numbered by IUPAC style, is a group of elements in the periodic table. Its members are chromium (Cr), molybdenum (Mo), tungsten (W), and seaborgium (Sg). These are all transition metals and chromium, molybdenum and tungsten are refractory metals. The period 8 elements of group 6 are likely to be either unpenthexium (Uph) or unpentoctium (Upo). This may not be possible; drip instability may imply that the periodic table ends around unbihexium. Neither unpenthexium nor unpentoctium have been synthesized, and it is unlikely that this will happen in the near future.

Like other groups, the members of this family show patterns in its electron configuration, especially the outermost shells resulting in trends in chemical behavior:

"Group 6" is the new IUPAC name for this group; the old style name was "group VIB" in the old US system (CAS) or "group VIA" in the European system (old IUPAC). Group 6 must not be confused with the group with the old-style group crossed names of either VIA (US system, CAS) or VIB (European system, old IUPAC). That group is now called group 16.

Isotopes of molybdenum

Molybdenum (42Mo) has 33 known isotopes, ranging in atomic mass from 83 to 115, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium.Molybdenum-100 is the only naturally occurring isotope that is not stable. Molybdenum-100 has a half-life of approximately 1×1019 y and undergoes double beta decay into ruthenium-100. Molybdenum-98 is the most common isotope, comprising 24.14% of all molybdenum on Earth. Molybdenum isotopes with mass numbers 111 and up all have half-lives of approximately .15 s.

Kajaran

For the village just south of Kajaran, also called Kajaran, see Kajaran (village).Kajaran (Armenian: Քաջարան [kʰɑdʒɑˈɾɑn]), is a town and the centre of the urban community of Kajaran, in Syunik Province at the south of Armenia. It is located 356 km south of the capital Yerevan, 25 km west of the provincial centre Kapan, and 50 km north of the Armenia-Iran border.

As of the 2011 census, the population of the town was 7,163. As per the 2016 official estimate, Kajaran has a population of 7,100.

Molybdenite

Molybdenite is a mineral of molybdenum disulfide, MoS2. Similar in appearance and feel to graphite, molybdenite has a lubricating effect that is a consequence of its layered structure. The atomic structure consists of a sheet of molybdenum atoms sandwiched between sheets of sulfur atoms. The Mo-S bonds are strong, but the interaction between the sulfur atoms at the top and bottom of separate sandwich-like tri-layers is weak, resulting in easy slippage as well as cleavage planes.

Molybdenite crystallizes in the hexagonal crystal system as the common polytype 2H and also in the trigonal system as the 3R polytype.

Molybdenum(IV) fluoride

Molybdenum(IV) fluoride is a binary compound of molybdenum and fluorine with the chemical formula MoF4.

Molybdenum(V) chloride

Molybdenum(V) chloride is the inorganic compound with the formula [MoCl5]2. This dark volatile solid is used in research to prepare other molybdenum compounds. it is moisture-sensitive and soluble in chlorinated solvents. Usually called molybdenum pentachloride, it is in fact a dimer with the formula Mo2Cl10.

Molybdenum(V) fluoride

Molybdenum(V) fluoride is an inorganic compound with the formula MoF5

Molybdenum cofactor

Molybdenum cofactor has two meanings, which are sometimes used interchangeably:

Molybdopterin, the organophosphate-dithiolate ligand that binds Mo and W in most molybdenum-containing and tungsten-containing proteins. It contains no molybdenum.

FeMoco, the metal cluster in nitrogenases that contains Fe, Mo, and S.

Molybdenum deficiency

Molybdenum deficiency refers to the clinical consequences of inadequate supplies of molybdenum in the diet.

The amount of molybdenum required is relatively small, and molybdenum deficiency usually does not occur in natural settings. However, it can occur in individuals receiving parenteral nutrition.

Molybdenum dioxide

Molybdenum dioxide is the chemical compound with the formula MoO2. It is a violet-colored solid and is a metallic conductor. It crystallizes in a monoclinic cell, and has a distorted rutile, (TiO2) crystal structure. In TiO2 the oxide anions are close packed and titanium atoms occupy half of the octahedral interstices (holes). In MoO2 the octahedra are distorted, the Mo atoms are off-centre, leading to alternating short and long Mo – Mo distances and Mo-Mo bonding. The short Mo – Mo distance is 251 pm which is less than the Mo – Mo distance in the metal, 272.5 pm. The bond length is shorter than would be expected for a single bond. The bonding is complex and involves a delocalisation of some of the Mo electrons in a conductance band accounting for the metallic conductivity.

MoO2 can be prepared :

by reduction of MoO3 with Mo over the course of 70 hours at 800 °C. The tungsten analogue, WO2, is prepared similarly.2 MoO3 + Mo → 3 MoO2by reducing MoO3 with H2 or NH3 below 470 °C Single crystals are obtained by chemical transport using iodine. Iodine reversibly converts MoO2 into the volatile species MoO2I2.Molybdenum oxide is a constituent of "technical molybdenum oxide" produced during the industrial processing of MoS2:

2 MoS2 + 7O2 → 2MoO3 + 4SO2

MoS2 + 6MoO3 → 7MoO2 + 2SO2

2 MoO2 + O2 → 2MoO3MoO2 has been reported as catalysing the dehydrogenation of alcohols, the reformation of hydrocarbons and biodiesel. Molybdenum nano-wires have been produced by reducing MoO2 deposited on graphite. Molybdenum oxide has also been suggested as possible anode material for Li-ion batteries.The mineralogical form of this compound is called tugarinovite, and is only very rarely found.

Molybdenum disulfide

Molybdenum disulfide is an inorganic compound composed of molybdenum and sulfur. Its chemical formula is MoS2.

The compound is classified as a transition metal dichalcogenide. It is a silvery black solid that occurs as the mineral molybdenite, the principal ore for molybdenum. MoS2 is relatively unreactive. It is unaffected by dilute acids and oxygen. In appearance and feel, molybdenum disulfide is similar to graphite. It is widely used as a dry lubricant because of its low friction and robustness. Bulk MoS2 is a diamagnetic, indirect bandgap semiconductor similar to silicon, with a bandgap of 1.23 eV.

Molybdenum hexafluoride

Molybdenum hexafluoride, also molybdenum(VI) fluoride is the inorganic compound with the formula MoF6. It is the highest fluoride of molybdenum. A colourless solid, it melts just below room temperature. It is one of the seventeen known binary hexafluorides.

Molybdenum trioxide

Molybdenum trioxide is chemical compound with the formula MoO3. This compound is produced on the largest scale of any molybdenum compound. It occurs as the rare mineral molybdite. Its chief application is as an oxidation catalyst and as a raw material for the production of molybdenum metal.

Nitrogen fixation

Nitrogen fixation is a process by which nitrogen in the Earth's atmosphere is converted into ammonia (NH3) or related nitrogenous compounds. Atmospheric nitrogen, which is molecular dinitrogen (N2), is relatively nonreactive and is metabolically useless to all but a few microorganisms. The fixation process converts N2 into ammonia, which is metabolized by most organisms.

Nitrogen fixation is essential to life because fixed inorganic nitrogen compounds are required for the biosynthesis of all nitrogen-containing compounds. Therefore, as part of the nitrogen cycle, it is essential for agriculture and the manufacture of fertilizer. It is also, indirectly, relevant to the manufacture of all chemical compounds that contain nitrogen, which includes explosives, most pharmaceuticals, and dyes. Nitrogen fixation is carried out naturally in the soil by a wide range of nitrogen fixing Bacteria and Archaea, including Azotobacter. Some nitrogen-fixing bacteria have symbiotic relationships with some plant groups, especially legumes. Looser relationships between nitrogen-fixing bacteria and plants are often referred to as associative or non-symbiotic, as seen in nitrogen fixation occurring on rice roots. It also occurs naturally in the air by means of NOx production by lightning.All biological nitrogen fixation is effected by enzymes called nitrogenases. These enzymes contain iron, often with a second metal, usually molybdenum but sometimes vanadium. Microorganisms that can fix nitrogen are prokaryotes (both bacteria and archaea, distributed throughout their respective domains) called diazotrophs. Some higher plants, and some animals (termites), have formed associations (symbiosis) with diazotrophs.

Refractory metals

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period (niobium and molybdenum) and three of the sixth period (tantalum, tungsten, and rhenium). They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.

Technetium

Technetium is a chemical element with symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive; none are stable, excluding the fully ionized state of 97Tc. Nearly all technetium is produced synthetically, and only about 18,000 tons can be found at any given time in the Earth's crust. Naturally occurring technetium is a spontaneous fission product in uranium ore and thorium ore, the most common source, or the product of neutron capture in molybdenum ores. This silvery gray, crystalline transition metal lies between rhenium and manganese in group 7 of the periodic table, and its chemical properties are intermediate between those of these two adjacent elements. The most common naturally occurring isotope is 99Tc.

Many of technetium's properties were predicted by Dmitri Mendeleev before the element was discovered. Mendeleev noted a gap in his periodic table and gave the undiscovered element the provisional name ekamanganese (Em). In 1937, technetium (specifically the technetium-97 isotope) became the first predominantly artificial element to be produced, hence its name (from the Greek τεχνητός, meaning "synthetic or artificial", + -ium).

One short-lived gamma ray-emitting nuclear isomer of technetium—technetium-99m—is used in nuclear medicine for a wide variety of diagnostic tests, such as bone cancer diagnoses. The ground state of this nuclide, technetium-99, is used as a gamma-ray-free source of beta particles. Long-lived technetium isotopes produced commercially are by-products of the fission of uranium-235 in nuclear reactors and are extracted from nuclear fuel rods. Because no isotope of technetium has a half-life longer than 4.2 million years (technetium-98), the 1952 detection of technetium in red giants helped to prove that stars can produce heavier elements.

Tungsten

Tungsten, or wolfram, is a chemical element with symbol W and atomic number 74. The name tungsten comes from the former Swedish name for the tungstate mineral scheelite, tung sten or "heavy stone". Tungsten is a rare metal found naturally on Earth almost exclusively combined with other elements in chemical compounds rather than alone. It was identified as a new element in 1781 and first isolated as a metal in 1783. Its important ores include wolframite and scheelite.

The free element is remarkable for its robustness, especially the fact that it has the highest melting point of all the elements discovered, melting at 3422 °C (6192 °F, 3695 K). It also has the highest boiling point, at 5930 °C (10706 °F, 6203 K). Its density is 19.3 times that of water, comparable to that of uranium and gold, and much higher (about 1.7 times) than that of lead. Polycrystalline tungsten is an intrinsically brittle and hard material (under standard conditions, when uncombined), making it difficult to work. However, pure single-crystalline tungsten is more ductile and can be cut with a hard-steel hacksaw.Tungsten's many alloys have numerous applications, including incandescent light bulb filaments, X-ray tubes (as both the filament and target), electrodes in gas tungsten arc welding, superalloys, and radiation shielding. Tungsten's hardness and high density give it military applications in penetrating projectiles. Tungsten compounds are also often used as industrial catalysts.

Tungsten is the only metal from the third transition series that is known to occur in biomolecules that are found in a few species of bacteria and archaea. It is the heaviest element known to be essential to any living organism. Tungsten interferes with molybdenum and copper metabolism and is somewhat toxic to animal life.

Xanthine oxidase

Xanthine oxidase (XO, sometimes 'XAO') is a form of xanthine oxidoreductase, a type of enzyme that generates reactive oxygen species. These enzymes catalyze the oxidation of hypoxanthine to xanthine and can further catalyze the oxidation of xanthine to uric acid. These enzymes play an important role in the catabolism of purines in some species, including humans.Xanthine oxidase is defined as an enzyme activity (EC 1.17.3.2). The same protein, which in humans has the HGNC approved gene symbol XDH, can also have xanthine dehydrogenase activity (EC 1.17.1.4). Most of the protein in the liver exists in a form with xanthine dehydrogenase activity, but it can be converted to xanthine oxidase by reversible sulfhydryl oxidation or by irreversible proteolytic modification.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.