Meteorology is a branch of the atmospheric sciences which includes atmospheric chemistry and atmospheric physics, with a major focus on weather forecasting. The study of meteorology dates back millennia, though significant progress in meteorology did not occur until the 18th century. The 19th century saw modest progress in the field after weather observation networks were formed across broad regions. Prior attempts at prediction of weather depended on historical data. It was not until after the elucidation of the laws of physics and more particularly, the development of the computer, allowing for the automated solution of a great many equations that model the weather, in the latter half of the 20th century that significant breakthroughs in weather forecasting were achieved.

Meteorological phenomena are observable weather events that are explained by the science of meteorology. Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of those variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels.

Meteorology, climatology, atmospheric physics, and atmospheric chemistry are sub-disciplines of the atmospheric sciences. Meteorology and hydrology compose the interdisciplinary field of hydrometeorology. The interactions between Earth's atmosphere and its oceans are part of a coupled ocean-atmosphere system. Meteorology has application in many diverse fields such as the military, energy production, transport, agriculture, and construction.

The word meteorology is from the Ancient Greek μετέωρος metéōros (meteor) and -λογία -logia (-(o)logy), meaning "the study of things high in the air".


The ability to predict rains and floods based on annual cycles was evidently used by humans at least from the time of agricultural settlement if not earlier. Early approaches to predicting weather were based on astrology and were practiced by priests. Cuneiform inscriptions on Babylonian tablets included associations between thunder and rain. The Chaldeans differentiated the 22° and 46° halos.[1]

Ancient Indian Upanishads contain mentions of clouds and seasons.[2] The Samaveda mentions sacrifices to be performed when certain phenomena were noticed.[1] Varāhamihira's classical work Brihatsamhita, written about 500 AD,[2] provides evidence of weather observation.

In 350 BC, Aristotle wrote Meteorology.[3] Aristotle is considered the founder of meteorology.[4] One of the most impressive achievements described in the Meteorology is the description of what is now known as the hydrologic cycle.[5]

The book De Mundo (composed before 250 BC or between 350 and 200 BC) noted[6]

If the flashing body is set on fire and rushes violently to the Earth it is called a thunderbolt; if it is only half of fire, but violent also and massive, it is called a meteor; if it is entirely free from fire, it is called a smoking bolt. They are all called 'swooping bolts' because they swoop down upon the Earth. Lightning is sometimes smoky, and is then called 'smoldering lightning"; sometimes it darts quickly along, and is then said to be vivid. At other times, it travels in crooked lines, and is called forked lightning. When it swoops down upon some object it is called 'swooping lightning'.

The Greek scientist Theophrastus compiled a book on weather forecasting, called the Book of Signs. The work of Theophrastus remained a dominant influence in the study of weather and in weather forecasting for nearly 2,000 years.[7] In 25 AD, Pomponius Mela, a geographer for the Roman Empire, formalized the climatic zone system.[8] According to Toufic Fahd, around the 9th century, Al-Dinawari wrote the Kitab al-Nabat (Book of Plants), in which he deals with the application of meteorology to agriculture during the Muslim Agricultural Revolution. He describes the meteorological character of the sky, the planets and constellations, the sun and moon, the lunar phases indicating seasons and rain, the anwa (heavenly bodies of rain), and atmospheric phenomena such as winds, thunder, lightning, snow, floods, valleys, rivers, lakes.[9][10]

Early attempts at predicting weather were often related to prophesy and divining and sometimes based on astrological ideas. Admiral FitzRoy tried to separate scientific approaches from prophetic ones.[11]

Research of visual atmospheric phenomena

Baker beach at twilight 41
Twilight at Baker Beach

Ptolemy wrote on the atmospheric refraction of light in the context of astronomical observations.[12] In 1021, Alhazen showed that atmospheric refraction is also responsible for twilight; he estimated that twilight begins when the sun is 19 degrees below the horizon, and also used a geometric determination based on this to estimate the maximum possible height of the Earth's atmosphere as 52,000 passim (about 49 miles, or 79 km).[13]

St. Albert the Great was the first to propose that each drop of falling rain had the form of a small sphere, and that this form meant that the rainbow was produced by light interacting with each raindrop.[14] Roger Bacon was the first to calculate the angular size of the rainbow. He stated that a rainbow summit can not appear higher than 42 degrees above the horizon.[15] In the late 13th century and early 14th century, Kamāl al-Dīn al-Fārisī and Theodoric of Freiberg were the first to give the correct explanations for the primary rainbow phenomenon. Theoderic went further and also explained the secondary rainbow.[16] In 1716, Edmund Halley suggested that aurorae are caused by "magnetic effluvia" moving along the Earth's magnetic field lines.

Instruments and classification scales

A hemispherical cup anemometer

In 1441, King Sejong's son, Prince Munjong of Korea, invented the first standardized rain gauge.[17] These were sent throughout the Joseon Dynasty of Korea as an official tool to assess land taxes based upon a farmer's potential harvest. In 1450, Leone Battista Alberti developed a swinging-plate anemometer, and was known as the first anemometer.[18] In 1607, Galileo Galilei constructed a thermoscope. In 1611, Johannes Kepler wrote the first scientific treatise on snow crystals: "Strena Seu de Nive Sexangula (A New Year's Gift of Hexagonal Snow)".[19] In 1643, Evangelista Torricelli invented the mercury barometer.[18] In 1662, Sir Christopher Wren invented the mechanical, self-emptying, tipping bucket rain gauge. In 1714, Gabriel Fahrenheit created a reliable scale for measuring temperature with a mercury-type thermometer.[20] In 1742, Anders Celsius, a Swedish astronomer, proposed the "centigrade" temperature scale, the predecessor of the current Celsius scale.[21] In 1783, the first hair hygrometer was demonstrated by Horace-Bénédict de Saussure. In 1802–1803, Luke Howard wrote On the Modification of Clouds, in which he assigns cloud types Latin names.[22] In 1806, Francis Beaufort introduced his system for classifying wind speeds.[23] Near the end of the 19th century the first cloud atlases were published, including the International Cloud Atlas, which has remained in print ever since. The April 1960 launch of the first successful weather satellite, TIROS-1, marked the beginning of the age where weather information became available globally.

Atmospheric composition research

In 1648, Blaise Pascal rediscovered that atmospheric pressure decreases with height, and deduced that there is a vacuum above the atmosphere.[24] In 1738, Daniel Bernoulli published Hydrodynamics, initiating the Kinetic theory of gases and established the basic laws for the theory of gases.[25] In 1761, Joseph Black discovered that ice absorbs heat without changing its temperature when melting. In 1772, Black's student Daniel Rutherford discovered nitrogen, which he called phlogisticated air, and together they developed the phlogiston theory.[26] In 1777, Antoine Lavoisier discovered oxygen and developed an explanation for combustion.[27] In 1783, in Lavoisier's essay "Reflexions sur le phlogistique",[28] he deprecates the phlogiston theory and proposes a caloric theory.[29][30] In 1804, Sir John Leslie observed that a matte black surface radiates heat more effectively than a polished surface, suggesting the importance of black body radiation. In 1808, John Dalton defended caloric theory in A New System of Chemistry and described how it combines with matter, especially gases; he proposed that the heat capacity of gases varies inversely with atomic weight. In 1824, Sadi Carnot analyzed the efficiency of steam engines using caloric theory; he developed the notion of a reversible process and, in postulating that no such thing exists in nature, laid the foundation for the second law of thermodynamics.

Research into cyclones and air flow

Earth Global Circulation - en
General circulation of the Earth's atmosphere: The westerlies and trade winds are part of the Earth's atmospheric circulation.

In 1494, Christopher Columbus experienced a tropical cyclone, which led to the first written European account of a hurricane.[31] In 1686, Edmund Halley presented a systematic study of the trade winds and monsoons and identified solar heating as the cause of atmospheric motions.[32] In 1735, an ideal explanation of global circulation through study of the trade winds was written by George Hadley.[33] In 1743, when Benjamin Franklin was prevented from seeing a lunar eclipse by a hurricane, he decided that cyclones move in a contrary manner to the winds at their periphery.[34] Understanding the kinematics of how exactly the rotation of the Earth affects airflow was partial at first. Gaspard-Gustave Coriolis published a paper in 1835 on the energy yield of machines with rotating parts, such as waterwheels.[35] In 1856, William Ferrel proposed the existence of a circulation cell in the mid-latitudes, and the air within deflected by the Coriolis force resulting in the prevailing westerly winds.[36] Late in the 19th century, the motion of air masses along isobars was understood to be the result of the large-scale interaction of the pressure gradient force and the deflecting force. By 1912, this deflecting force was named the Coriolis effect.[37] Just after World War I, a group of meteorologists in Norway led by Vilhelm Bjerknes developed the Norwegian cyclone model that explains the generation, intensification and ultimate decay (the life cycle) of mid-latitude cyclones, and introduced the idea of fronts, that is, sharply defined boundaries between air masses.[38] The group included Carl-Gustaf Rossby (who was the first to explain the large scale atmospheric flow in terms of fluid dynamics), Tor Bergeron (who first determined how rain forms) and Jacob Bjerknes.

Observation networks and weather forecasting

Cloud classification by altitude of occurrence
Hyetographic or Rain Map of the World 1848 Alexander Keith Johnston
This "Hyetographic or Rain Map of the World " was first published 1848 by Alexander Keith Johnston.
Hyetographic or Rain Map of Europe 1848 Alexander Keith Johnston
This "Hyetographic or Rain Map of Europe" was also published in 1848 as part of "The Physical Atlas".

In the late 16th century and first half of the 17th century a range of meteorological instruments was invented – the thermometer, barometer, hydrometer, as well as wind and rain gauges. In the 1650s natural philosophers started using these instruments to systematically record weather observations. Scientific academies established weather diaries and organised observational networks.[39] In 1654, Ferdinando II de Medici established the first weather observing network, that consisted of meteorological stations in Florence, Cutigliano, Vallombrosa, Bologna, Parma, Milan, Innsbruck, Osnabrück, Paris and Warsaw. The collected data were sent to Florence at regular time intervals.[40] In the 1660s Robert Hooke of the Royal Society of London sponsored networks of weather observers. Hippocrates' treatise Airs, Waters, and Places had linked weather to disease. Thus early meteorologists attempted to correlate weather patterns with epidemic outbreaks, and the climate with public health.[39]

During the Age of Enlightenment meteorology tried to rationalise traditional weather lore, including astrological meteorology. But there were also attempts to establish a theoretical understanding of weather phenomena. Edmond Halley and George Hadley tried to explain trade winds. They reasoned that the rising mass of heated equator air is replaced by an inflow of cooler air from high latitudes. A flow of warm air at high altitude from equator to poles in turn established an early picture of circulation. Frustration with the lack of discipline among weather observers, and the poor quality of the instruments, led the early modern nation states to organise large observation networks. Thus by the end of the 18th century meteorologists had access to large quantities of reliable weather date.[39] In 1832, an electromagnetic telegraph was created by Baron Schilling.[41] The arrival of the electrical telegraph in 1837 afforded, for the first time, a practical method for quickly gathering surface weather observations from a wide area.[42]

This data could be used to produce maps of the state of the atmosphere for a region near the Earth's surface and to study how these states evolved through time. To make frequent weather forecasts based on these data required a reliable network of observations, but it was not until 1849 that the Smithsonian Institution began to establish an observation network across the United States under the leadership of Joseph Henry.[43] Similar observation networks were established in Europe at this time. The Reverend William Clement Ley was key in understanding of cirrus clouds and early understandings of Jet Streams.[44] Charles Kenneth Mackinnon Douglas, known as 'CKM' Douglas read Ley's papers after his death and carried on the early study of weather systems.[45] Nineteenth century researchers in meteorology were drawn from military or medical backgrounds, rather than trained as dedicated scientists.[46] In 1854, the United Kingdom government appointed Robert FitzRoy to the new office of Meteorological Statist to the Board of Trade with the task of gathering weather observations at sea. FitzRoy's office became the United Kingdom Meteorological Office in 1854, the second oldest national meteorological service in the world (the Central Institution for Meteorology and Geodynamics (ZAMG) in Austria was founded in 1851 and is the oldest weather service in the world). The first daily weather forecasts made by FitzRoy's Office were published in The Times newspaper in 1860. The following year a system was introduced of hoisting storm warning cones at principal ports when a gale was expected.

Over the next 50 years many countries established national meteorological services. The India Meteorological Department (1875) was established to follow tropical cyclone and monsoon.[47] The Finnish Meteorological Central Office (1881) was formed from part of Magnetic Observatory of Helsinki University.[48] Japan's Tokyo Meteorological Observatory, the forerunner of the Japan Meteorological Agency, began constructing surface weather maps in 1883.[49] The United States Weather Bureau (1890) was established under the United States Department of Agriculture. The Australian Bureau of Meteorology (1906) was established by a Meteorology Act to unify existing state meteorological services.[50][51]

Numerical weather prediction

IBM 7090 console used by a meteorologist, 1965
A meteorologist at the console of the IBM 7090 in the Joint Numerical Weather Prediction Unit. c. 1965

In 1904, Norwegian scientist Vilhelm Bjerknes first argued in his paper Weather Forecasting as a Problem in Mechanics and Physics that it should be possible to forecast weather from calculations based upon natural laws.[52][53]

It was not until later in the 20th century that advances in the understanding of atmospheric physics led to the foundation of modern numerical weather prediction. In 1922, Lewis Fry Richardson published "Weather Prediction By Numerical Process",[54] after finding notes and derivations he worked on as an ambulance driver in World War I. He described how small terms in the prognostic fluid dynamics equations that govern atmospheric flow could be neglected, and a numerical calculation scheme that could be devised to allow predictions. Richardson envisioned a large auditorium of thousands of people performing the calculations. However, the sheer number of calculations required was too large to complete without electronic computers, and the size of the grid and time steps used in the calculations led to unrealistic results. Though numerical analysis later found that this was due to numerical instability.

Starting in the 1950s, numerical forecasts with computers became feasible.[55] The first weather forecasts derived this way used barotropic (single-vertical-level) models, and could successfully predict the large-scale movement of midlatitude Rossby waves, that is, the pattern of atmospheric lows and highs.[56] In 1959, the UK Meteorological Office received its first computer, a Ferranti Mercury.[57]

In the 1960s, the chaotic nature of the atmosphere was first observed and mathematically described by Edward Lorenz, founding the field of chaos theory.[58] These advances have led to the current use of ensemble forecasting in most major forecasting centers, to take into account uncertainty arising from the chaotic nature of the atmosphere.[59] Mathematical models used to predict the long term weather of the Earth (climate models), have been developed that have a resolution today that are as coarse as the older weather prediction models. These climate models are used to investigate long-term climate shifts, such as what effects might be caused by human emission of greenhouse gases.


Meteorologists are scientists who study meteorology.[60] The American Meteorological Society published and continually updates an authoritative electronic Meteorology Glossary.[61] Meteorologists work in government agencies, private consulting and research services, industrial enterprises, utilities, radio and television stations, and in education. In the United States, meteorologists held about 9,400 jobs in 2009.[62]

Meteorologists are best known by the public for weather forecasting. Some radio and television weather forecasters are professional meteorologists, while others are reporters (weather specialist, weatherman, etc.) with no formal meteorological training. The American Meteorological Society and National Weather Association issue "Seals of Approval" to weather broadcasters who meet certain requirements.


Huracán Hugo
Satellite image of Hurricane Hugo with a polar low visible at the top of the image

Each science has its own unique sets of laboratory equipment. In the atmosphere, there are many things or qualities of the atmosphere that can be measured. Rain, which can be observed, or seen anywhere and anytime was one of the first atmospheric qualities measured historically. Also, two other accurately measured qualities are wind and humidity. Neither of these can be seen but can be felt. The devices to measure these three sprang up in the mid-15th century and were respectively the rain gauge, the anemometer, and the hygrometer. Many attempts had been made prior to the 15th century to construct adequate equipment to measure the many atmospheric variables. Many were faulty in some way or were simply not reliable. Even Aristotle noted this in some of his work as the difficulty to measure the air.

Sets of surface measurements are important data to meteorologists. They give a snapshot of a variety of weather conditions at one single location and are usually at a weather station, a ship or a weather buoy. The measurements taken at a weather station can include any number of atmospheric observables. Usually, temperature, pressure, wind measurements, and humidity are the variables that are measured by a thermometer, barometer, anemometer, and hygrometer, respectively.[63] Professional stations may also include air quality sensors (carbon monoxide, carbon dioxide, methane, ozone, dust, and smoke), ceilometer (cloud ceiling), falling precipitation sensor, flood sensor, lightning sensor, microphone (explosions, sonic booms, thunder), pyranometer/pyrheliometer/spectroradiometer (IR/Vis/UV photodiodes), rain gauge/snow gauge, scintillation counter (background radiation, fallout, radon), seismometer (earthquakes and tremors), transmissometer (visibility), and a GPS clock for data logging. Upper air data are of crucial importance for weather forecasting. The most widely used technique is launches of radiosondes. Supplementing the radiosondes a network of aircraft collection is organized by the World Meteorological Organization.

Remote sensing, as used in meteorology, is the concept of collecting data from remote weather events and subsequently producing weather information. The common types of remote sensing are Radar, Lidar, and satellites (or photogrammetry). Each collects data about the atmosphere from a remote location and, usually, stores the data where the instrument is located. Radar and Lidar are not passive because both use EM radiation to illuminate a specific portion of the atmosphere.[64] Weather satellites along with more general-purpose Earth-observing satellites circling the earth at various altitudes have become an indispensable tool for studying a wide range of phenomena from forest fires to El Niño.

Spatial scales

The study of the atmosphere can be divided into distinct areas that depend on both time and spatial scales. At one extreme of this scale is climatology. In the timescales of hours to days, meteorology separates into micro-, meso-, and synoptic scale meteorology. Respectively, the geospatial size of each of these three scales relates directly with the appropriate timescale.

Other subclassifications are used to describe the unique, local, or broad effects within those subclasses.

Typical Scales of Atmospheric Motion Systems[65]
Type of motion Horizontal scale (meter)
Molecular mean free path 10−3
Minute turbulent eddies 10−2 – 10−1
Small eddies 10−1 – 1
Dust devils 1–10
Gusts 10 – 102
Tornadoes 102
Thunderclouds 103
Fronts, squall lines 104 – 105
Hurricanes 105
Synoptic Cyclones 106
Planetary waves 107
Atmospheric tides 107
Mean zonal wind 107


Microscale meteorology is the study of atmospheric phenomena on a scale of about 1 kilometre (0.62 mi) or less. Individual thunderstorms, clouds, and local turbulence caused by buildings and other obstacles (such as individual hills) are modeled on this scale.[66]


Mesoscale meteorology is the study of atmospheric phenomena that has horizontal scales ranging from 1 km to 1000 km and a vertical scale that starts at the Earth's surface and includes the atmospheric boundary layer, troposphere, tropopause, and the lower section of the stratosphere. Mesoscale timescales last from less than a day to weeks. The events typically of interest are thunderstorms, squall lines, fronts, precipitation bands in tropical and extratropical cyclones, and topographically generated weather systems such as mountain waves and sea and land breezes.[67]

Synoptic scale

Surface analysis
NOAA: Synoptic scale weather analysis.

Synoptic scale meteorology predicts atmospheric changes at scales up to 1000 km and 105 sec (28 days), in time and space. At the synoptic scale, the Coriolis acceleration acting on moving air masses (outside of the tropics) plays a dominant role in predictions. The phenomena typically described by synoptic meteorology include events such as extratropical cyclones, baroclinic troughs and ridges, frontal zones, and to some extent jet streams. All of these are typically given on weather maps for a specific time. The minimum horizontal scale of synoptic phenomena is limited to the spacing between surface observation stations.[68]

Global scale

WOA09 sea-surf TMP AYool
Annual mean sea surface temperatures.

Global scale meteorology is the study of weather patterns related to the transport of heat from the tropics to the poles. Very large scale oscillations are of importance at this scale. These oscillations have time periods typically on the order of months, such as the Madden–Julian oscillation, or years, such as the El Niño–Southern Oscillation and the Pacific decadal oscillation. Global scale meteorology pushes into the range of climatology. The traditional definition of climate is pushed into larger timescales and with the understanding of the longer time scale global oscillations, their effect on climate and weather disturbances can be included in the synoptic and mesoscale timescales predictions.

Numerical Weather Prediction is a main focus in understanding air–sea interaction, tropical meteorology, atmospheric predictability, and tropospheric/stratospheric processes.[69] The Naval Research Laboratory in Monterey, California, developed a global atmospheric model called Navy Operational Global Atmospheric Prediction System (NOGAPS). NOGAPS is run operationally at Fleet Numerical Meteorology and Oceanography Center for the United States Military. Many other global atmospheric models are run by national meteorological agencies.

Some meteorological principles

Boundary layer meteorology

Boundary layer meteorology is the study of processes in the air layer directly above Earth's surface, known as the atmospheric boundary layer (ABL). The effects of the surface – heating, cooling, and friction – cause turbulent mixing within the air layer. Significant movement of heat, matter, or momentum on time scales of less than a day are caused by turbulent motions.[70] Boundary layer meteorology includes the study of all types of surface–atmosphere boundary, including ocean, lake, urban land and non-urban land for the study of meteorology.

Dynamic meteorology

Dynamic meteorology generally focuses on the fluid dynamics of the atmosphere. The idea of air parcel is used to define the smallest element of the atmosphere, while ignoring the discrete molecular and chemical nature of the atmosphere. An air parcel is defined as a point in the fluid continuum of the atmosphere. The fundamental laws of fluid dynamics, thermodynamics, and motion are used to study the atmosphere. The physical quantities that characterize the state of the atmosphere are temperature, density, pressure, etc. These variables have unique values in the continuum.[71]


Weather forecasting

Forecast of surface pressures five days into the future for the north Pacific, North America, and north Atlantic Ocean

Weather forecasting is the application of science and technology to predict the state of the atmosphere at a future time and given location. Humans have attempted to predict the weather informally for millennia and formally since at least the 19th century.[72][73] Weather forecasts are made by collecting quantitative data about the current state of the atmosphere and using scientific understanding of atmospheric processes to project how the atmosphere will evolve.[74]

Once an all-human endeavor based mainly upon changes in barometric pressure, current weather conditions, and sky condition,[75][76] forecast models are now used to determine future conditions. Human input is still required to pick the best possible forecast model to base the forecast upon, which involves pattern recognition skills, teleconnections, knowledge of model performance, and knowledge of model biases. The chaotic nature of the atmosphere, the massive computational power required to solve the equations that describe the atmosphere, error involved in measuring the initial conditions, and an incomplete understanding of atmospheric processes mean that forecasts become less accurate as the difference in current time and the time for which the forecast is being made (the range of the forecast) increases. The use of ensembles and model consensus help narrow the error and pick the most likely outcome.[77][78][79]

There are a variety of end uses to weather forecasts. Weather warnings are important forecasts because they are used to protect life and property.[80] Forecasts based on temperature and precipitation are important to agriculture,[81][82][83][84] and therefore to commodity traders within stock markets. Temperature forecasts are used by utility companies to estimate demand over coming days.[85][86][87] On an everyday basis, people use weather forecasts to determine what to wear. Since outdoor activities are severely curtailed by heavy rain, snow, and wind chill, forecasts can be used to plan activities around these events, and to plan ahead and survive them.

Aviation meteorology

Aviation meteorology deals with the impact of weather on air traffic management. It is important for air crews to understand the implications of weather on their flight plan as well as their aircraft, as noted by the Aeronautical Information Manual:[88]

The effects of ice on aircraft are cumulative—thrust is reduced, drag increases, lift lessens, and weight increases. The results are an increase in stall speed and a deterioration of aircraft performance. In extreme cases, 2 to 3 inches of ice can form on the leading edge of the airfoil in less than 5 minutes. It takes but 1/2 inch of ice to reduce the lifting power of some aircraft by 50 percent and increases the frictional drag by an equal percentage.[89]

Agricultural meteorology

Meteorologists, soil scientists, agricultural hydrologists, and agronomists are people concerned with studying the effects of weather and climate on plant distribution, crop yield, water-use efficiency, phenology of plant and animal development, and the energy balance of managed and natural ecosystems. Conversely, they are interested in the role of vegetation on climate and weather.[90]


Hydrometeorology is the branch of meteorology that deals with the hydrologic cycle, the water budget, and the rainfall statistics of storms.[91] A hydrometeorologist prepares and issues forecasts of accumulating (quantitative) precipitation, heavy rain, heavy snow, and highlights areas with the potential for flash flooding. Typically the range of knowledge that is required overlaps with climatology, mesoscale and synoptic meteorology, and other geosciences.[92]

The multidisciplinary nature of the branch can result in technical challenges, since tools and solutions from each of the individual disciplines involved may behave slightly differently, be optimized for different hard- and software platforms and use different data formats. There are some initiatives – such as the DRIHM project[93] – that are trying to address this issue.[94]

Nuclear meteorology

Nuclear meteorology investigates the distribution of radioactive aerosols and gases in the atmosphere.[95]

Maritime meteorology

Maritime meteorology deals with air and wave forecasts for ships operating at sea. Organizations such as the Ocean Prediction Center, Honolulu National Weather Service forecast office, United Kingdom Met Office, and JMA prepare high seas forecasts for the world's oceans.

Military meteorology

Military meteorology is the research and application of meteorology for military purposes. In the United States, the United States Navy's Commander, Naval Meteorology and Oceanography Command oversees meteorological efforts for the Navy and Marine Corps while the United States Air Force's Air Force Weather Agency is responsible for the Air Force and Army.

Environmental meteorology

Environmental meteorology mainly analyzes industrial pollution dispersion physically and chemically based on meteorological parameters such as temperature, humidity, wind, and various weather conditions.

Renewable energy

Meteorology applications in renewable energy includes basic research, "exploration", and potential mapping of wind power and solar radiation for wind and solar energy.

See also


  1. ^ a b Hellmann, G. (1908-10-01). "The dawn of meteorology". Quarterly Journal of the Royal Meteorological Society. 34 (148): 221–232. Bibcode:1908QJRMS..34..221H. doi:10.1002/qj.49703414802. ISSN 1477-870X.
  2. ^ a b NS, "History of Meteorology in India". Archived from the original on 2012-03-30. Retrieved 2012-03-25.
  3. ^ "meteorology: Introduction". Retrieved 16 June 2015.
  4. ^ "94.05.01: Meteorology". Retrieved 16 June 2015.
  5. ^ Aristotle (2004) [350 BCE]. Meteorology. The University of Adelaide Library, University of Adelaide, South Australia 5005: eBooks@Adelaide. Archived from the original on 2007-02-17. Translated by E.W. Webster
  6. ^ Aristotle; Forster, E. S. (Edward Seymour), 1879–1950; Dobson, J. F. (John Frederic), 1875–1947 (1914). De Mundo. Oxford : The Clarendon Press. p. Chapter 4.CS1 maint: Multiple names: authors list (link)
  7. ^ "Weather". Retrieved 16 June 2015.
  8. ^ "Timeline of geography, paleontology". Following the path of Discovery
  9. ^ Fahd, Toufic. "Botany and agriculture": 815.
  10. ^ Morelon, Régis; Rashed, Roshdi (1996). Encyclopedia of the History of Arabic Science. 3. Routledge. ISBN 978-0-415-12410-2.
  11. ^ Anderson, Katharine (1999). "The weather prophets: science and reputation in Victorian meteorology". History of Science. 37: 179–215. Bibcode:1999HisSc..37..179A.
  12. ^ Smith AM, 1996. "Ptolemy's Theory of Visual Perception: An English Translation of the Optics," pp. 46. Transactions of the American Philosophical Society vol. 86, part 2.
  13. ^ Frisinger H (1973), "Aristotle's Legacy in Meteorology." Bulletin of the American Meteorological Society volume 3 issue 3, pp. 198–204. Link.
  14. ^ "Ancient and pre-Renaissance Contributors to Meteorology". Retrieved 16 June 2015.
  15. ^ Raymond L. Lee; Alistair B. Fraser (2001). The Rainbow Bridge: Rainbows in Art, Myth, and Science. Penn State Press. p. 155. ISBN 978-0-271-01977-2.
  16. ^ Topdemir, Hüseyin Gazi (2007), Kamal Al-din Al-Farisi's explanation of the rainbow
  17. ^ Earth Science' 2005 Ed. Rex Bookstore, Inc. p. 151. ISBN 978-971-23-3938-7.
  18. ^ a b Jacobson, Mark Z. (June 2005). Fundamentals of Atmospheric Modeling (paperback) (2nd ed.). New York: Cambridge University Press. p. 828. ISBN 978-0-521-54865-6.
  19. ^ "Early Snow Crystal Observations". Retrieved 16 June 2015.
  20. ^ Grigull, U., Fahrenheit, a Pioneer of Exact Thermometry. Heat Transfer, 1966, The Proceedings of the 8th International Heat Transfer Conference, San Francisco, 1966, Vol. 1.
  21. ^ Beckman, Olof,History of the Celsius temperature scale., translated, Anders Celsius (Elementa,84:4,2001); English
  22. ^ Thornes, John. E. (1999). John Constable's Skies. The University of Birmingham Press, pp. 189. ISBN 1-902459-02-4.
  23. ^ Bill Giles O.B.E. (2009). Beaufort Scale. BBC. Retrieved on 2009-05-12.
  24. ^ Florin to Pascal, September 1647, Œuves completes de Pascal, 2:682.
  25. ^ O'Connor, John J.; Robertson, Edmund F., "Meteorology", MacTutor History of Mathematics archive, University of St Andrews.
  26. ^ Biographical note at "Lectures and Papers of Professor Daniel Rutherford (1749–1819), and Diary of Mrs Harriet Rutherford".
  27. ^ "Sur la combustion en général" ("On Combustion in general," 1777) and "Considérations Générales sur la Nature des Acides" ("General Considerations on the Nature of Acids," 1778).
  28. ^ Nicholas W. Best, "Lavoisier's 'Reflections on Phlogiston' I: Against Phlogiston Theory", Foundations of Chemistry, 2015, 17, 137–151.
  29. ^ Nicholas W. Best, Lavoisier's 'Reflections on Phlogiston' II: On the Nature of Heat, Foundations of Chemistry, 2015, 17. In this early work, Lavoisier calls it “igneous fluid”.
  30. ^ The 1880 edition of A Guide to the Scientific Knowledge of Things Familiar, a 19th-century educational science book, explained heat transfer in terms of the flow of caloric.
  31. ^ Morison, Samuel Eliot, Admiral of the Ocean Sea: A Life of Cristopher Columbus, Boston, 1942, page 617.
  32. ^ Cook, Alan H., Edmond Halley: Charting the Heavens and the Seas (Oxford: Clarendon Press, 1998)
  33. ^ George Hadley, "Concerning the cause of the general trade winds," Philosophical Transactions, vol. 39 (1735).
  34. ^ Dorst, Neal, FAQ:_Hurricanes,_Typhoons,_and_Tropical_Cyclones:_Hurricane_Timeline, Hurricane_Research_Division,_Atlantic_Oceanographic_and_Meteorological_Laboratory,_NOAA, January 2006.
  35. ^ G-G Coriolis (1835). "Sur les équations du mouvement relatif des systèmes de corps". J. De l'Ecole Royale Polytechnique. 15: 144–154.
  36. ^ William Ferrel. An Essay on the Winds and the Currents of the Ocean. Archived 2013-10-11 at the Wayback Machine Retrieved on 2009-01-01.
  37. ^ Arthur Gordon Webster (1912). The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies. B.G. Teubner. p. 320.
  38. ^ Shaye Johnson. The Norwegian Cyclone Model. Archived 2006-09-01 at the Wayback Machine Retrieved on 2006-10-11.
  39. ^ a b c John L. Heilbron (2003). The Oxford Companion to the History of Modern Science. Oxford University Press. p. 518. ISBN 9780199743766.
  40. ^ Raymond S. Bradley, Philip D. Jones, Climate Since A.D. 1500, Routledge, 1992, ISBN 0-415-07593-9, p.144
  41. ^ Rebecca Martin (2009) Catapult - Indepth - Communication: telegraph Archived 2016-03-03 at the Wayback Machine, Australian Broadcasting Corporation, Retrieved on 2009-05-12
  42. ^ Library of Congress, The Invention of the Telegraph, Retrieved on 2009-01-01
  43. ^ "Smithsonian Institution Archives". Archived from the original on 20 October 2006. Retrieved 16 June 2015.
  44. ^ "Prophet without Honour: The Reverend William Clement Ley and the hunt for the jet stream". Archived from the original on 2016-08-28. Retrieved 13 October 2016.
  45. ^ Field, M. (1 October 1999). "Meteorologist's profile — Charles Kenneth Mackinnon Douglas, OBE, AFC, MA". Weather. 54 (10): 321–327. Bibcode:1999Wthr...54..321F. doi:10.1002/j.1477-8696.1999.tb03992.x.
  46. ^ Williamson, Fiona (2015-09-01). "Weathering the empire: meteorological research in the early British straits settlements". The British Journal for the History of Science. 48 (3): 475–492. doi:10.1017/S000708741500028X. ISSN 1474-001X. PMID 26234178.
  47. ^ India Meteorological Department Establishment of IMD. Archived 2015-11-20 at the Wayback Machine Retrieved on 2009-01-01.
  48. ^ Finnish Meteorological Institute. History of Finnish Meteorological Institute. Archived 2010-07-25 at the Wayback Machine Retrieved on 2009-01-01.
  49. ^ Japan Meteorological Agency. History. Archived 2010-12-25 at the Wayback Machine Retrieved on 2006-10-22.
  50. ^ "BOM celebrates 100 years". Australian Broadcasting Corporation. 2007-12-31.
  51. ^ "Collections in Perth: 20. Meteorology". National Archives of Australia. Retrieved 2008-05-24.
  52. ^ Berknes, V. (1904) "Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik" (The problem of weather prediction, considered from the viewpoints of mechanics and physics), Meteorologische Zeitschrift, 21 : 1–7. Available in English on-line at: Schweizerbart science publishers.
  53. ^ "Pioneers in Modern Meteorology and Climatology: Vilhelm and Jacob Bjerknes" (PDF). Retrieved 2008-10-13.
  54. ^ Richardson, Lewis Fry, Weather Prediction by Numerical Process (Cambridge, England: Cambridge University Press, 1922). Available on-line at: Internet
  55. ^ American Institute of Physics. Atmospheric General Circulation Modeling. Archived 2008-03-25 at the Wayback Machine Retrieved on 2008-01-13.
  56. ^ Cox, John D. (2002). Storm Watchers. John Wiley & Sons, Inc. p. 208. ISBN 978-0-471-38108-2.
  57. ^ "The history of Numerical Weather Prediction at the Met Office". Met Office.
  58. ^ Edward N. Lorenz, "Deterministic non-periodic flow", Journal of the Atmospheric Sciences, vol. 20, pages 130–141 (1963).
  59. ^ Manousos, Peter (2006-07-19). "Ensemble Prediction Systems". Hydrometeorological Prediction Center. Retrieved 2010-12-31.
  60. ^ Glickman, Todd S. (June 2009). Meteorology Glossary (electronic) (2nd ed.). Cambridge, Massachusetts: American Meteorological Society. Retrieved March 10, 2014.
  61. ^ Glickman, Todd S. (June 2000). Meteorology Glossary (electronic) (2nd ed.). Cambridge, Massachusetts: American Meteorological Society. Retrieved March 10, 2014.
  62. ^ Bureau of labor statistics: "Occupational Outlook Handbook, 2010–11 Edition"
  63. ^ Office of the Federal Coordinator of Meteorology. Federal Meteorological Handbook No. 1 - Surface Weather Observations and Reports: September 2005. Archived 1999-04-20 at the Wayback Machine Retrieved on 2009-01-02.
  64. ^ Peebles, Peyton, [1998], Radar Principles, John Wiley & Sons, Inc., New York, ISBN 0-471-25205-0.
  65. ^ Holton, James. "An Introduction to Dynamic Meteorology" (PDF). Elsevier Academic Press. p. 5. Retrieved 5 March 2016.
  66. ^ "AMS Glossary of Meteorology". American Meteorological Society. Archived from the original on 2011-06-06. Retrieved 2008-04-12.
  67. ^ Online Glossary of Meteorology, American Meteorological Society [1], 2nd Ed., 2000, Allen Press.
  68. ^ Bluestein, H., Synoptic-Dynamic Meteorology in Midlatitudes: Principles of Kinematics and Dynamics, Vol. 1, Oxford University Press, 1992; ISBN 0-19-506267-1
  69. ^ Global Modelling, US Naval Research Laboratory, Monterey, Ca.
  70. ^ Garratt, J.R., The atmospheric boundary layer, Cambridge University Press, 1992; ISBN 0-521-38052-9.
  71. ^ Holton, J.R. [2004]. An Introduction to Dynamic Meteorology, 4th Ed., Burlington, Md: Elsevier Inc.. ISBN 0-12-354015-1.
  72. ^ Mistic House, Astrology Lessons, History, Prediction, Skeptics, and Astrology Compatibility, Retrieved on 2008-01-12, Archived at: Archived June 8, 2008, at the Wayback Machine
  73. ^ Eric D. Craft, An Economic History of Weather Forecasting Archived 2007-05-03 at the Wayback Machine, Retrieved on 2007-04-15
  74. ^ NASA, Weather Forecasting Through the Ages, Retrieved on 2008-05-25
  75. ^ Weather Doctor, Applying The Barometer To Weather Watching, Retrieved on 2008-05-25
  76. ^ Mark Moore, Field Forecasting – A Short Summary Archived 2009-03-25 at the Wayback Machine, Retrieved on 2008-05-25
  77. ^ Klaus Weickmann, Jeff Whitaker, Andres Roubicek and Catherine Smith. The Use of Ensemble Forecasts to Produce Improved Medium Range (3–15 days) Weather Forecasts. Retrieved on 2007-02-16.
  78. ^ Todd Kimberlain. Tropical cyclone motion and intensity talk (June 2007). Retrieved on 2007-07-21.
  79. ^ Richard J. Pasch, Mike Fiorino, and Chris Landsea. TPC/NHC’S REVIEW OF THE NCEP PRODUCTION SUITE FOR 2006. Retrieved on 2008-05-05.
  80. ^ National Weather Service Mission Statement Archived 2013-11-24 at the Wayback Machine, Retrieved on 2008-05-25
  81. ^ Blair Fannin, Dry weather conditions continue for Texas Archived 2009-07-03 at the Wayback Machine, Retrieved on 2008-05-26
  82. ^ Dr. Terry Mader, Drought Corn Silage Archived 2011-10-05 at the Wayback Machine, Retrieved on 2008-05-26
  83. ^ Kathryn C. Taylor, Peach Orchard Establishment and Young Tree Care Archived 2008-12-24 at the Wayback Machine, Retrieved on 2008-05-26
  84. ^ Associated Press, After Freeze, Counting Losses to Orange Crop, Retrieved on 2008-05-26
  85. ^ The New York Times, FUTURES/OPTIONS; Cold Weather Brings Surge In Prices of Heating Fuels, Retrieved on 2008-05-25
  86. ^ BBC, Heatwave causes electricity surge, Retrieved on 2008-05-25
  87. ^ The Seven Key Messages of the Energy Drill Program Archived 2012-02-17 at the Wayback Machine, Retrieved on 2008-05-25
  88. ^ An international version called the Aeronautical Information Publication contains parallel information, as well as specific information on the international airports for use by the international community.
  89. ^ "7-1-22. PIREPs Relating to Airframe Icing", [February 16, 2006], Aeronautical Information Manual, FAA AIM Online Archived 2009-07-12 at the Wayback Machine
  90. ^ Agricultural and Forest Meteorology, Elsevier, ISSN 0168-1923.
  91. ^ Encyclopædia Britannica, 2007.
  92. ^ About the HPC, NOAA/ National Weather Service, National Centers for Environmental Prediction, Hydrometeorological Prediction Center, Camp Springs, Maryland, 2007.
  93. ^ Super User. "Home". Retrieved 16 June 2015.
  94. ^ DRIHM News, number 1, March 2012, p2 "An ideal environment for hydro-meteorology research at the European level"
  95. ^ Tsitskishvili, M. S.; Trusov, A. G. (February 1974). "Modern research in nuclear meteorology" (PDF). Atomic Energy. 36 (2): 197–198. doi:10.1007/BF01117823. Retrieved July 6, 2008.

Further reading

  • Byers, Horace. General Meteorology. New York: McGraw-Hill, 1994.
  • Garret, J.R. (1992) [1992]. The atmospheric boundary layer. Cambridge University Press. ISBN 978-0-521-38052-2.
  • Glossary of Meteorology. American Meteorological Society (2nd ed.). Allen Press. 2000.
  • Bluestein, H (1992) [1992]. Synoptic-Dynamic Meteorology in Midlatitudes: Principles of Kinematics and Dynamics, Vol. 1. Oxford University Press. ISBN 978-0-19-506267-0.
  • Bluestein, H (1993) [1993]. Synoptic-Dynamic Meteorology in Midlatitudes: Volume II: Observations and Theory of Weather Systems. Oxford University Press. ISBN 978-0-19-506268-7.
  • Reynolds, R (2005) [2005]. Guide to Weather. Buffalo, New York: Firefly Books Inc. p. 208. ISBN 978-1-55407-110-4.
  • Holton, J.R. (2004) [2004]. An Introduction to Dynamic Meteorology (4th ed.). Burlington, Md: Elsevier Inc. ISBN 978-0-12-354015-7. Archived from the original on 2013-07-19. Retrieved 2017-05-21.
  • Roulstone, Ian & Norbury, John (2013). Invisible in the Storm: the role of mathematics in understanding weather. Princeton University Press. ISBN 978-0691152721.

Dictionaries and encyclopedias

External links

Please see weather forecasting for weather forecast sites.

Atmospheric convection

Atmospheric convection is the result of a parcel-environment instability, or temperature difference, layer in the atmosphere. Different lapse rates within dry and moist air masses lead to instability. Mixing of air during the day which expands the height of the planetary boundary layer leads to increased winds, cumulus cloud development, and decreased surface dew points. Moist convection leads to thunderstorm development, which is often responsible for severe weather throughout the world. Special threats from thunderstorms include hail, downbursts, and tornadoes.

Bureau of Meteorology

The Bureau of Meteorology (BOM) is an Executive Agency of the Australian Government responsible for providing weather services to Australia and surrounding areas. It was established in 1906 under the Meteorology Act, and brought together the state meteorological services that existed before then. The states officially transferred their weather recording responsibilities to the Bureau of Meteorology on 1 January 1908.


In meteorology, a cloud is an aerosol consisting of a visible mass of minute liquid droplets, frozen crystals, or other particles suspended in the atmosphere of a planetary body. Water or various other chemicals may compose the droplets and crystals. On Earth, clouds are formed as a result of saturation of the air when it is cooled to its dew point, or when it gains sufficient moisture (usually in the form of water vapor) from an adjacent source to raise the dew point to the ambient temperature. They are seen in the Earth's homosphere (which includes the troposphere, stratosphere, and mesosphere). Nephology is the science of clouds, which is undertaken in the cloud physics branch of meteorology.

There are two methods of naming clouds in their respective layers of the atmosphere; Latin and common. Cloud types in the troposphere, the atmospheric layer closest to Earth's surface, have Latin names due to the universal adaptation of Luke Howard's nomenclature. Formally proposed in 1802, it became the basis of a modern international system that divides clouds into five physical forms that appear in any or all of three altitude levels (formerly known as étages). These physical types, in approximate ascending order of convective activity, include stratiform sheets, cirriform wisps and patches, stratocumuliform layers (mainly structured as rolls, ripples, and patches), cumuliform heaps, and very large cumulonimbiform heaps that often show complex structure. The physical forms are divided by altitude level into ten basic genus-types. The Latin names for applicable high-level genera carry a cirro- prefix, and an alto- prefix is added to the names of the mid-level genus-types. Most of the genera can be subdivided into species and further subdivided into varieties. A very low stratiform cloud that extends down to the Earth's surface is given the common name, fog, but has no Latin name.

Two cirriform clouds that form higher up in the stratosphere and mesosphere have common names for their main types. They are seen infrequently, mostly in the polar regions of Earth. Clouds have been observed in the atmospheres of other planets and moons in the Solar System and beyond. However, due to their different temperature characteristics, they are often composed of other substances such as methane, ammonia, and sulfuric acid as well as water.

Taken as a whole, homospheric clouds can be cross-classified by form and level to derive the ten tropospheric genera, the fog that forms at surface level, and the two additional major types above the troposphere. The cumulus genus includes three species that indicate vertical size. Clouds with sufficient vertical extent to occupy more than one altitude level are officially classified as low- or mid-level according to the altitude range at which each initially forms. However they are also more informally classified as multi-level or vertical.

Contour line

A contour line (also isoline, isopleth, or isarithm) of a function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value. It is a plane section of the three-dimensional graph of the function f(x, y) parallel to the x, y plane. In cartography, a contour line (often just called a "contour") joins points of equal elevation (height) above a given level, such as mean sea level. A contour map is a map illustrated with contour lines, for example a topographic map, which thus shows valleys and hills, and the steepness or gentleness of slopes. The contour interval of a contour map is the difference in elevation between successive contour lines.More generally, a contour line for a function of two variables is a curve connecting points where the function has the same particular value.The gradient of the function is always perpendicular to the contour lines. When the lines are close together the magnitude of the gradient is large: the variation is steep. A level set is a generalization of a contour line for functions of any number of variables.

Contour lines are curved, straight or a mixture of both lines on a map describing the intersection of a real or hypothetical surface with one or more horizontal planes. The configuration of these contours allows map readers to infer relative gradient of a parameter and estimate that parameter at specific places. Contour lines may be either traced on a visible three-dimensional model of the surface, as when a photogrammetrist viewing a stereo-model plots elevation contours, or interpolated from estimated surface elevations, as when a computer program threads contours through a network of observation points of area centroids. In the latter case, the method of interpolation affects the reliability of individual isolines and their portrayal of slope, pits and peaks.

Explosive cyclogenesis

Explosive cyclogenesis (also referred to as a weather bomb, meteorological bomb, explosive development, bomb cyclone or bombogenesis) is the rapid deepening of an extratropical cyclonic low-pressure area. The change in pressure needed to classify something as explosive cyclogenesis is latitude dependent. For example, at 60° latitude, explosive cyclogenesis occurs if the central pressure decreases by 24 mbar (hPa) or more in 24 hours.

This is a predominantly maritime, winter event, but also occurs in continental settings, even in the summer. This process is the extratropical equivalent of the tropical rapid deepening.

Although their cyclogenesis is totally different from that of tropical cyclones, bombs can produce winds of the same order as the first categories of the Saffir-Simpson scale and give heavy rainfall. Even though only a minority of the bombs become so strong, some have caused significant damage.

Inversion (meteorology)

In meteorology, an inversion is a deviation from the normal change of an atmospheric property with altitude. It almost always refers to an inversion of the thermal lapse rate. Normally, air temperature decreases with an increase in altitude. During an inversion, warmer air is held above cooler air; the normal temperature profile with altitude is inverted. An inversion traps air pollution, such as smog, close to the ground. An inversion can also suppress convection by acting as a "cap". If this cap is broken for any of several reasons, convection of any moisture present can then erupt into violent thunderstorms. Temperature inversion can notoriously result in freezing rain in cold climates.

Joint Typhoon Warning Center

The Joint Typhoon Warning Center (JTWC) is a joint United States Navy – United States Air Force command located in Pearl Harbor, Hawaii. The JTWC is responsible for the issuing of tropical cyclone warnings in the North-West Pacific Ocean, South Pacific Ocean, and Indian Ocean for all branches of the U.S. Department of Defense and other U.S. government agencies. Their warnings are intended for the protection of primarily military ships and aircraft as well as military installations jointly operated with other countries around the world.Its U.S. Navy components are aligned with Naval Meteorology and Oceanography Command.


Landfall is the event of a storm or waterspout moving over land after being over water.

Low-pressure area

A low-pressure area, low, depression or cyclone is a region on the topographic map where the atmospheric pressure is lower than that of surrounding locations. Low-pressure systems form under areas of wind divergence that occur in the upper levels of the troposphere. The formation process of a low-pressure area is known as cyclogenesis. Within the field of meteorology, atmospheric divergence aloft occurs in two areas. The first area is on the east side of upper troughs, which form half of a Rossby wave within the Westerlies (a trough with large wavelength that extends through the troposphere). A second area of wind divergence aloft occurs ahead of embedded shortwave troughs, which are of smaller wavelength. Diverging winds aloft ahead of these troughs cause atmospheric lift within the troposphere below, which lowers surface pressures as upward motion partially counteracts the force of gravity.

Thermal lows form due to localized heating caused by greater sunshine over deserts and other land masses. Since localized areas of warm air are less dense than their surroundings, this warmer air rises, which lowers atmospheric pressure near that portion of the Earth's surface. Large-scale thermal lows over continents help drive monsoon circulations. Low-pressure areas can also form due to organized thunderstorm activity over warm water. When this occurs over the tropics in concert with the Intertropical Convergence Zone, it is known as a monsoon trough. Monsoon troughs reach their northerly extent in August and their southerly extent in February. When a convective low acquires a well-hot circulation in the tropics it is termed a tropical cyclone. Tropical cyclones can form during any month of the year globally, but can occur in either the northern or southern hemisphere during November.

Atmospheric lift will also generally produce cloud cover through adiabatic cooling once the air becomes saturated as it rises, although the low-pressure area typically brings cloudy skies, which act to minimize diurnal temperature extremes. Since clouds reflect sunlight, incoming shortwave solar radiation decreases, which causes lower temperatures during the day. At night the absorptive effect of clouds on outgoing longwave radiation, such as heat energy from the surface, allows for warmer diurnal low temperatures in all seasons. The stronger the area of low pressure, the stronger the winds experienced in its vicinity. Globally, low-pressure systems are most frequently located over the Tibetan Plateau and in the lee of the Rocky mountains. In Europe (particularly in the British Isles and Netherlands), recurring low-pressure weather systems are typically known as "depressions".

Mesoscale meteorology

Mesoscale meteorology is the study of weather systems smaller than synoptic scale systems but larger than microscale and storm-scale cumulus systems. Horizontal dimensions generally range from around 5 kilometers to several hundred kilometers. Examples of mesoscale weather systems are sea breezes, squall lines, and mesoscale convective complexes.

Vertical velocity often equals or exceeds horizontal velocities in mesoscale meteorological systems due to nonhydrostatic processes such as buoyant acceleration of a rising thermal or acceleration through a narrow mountain pass.

Naval Meteorology and Oceanography Command

The Naval Meteorology and Oceanography Command (COMNAVMETOCCOM) or CNMOC, serves as the operational arm of the Naval Oceanography Program. Headquartered at the Stennis Space Center in Mississippi, CNMOC is an echelon three command reporting to United States Fleet Forces Command (USFLTFORCOM). CNMOC's claimancy is globally distributed, with assets located on larger ships (aircraft carriers, amphibious ships, and command and control ships), shore facilities at fleet concentration areas, and larger production centers in the U.S.

CNMOC is focused on providing critical environmental knowledge to the warfighting disciplines of Anti-Submarine Warfare; Naval Special Warfare; Mine Warfare; Intelligence, Surveillance and Reconnaissance; and Fleet Operations (Strike and Expeditionary), as well as to the support areas of Maritime Operations, Aviation Operations, Navigation, Precise Time, and Astrometry.

The Oceanographer of the Navy works closely with the staff of CNMOC to ensure the proper resources are available to meet its mission, to act as a liaison between CNMOC and the Chief of Naval Operations, and to represent the Naval Oceanography Program in interagency and international forums.

Outflow (meteorology)

Outflow, in meteorology, is air that flows outwards from a storm system. It is associated with ridging, or anticyclonic flow. In the low levels of the troposphere, outflow radiates from thunderstorms in the form of a wedge of rain-cooled air, which is visible as a thin rope-like cloud on weather satellite imagery or a fine line on weather radar imagery. Low-level outflow boundaries can disrupt the center of small tropical cyclones. However, outflow aloft is essential for the strengthening of a tropical cyclone. If this outflow is undercut, the tropical cyclone weakens. If two tropical cyclones are in proximity, the upper level outflow from the system to the west can limit the development of the system to the east.


Overcast or overcast weather, as defined by the World Meteorological Organization, is the meteorological condition of clouds obscuring at least 95% of the sky. However, the total cloud cover must not be entirely due to obscuring phenomena near the surface, such as fog.Overcast, written as "OVC" in the METAR observation, is reported when the cloud cover is observed to equal eight oktas (eighths). An overcast sky may be explicitly identified as thin (mostly transparent), but otherwise is considered opaque, which always constitutes a ceiling in aviation meteorology.Sometimes clouds can be different colors such as black or white, but overcast usually refers to darker skies. In some cases, it can be impossible to see distinct borders of clouds or the sky may be covered by a single type of cloud, such as stratus and the whole sky will be a dull white.

Periods of overcast weather can range from a few hours to several days. Overcast weather can also affect people suffering from seasonal affective disorder.

The same weather, when observed from above, might be referred to as (an) undercast.


In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor, so that the water condenses and "precipitates". Thus, fog and mist are not precipitation but suspensions, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called "showers."Moisture that is lifted or otherwise forced to rise over a layer of sub-freezing air at the surface may be condensed into clouds and rain. This process is typically active when freezing rain occurs. A stationary front is often present near the area of freezing rain and serves as the foci for forcing and rising air. Provided necessary and sufficient atmospheric moisture content, the moisture within the rising air will condense into clouds, namely stratus and cumulonimbus. Eventually, the cloud droplets will grow large enough to form raindrops and descend toward the Earth where they will freeze on contact with exposed objects. Where relatively warm water bodies are present, for example due to water evaporation from lakes, lake-effect snowfall becomes a concern downwind of the warm lakes within the cold cyclonic flow around the backside of extratropical cyclones. Lake-effect snowfall can be locally heavy. Thundersnow is possible within a cyclone's comma head and within lake effect precipitation bands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation. On the leeward side of mountains, desert climates can exist due to the dry air caused by compressional heating. Most precipitation occurs within the tropics and is caused by convection. The movement of the monsoon trough, or intertropical convergence zone, brings rainy seasons to savannah climes.

Precipitation is a major component of the water cycle, and is responsible for depositing the fresh water on the planet. Approximately 505,000 cubic kilometres (121,000 cu mi) of water falls as precipitation each year; 398,000 cubic kilometres (95,000 cu mi) of it over the oceans and 107,000 cubic kilometres (26,000 cu mi) over land. Given the Earth's surface area, that means the globally averaged annual precipitation is 990 millimetres (39 in), but over land it is only 715 millimetres (28.1 in). Climate classification systems such as the Köppen climate classification system use average annual rainfall to help differentiate between differing climate regimes.

Precipitation may occur on other celestial bodies, e.g. when it gets cold, Mars has precipitation which most likely takes the form of frost, rather than rain or snow.


Rain is liquid water in the form of droplets that have condensed from atmospheric water vapor and then become heavy enough to fall under gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides suitable conditions for many types of ecosystems, as well as water for hydroelectric power plants and crop irrigation.

The major cause of rain production is moisture moving along three-dimensional zones of temperature and moisture contrasts known as weather fronts. If enough moisture and upward motion is present, precipitation falls from convective clouds (those with strong upward vertical motion) such as cumulonimbus (thunder clouds) which can organize into narrow rainbands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation which forces moist air to condense and fall out as rainfall along the sides of mountains. On the leeward side of mountains, desert climates can exist due to the dry air caused by downslope flow which causes heating and drying of the air mass. The movement of the monsoon trough, or intertropical convergence zone, brings rainy seasons to savannah climes.

The urban heat island effect leads to increased rainfall, both in amounts and intensity, downwind of cities. Global warming is also causing changes in the precipitation pattern globally, including wetter conditions across eastern North America and drier conditions in the tropics. Antarctica is the driest continent. The globally averaged annual precipitation over land is 715 mm (28.1 in), but over the whole Earth it is much higher at 990 mm (39 in). Climate classification systems such as the Köppen classification system use average annual rainfall to help differentiate between differing climate regimes. Rainfall is measured using rain gauges. Rainfall amounts can be estimated by weather radar.

Rain is also known or suspected on other planets, where it may be composed of methane, neon, sulfuric acid, or even iron rather than water.

Surface weather analysis

Surface weather analysis is a special type of weather map that provides a view of weather elements over a geographical area at a specified time based on information from ground-based weather stations.Weather maps are created by plotting or tracing the values of relevant quantities such as sea level pressure, temperature, and cloud cover onto a geographical map to help find synoptic scale features such as weather fronts.

The first weather maps in the 19th century were drawn well after the fact to help devise a theory on storm systems. After the advent of the telegraph, simultaneous surface weather observations became possible for the first time, and beginning in the late 1840s, the Smithsonian Institution became the first organization to draw real-time surface analyses. Use of surface analyses began first in the United States, spreading worldwide during the 1870s. Use of the Norwegian cyclone model for frontal analysis began in the late 1910s across Europe, with its use finally spreading to the United States during World War II.

Surface weather analyses have special symbols that show frontal systems, cloud cover, precipitation, or other important information. For example, an H may represent high pressure, implying clear skies and relatively warm weather. An L, on the other hand, may represent low pressure, which frequently accompanies precipitation. Various symbols are used not just for frontal zones and other surface boundaries on weather maps, but also to depict the present weather at various locations on the weather map. Areas of precipitation help determine the frontal type and location.

Synoptic scale meteorology

The synoptic scale in meteorology (also known as large scale or cyclonic scale) is a horizontal length scale of the order of 1000 kilometers (about 620 miles) or more. This corresponds to a horizontal scale typical of mid-latitude depressions (e.g. extratropical cyclones). Most high and low-pressure areas seen on weather maps such as surface weather analyses are synoptic-scale systems, driven by the location of Rossby waves in their respective hemisphere. Low-pressure areas and their related frontal zones occur on the leading edge of a trough within the Rossby wave pattern, while high-pressure areas form on the back edge of the trough. Most precipitation areas occur near frontal zones. The word synoptic is derived from the Greek word συνοπτικός (synoptikos), meaning seen together.

The Navier–Stokes equations applied to atmospheric motion can be simplified by scale analysis in the synoptic scale. It can be shown that the main terms in horizontal equations are Coriolis force and pressure gradient terms; therefore, one can use geostrophic approximation. In vertical coordinates, the momentum equation simplifies to the hydrostatic equilibrium equation.

Trough (meteorology)

A trough is an elongated (extended) region of relatively low atmospheric pressure, often associated with fronts. Troughs may be at the surface, or aloft, or both under various conditions. Most troughs bring clouds, showers, and a wind shift, particularly following the passage of the trough. This results from convergence or "squeezing" which forces lifting of moist air behind the trough line.

Unlike fronts, there is not a universal symbol for a trough on a weather chart. The weather charts in some countries or regions mark troughs by a line. In the United States, a trough may be marked as a dashed line or bold line. In the UK, Hong Kong and Fiji, it is represented by a bold line extended from a low pressure center or between two low pressure centers; in Macau and Australia, it is a dashed line. If they are not marked, troughs may still be identified as an extension of isobars away from a low pressure center.

Weather front

A weather front is a boundary separating two masses of air of different densities, and is the principal cause of meteorological phenomena outside the tropics. In surface weather analyses, fronts are depicted using various colored triangles and half-circles, depending on the type of front. The air masses separated by a front usually differ in temperature and humidity.

Cold fronts may feature narrow bands of thunderstorms and severe weather, and may on occasion be preceded by squall lines or dry lines. Warm fronts are usually preceded by stratiform precipitation and fog. The weather usually clears quickly after a front's passage. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift.Cold fronts and occluded fronts generally move from west to east, while warm fronts move poleward. Because of the greater density of air in their wake, cold fronts and cold occlusions move faster than warm fronts and warm occlusions. Mountains and warm bodies of water can slow the movement of fronts. When a front becomes stationary—and the density contrast across the frontal boundary vanishes—the front can degenerate into a line which separates regions of differing wind velocity, known as a shearline. This is most common over the open ocean.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.