Meitnerium is a synthetic chemical element with symbol Mt and atomic number 109. It is an extremely radioactive synthetic element (an element not found in nature, but can be created in a laboratory). The most stable known isotope, meitnerium-278, has a half-life of 7.6 seconds, although the unconfirmed meitnerium-282 may have a longer half-life of 67 seconds. The GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany, first created this element in 1982. It is named after Lise Meitner.

In the periodic table, meitnerium is a d-block transactinide element. It is a member of the 7th period and is placed in the group 9 elements, although no chemical experiments have yet been carried out to confirm that it behaves as the heavier homologue to iridium in group 9 as the seventh member of the 6d series of transition metals. Meitnerium is calculated to have similar properties to its lighter homologues, cobalt, rhodium, and iridium.

Meitnerium,  109Mt
  • /maɪtˈnɪəriəm/[1]
  • /ˈmaɪtnəriəm/[2]
Mass number278 (most stable isotope) (unconfirmed: 282)
Meitnerium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Atomic number (Z)109
Groupgroup 9
Periodperiod 7
Element category  unknown chemical properties, but probably a transition metal[3][4]
Electron configuration[Rn] 5f14 6d7 7s2 (predicted)[3][5]
Electrons per shell
2, 8, 18, 32, 32, 15, 2 (predicted)
Physical properties
Phase at STPunknown phase (predicted)[4]
Density (near r.t.)37.4 g/cm3 (predicted)[3]
Atomic properties
Oxidation states(+1), (+3), (+4), (+6), (+8), (+9) (predicted)[3][6][7][8]
Ionization energies
  • 1st: 800 kJ/mol
  • 2nd: 1820 kJ/mol
  • 3rd: 2900 kJ/mol
  • (more) (all estimated)[3]
Atomic radiusempirical: 128 pm (predicted)[3][8]
Covalent radius129 pm (estimated)[9]
Other properties
Natural occurrencesynthetic
Crystal structureface-centered cubic (fcc)
Face-centered cubic crystal structure for meitnerium

Magnetic orderingparamagnetic (predicted)[10]
CAS Number54038-01-6
Namingafter Lise Meitner
DiscoveryGesellschaft für Schwerionenforschung (1982)
Main isotopes of meitnerium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
274Mt syn 0.4 s α 270Bh
276Mt syn 0.6 s α 272Bh
278Mt syn 4 s α 274Bh
282Mt[11] syn 67 s? α 278Bh


Lise Meitner (1878-1968), lecturing at Catholic University, Washington, D.C., 1946
Meitnerium was named after the physicist Lise Meitner, one of the discoverers of nuclear fission.


Meitnerium was first synthesized on August 29, 1982 by a German research team led by Peter Armbruster and Gottfried Münzenberg at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt.[13] The team bombarded a target of bismuth-209 with accelerated nuclei of iron-58 and detected a single atom of the isotope meitnerium-266:[14]

+ 58

This work was confirmed three years later at the Joint Institute for Nuclear Research at Dubna (then in the Soviet Union).[14]


Bohrium hassium meitnerium ceremony
Naming ceremony conducted at the GSI on 7 September 1992 for the namings of elements 107, 108, and 109 as nielsbohrium, hassium, and meitnerium

Using Mendeleev's nomenclature for unnamed and undiscovered elements, meitnerium should be known as eka-iridium. In 1979, during the Transfermium Wars (but before the synthesis of meitnerium), IUPAC published recommendations according to which the element was to be called unnilennium (with the corresponding symbol of Une),[15] a systematic element name as a placeholder, until the element was discovered (and the discovery then confirmed) and a permanent name was decided on. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, who either called it "element 109", with the symbol of E109, (109) or even simply 109, or used the proposed name "meitnerium".[3]

The naming of meitnerium was discussed in the element naming controversy regarding the names of elements 104 to 109, but meitnerium was the only proposal and thus was never disputed.[16][17] The name meitnerium (Mt) was suggested by the GSI team in September 1992 in honor of the Austrian physicist Lise Meitner, a co-discoverer of protactinium (with Otto Hahn),[18][19][20][21][22] and one of the discoverers of nuclear fission.[23] In 1994 the name was recommended by IUPAC,[16] and was officially adopted in 1997.[17] It is thus the only element named specifically after a non-mythological woman (curium being named for both Pierre and Marie Curie).[24]


Meitnerium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. Eight different isotopes of meitnerium have been reported with atomic masses 266, 268, 270, and 274–278, two of which, meitnerium-268 and meitnerium-270, have known but unconfirmed metastable states. A ninth isotope with atomic mass 282 is unconfirmed. Most of these decay predominantly through alpha decay, although some undergo spontaneous fission.[25]

Stability and half-lives

List of meitnerium isotopes
266Mt 1.7 ms α 1982 209Bi(58Fe,n)[13]
268Mt 21 ms α 1994 272Rg(—,α)[27]
270Mt 5.0 ms α 2004 278Nh(—,2α)[28][29]
274Mt 0.44 s α 2006 282Nh(—,2α)[28]
275Mt 9.7 ms α 2003 287Mc(—,3α)[28]
276Mt 0.72 s α 2003 288Mc(—,3α)[28]
277Mt ~5 ms SF 2012 293Ts(—,4α)[30]
278Mt 7.6 s α 2009 294Ts(—,4α)[31]
282Mt 67 s? α 1998? 290Fl(ee2α)?

All meitnerium isotopes are extremely unstable and radioactive; in general, heavier isotopes are more stable than the lighter. The most stable known meitnerium isotope, 278Mt, is also the heaviest known; it has a half-life of 7.6 seconds. The unconfirmed 282Mt is even heavier and appears to have a longer half-life of 67 seconds. A metastable nuclear isomer, 270mMt, has been reported to also have a half-life of over a second. The isotopes 276Mt and 274Mt have half-lives of 0.72 and 0.44 seconds respectively. The remaining four isotopes have half-lives between 1 and 20 milliseconds.[25]

Predicted properties


Meitnerium is the seventh member of the 6d series of transition metals. Since element 112 (copernicium) has been shown to be a group 12 metal, it is expected that all the elements from 104 to 111 would continue a fourth transition metal series, with meitnerium as part of the platinum group metals.[21] Calculations on its ionization potentials and atomic and ionic radii are similar to that of its lighter homologue iridium, thus implying that meitnerium's basic properties will resemble those of the other group 9 elements, cobalt, rhodium, and iridium.[3]

Prediction of the probable chemical properties of meitnerium has not received much attention recently. Meitnerium is expected to be a noble metal. Based on the most stable oxidation states of the lighter group 9 elements, the most stable oxidation states of meitnerium are predicted to be the +6, +3, and +1 states, with the +3 state being the most stable in aqueous solutions. In comparison, rhodium and iridium show a maximum oxidation state of +6, while the most stable states are +4 and +3 for iridium and +3 for rhodium.[3] The oxidation state +9, represented only by iridium in [IrO4]+, might be possible for its congener meitnerium in the nonafluoride (MtF9) and the [MtO4]+ cation, although [IrO4]+ is expected to be more stable than these meitnerium compounds.[7] The tetrahalides of meitnerium have also been predicted to have similar stabilities to those of iridium, thus also allowing a stable +4 state.[6] It is further expected that the maximum oxidation states of elements from bohrium (element 107) to darmstadtium (element 110) may be stable in the gas phase but not in aqueous solution.[3]

Physical and atomic

Meitnerium is expected to be a solid under normal conditions and assume a face-centered cubic crystal structure, similarly to its lighter congener iridium.[4] It should be a very heavy metal with a density of around 37.4 g/cm3, which would be the second-highest of any of the 118 known elements, second only to that predicted for its neighbor hassium (41 g/cm3). In comparison, the densest known element that has had its density measured, osmium, has a density of only 22.61 g/cm3. This results from meitnerium's high atomic weight, the lanthanide and actinide contractions, and relativistic effects, although production of enough meitnerium to measure this quantity would be impractical, and the sample would quickly decay.[3] Meitnerium is also predicted to be paramagnetic.[10]

Theoreticians have predicted the covalent radius of meitnerium to be 6 to 10 pm larger than that of iridium.[32] The atomic radius of meitnerium is expected to be around 128 pm.[8]

Experimental chemistry

Meitnerium is the first element on the periodic table whose chemistry has not yet been investigated. Unambiguous determination of the chemical characteristics of meitnerium has yet to have been established[33][34] due to the short half-lives of meitnerium isotopes[3] and a limited number of likely volatile compounds that could be studied on a very small scale. One of the few meitnerium compounds that are likely to be sufficiently volatile is meitnerium hexafluoride (MtF
), as its lighter homologue iridium hexafluoride (IrF
) is volatile above 60 °C and therefore the analogous compound of meitnerium might also be sufficiently volatile;[21] a volatile octafluoride (MtF
) might also be possible.[3] For chemical studies to be carried out on a transactinide, at least four atoms must be produced, the half-life of the isotope used must be at least 1 second, and the rate of production must be at least one atom per week.[21] Even though the half-life of 278Mt, the most stable known meitnerium isotope, is 7.6 seconds, long enough to perform chemical studies, another obstacle is the need to increase the rate of production of meitnerium isotopes and allow experiments to carry on for weeks or months so that statistically significant results can be obtained. Separation and detection must be carried out continuously to separate out the meitnerium isotopes and have automated systems experiment on the gas-phase and solution chemistry of meitnerium, as the yields for heavier elements are predicted to be smaller than those for lighter elements; some of the separation techniques used for bohrium and hassium could be reused. However, the experimental chemistry of meitnerium has not received as much attention as that of the heavier elements from copernicium to livermorium.[3][33][35]

The Lawrence Berkeley National Laboratory attempted to synthesize the isotope 271Mt in 2002–2003 for a possible chemical investigation of meitnerium because it was expected that it might be more stable than the isotopes around it as it has 162 neutrons, a magic number for deformed nuclei; its half-life was predicted to be a few seconds, long enough for a chemical investigation.[3][36][37] However, no atoms of 271Mt were detected,[38] and this isotope of meitnerium is currently unknown.[25]

An experiment determining the chemical properties of a transactinide would need to compare a compound of that transactinide with analogous compounds of some of its lighter homologues:[3] for example, in the chemical characterization of hassium, hassium tetroxide (HsO4) was compared with the analogous osmium compound, osmium tetroxide (OsO4).[39] In a preliminary step towards determining the chemical properties of meitnerium, the GSI attempted sublimation of the rhodium compounds rhodium(III) oxide (Rh2O3) and rhodium(III) chloride (RhCl3). However, macroscopic amounts of the oxide would not sublimate until 1000 °C and the chloride would not until 780 °C, and then only in the presence of carbon aerosol particles: these temperatures are far too high for such procedures to be used on meitnerium, as most of the current methods used for the investigation of the chemistry of superheavy elements do not work above 500 °C.[34]

Following the 2014 successful synthesis of seaborgium hexacarbonyl, Sg(CO)6,[40] studies were conducted with the stable transition metals of groups 7 through 9, suggesting that carbonyl formation could be extended to further probe the chemistries of the early 6d transition metals from rutherfordium to meitnerium inclusive.[41][42] Nevertheless, the challenges of low half-lives and difficult production reactions make meitnerium difficult to access for radiochemists, though the isotopes 278Mt and 276Mt are long-lived enough for chemical research and may be produced in the decay chains of 294Ts and 288Mc respectively. 276Mt is likely more suitable, since producing tennessine requires a rare and rather short-lived berkelium target.[43] The isotope 270Mt, observed in the decay chain of 278Nh with a half-life of 0.69 seconds, may also be sufficiently long-lived for chemical investigations, though a direct synthesis route leading to this isotope and more precise measurements of its decay properties would be required.[37]


  1. ^ Emsley, John (2003). Nature's Building Blocks. Oxford University Press. ISBN 978-0198503408. Retrieved November 12, 2012.
  2. ^ "Meitnerium". Periodic Table of Videos. The University of Nottingham. Retrieved October 15, 2012.
  3. ^ a b c d e f g h i j k l m n o p q Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  4. ^ a b c d Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  5. ^ Thierfelder, C.; Schwerdtfeger, P.; Heßberger, F. P.; Hofmann, S. (2008). "Dirac-Hartree-Fock studies of X-ray transitions in meitnerium". The European Physical Journal A. 36 (2): 227. Bibcode:2008EPJA...36..227T. doi:10.1140/epja/i2008-10584-7.
  6. ^ a b Ionova, G. V.; Ionova, I. S.; Mikhalko, V. K.; Gerasimova, G. A.; Kostrubov, Yu. N.; Suraeva, N. I. (2004). "Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties". Russian Journal of Coordination Chemistry. 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82.
  7. ^ a b Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian (2010). "How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX". ChemPhysChem. 11 (4): 865–9. doi:10.1002/cphc.200900910. PMID 20127784.
  8. ^ a b c Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved October 4, 2013.
  9. ^ Chemical Data. Meitnerium - Mt, Royal Chemical Society
  10. ^ a b Saito, Shiro L. (2009). "Hartree–Fock–Roothaan energies and expectation values for the neutral atoms He to Uuo: The B-spline expansion method". Atomic Data and Nuclear Data Tables. 95 (6): 836. Bibcode:2009ADNDT..95..836S. doi:10.1016/j.adt.2009.06.001.
  11. ^ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Scheidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Popiesch, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). Bibcode:2016EPJA...52..180H. doi:10.1140/epja/i2016-16180-4.
  12. ^ Thierfelder, C.; Schwerdtfeger, P.; Heßberger, F. P.; Hofmann, S. (2008). "Dirac-Hartree-Fock studies of X-ray transitions in meitnerium". The European Physical Journal A. 36 (2): 227. Bibcode:2008EPJA...36..227T. doi:10.1140/epja/i2008-10584-7.
  13. ^ a b Münzenberg, G.; Armbruster, P.; Heßberger, F. P.; Hofmann, S.; Poppensieker, K.; Reisdorf, W.; Schneider, J. H. R.; Schneider, W. F. W.; Schmidt, K.-H.; Sahm, C.-C.; Vermeulen, D. (1982). "Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109". Zeitschrift für Physik A. 309 (1): 89. Bibcode:1982ZPhyA.309...89M. doi:10.1007/BF01420157.
  14. ^ a b Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z.; Jeannin, Y. P.; Lefort, M.; Sakai, M.; Ulehla, I.; Wapstra, A. P.; Wilkinson, D. H. (1993). "Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements". Pure and Applied Chemistry. 65 (8): 1757. doi:10.1351/pac199365081757. (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879–886, 1991)
  15. ^ Chatt, J. (1979). "Recommendations for the naming of elements of atomic numbers greater than 100". Pure and Applied Chemistry. 51 (2): 381–384. doi:10.1351/pac197951020381.
  16. ^ a b "Names and symbols of transfermium elements (IUPAC Recommendations 1994)". Pure and Applied Chemistry. 66 (12): 2419. 1994. doi:10.1351/pac199466122419.
  17. ^ a b Rayner-Canham, Geoff; Zheng, Zheng (2007). "Naming elements after scientists: An account of a controversy". Foundations of Chemistry. 10: 13. doi:10.1007/s10698-007-9042-1.
  18. ^ Bentzen, S. M. (2000). "Lise Meitner and Niels Bohr—a historical note". Acta Oncologica. 39 (8): 1002–1003. doi:10.1080/02841860050216016. PMID 11206992.
  19. ^ Kyle, R. A.; Shampo, M. A. (1981). "Lise Meitner". JAMA: the Journal of the American Medical Association. 245 (20): 2021. doi:10.1001/jama.245.20.2021. PMID 7014939.
  20. ^ Frisch, O. R. (1973). "Distinguished Nuclear Pioneer—1973. Lise Meitner". Journal of Nuclear Medicine. 14 (6): 365–371. PMID 4573793.
  21. ^ a b c d Griffith, W. P. (2008). "The Periodic Table and the Platinum Group Metals". Platinum Metals Review. 52 (2): 114. doi:10.1595/147106708X297486.
  22. ^ Rife, Patricia (2003). "Meitnerium". Chemical & Engineering News. 81 (36): 186. doi:10.1021/cen-v081n036.p186.
  23. ^ Wiesner, Emilie; Settle, Frank A. (2001). "Politics, Chemistry, and the Discovery of Nuclear Fission". Journal of Chemical Education. 78 (7): 889. Bibcode:2001JChEd..78..889W. doi:10.1021/ed078p889.
  24. ^ "Meitnerium is named for the Austrian physicist Lise Meitner." in Meitnerium in Royal Society of Chemistry – Visual Element Periodic Table. Retrieved August 14, 2015.
  25. ^ a b c d e Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved June 6, 2008.
  26. ^ a b Gray, Theodore (2002–2010). "The Photographic Periodic Table of the Elements". Retrieved November 16, 2012.
  27. ^ Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S.; Janik, R.; Leino, M. (1995). "The new element 111" (PDF). Zeitschrift für Physik A. 350 (4): 281. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. Archived from the original (PDF) on January 16, 2014.
  28. ^ a b c d Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in 48Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings. 912: 235. doi:10.1063/1.2746600.
  29. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida, Atsushi; Zhao, YuLiang (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn,n)278113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  30. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Alexander, C.; et al. (May 30, 2013). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. American Physical Society. 87 (054621). Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
  31. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (April 9, 2010). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. American Physical Society. 104 (142502): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  32. ^ Pyykkö, Pekka; Atsumi, Michiko (2009). "Molecular Double-Bond Covalent Radii for Elements Li—E112". Chemistry: A European Journal. 15 (46): 12770. doi:10.1002/chem.200901472.
  33. ^ a b Düllmann, Christoph E. (2012). "Superheavy elements at GSI: a broad research program with element 114 in the focus of physics and chemistry". Radiochimica Acta. 100 (2): 67–74. doi:10.1524/ract.2011.1842.
  34. ^ a b Haenssler, F. L.; Düllmann, Ch. E.; Gäggeler, H. W.; Eichler, B. "Thermatographic investigation of Rh and 107Rh with different carrier gases" (PDF). Retrieved October 15, 2012.
  35. ^ Eichler, Robert (2013). "First foot prints of chemistry on the shore of the Island of Superheavy Elements" (PDF). Journal of Physics: Conference Series. IOP Science. 420 (1): 012003. arXiv:1212.4292. doi:10.1088/1742-6596/420/1/012003. Retrieved September 11, 2014.
  36. ^ Smolańczuk, R. (1997). "Properties of the hypothetical spherical superheavy nuclei". Phys. Rev. C. 56 (2): 812–24. Bibcode:1997PhRvC..56..812S. doi:10.1103/PhysRevC.56.812.
  37. ^ a b Even, J.; et al. (2015). "In situ synthesis of volatile carbonyl complexes with short-lived nuclides". Journal of Radioanalytical and Nuclear Chemistry. 303 (3): 2457–2466. doi:10.1007/s10967-014-3793-7.
  38. ^ Zielinski P. M. et al. (2003). "The search for 271Mt via the reaction 238U + 37Cl" Archived 2012-02-06 at the Wayback Machine, GSI Annual report. Retrieved on 2008-03-01
  39. ^ Düllmann, Ch. E for a Univ. Bern - PSI - GSI - JINR - LBNL - Univ. Mainz - FZR - IMP - collaboration. "Chemical investigation of hassium (Hs, Z=108)" (PDF). Archived from the original (PDF) on November 18, 2012. Retrieved October 15, 2012.
  40. ^ Even, J.; Yakushev, A.; Dullmann, C. E.; Haba, H.; Asai, M.; Sato, T. K.; Brand, H.; Di Nitto, A.; Eichler, R.; Fan, F. L.; Hartmann, W.; Huang, M.; Jager, E.; Kaji, D.; Kanaya, J.; Kaneya, Y.; Khuyagbaatar, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kudou, Y.; Kurz, N.; Lommel, B.; Miyashita, S.; Morimoto, K.; Morita, K.; Murakami, M.; Nagame, Y.; Nitsche, H.; et al. (2014). "Synthesis and detection of a seaborgium carbonyl complex". Science. 345 (6203): 1491. Bibcode:2014Sci...345.1491E. doi:10.1126/science.1255720. PMID 25237098. (subscription required)
  41. ^ Loveland, Walter (September 19, 2014). "Superheavy carbonyls". Science. 345 (6203): 1451–2. Bibcode:2014Sci...345.1451L. doi:10.1126/science.1259349. PMID 25237088.
  42. ^ Even, Julia (2016). Chemistry aided nuclear physics studies (PDF). Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. doi:10.1051/epjconf/201613107008.
  43. ^ Moody, Ken. "Synthesis of Superheavy Elements". In Schädel, Matthias; Shaughnessy, Dawn (eds.). The Chemistry of Superheavy Elements (2nd ed.). Springer Science & Business Media. pp. 24–8. ISBN 9783642374661.

External links


Bohrium is a synthetic chemical element with symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in a laboratory but is not found in nature. It is radioactive: its most stable known isotope, 270Bh, has a half-life of approximately 61 seconds, though the unconfirmed 278Bh may have a longer half-life of about 690 seconds.

In the periodic table of the elements, it is a d-block transactinide element. It is a member of the 7th period and belongs to the group 7 elements as the fifth member of the 6d series of transition metals. Chemistry experiments have confirmed that bohrium behaves as the heavier homologue to rhenium in group 7. The chemical properties of bohrium are characterized only partly, but they compare well with the chemistry of the other group 7 elements.


Darmstadt (, also UK: , US: , German: [ˈdaɐ̯mʃtat] (listen)) is a city in the state of Hesse in Germany, located in the southern part of the Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt had a population of around 157,437 at the end of 2016. The Darmstadt Larger Urban Zone has 430,993 inhabitants.Darmstadt holds the official title "City of Science" (German: Wissenschaftsstadt) as it is a major centre of scientific institutions, universities, and high-technology companies. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the European Space Operations Centre (ESOC) are located in Darmstadt, as well as GSI Centre for Heavy Ion Research, where several chemical elements such as bohrium (1981), meitnerium (1982), hassium (1984), darmstadtium (1994), roentgenium (1994), and copernicium (1996) were discovered. The existence of the following elements were also confirmed at GSI Centre for Heavy Ion Research: nihonium (2012), flerovium (2009), moscovium (2012), livermorium (2010), and tennessine (2012). The Facility for Antiproton and Ion Research (FAIR) is an international accelerator facility under construction. Darmstadt is also the seat of the world's oldest pharmaceutical company, Merck, which is the city's largest employer.

Darmstadt was formerly the capital of a sovereign country, the Grand Duchy of Hesse and its successor, the People's State of Hesse, a federal state of Germany. As the capital of an increasingly prosperous duchy, the city gained some international prominence and remains one of the wealthiest cities in Europe. In the 20th century, industry (especially chemicals), as well as large science and electronics (later information technology) sectors became increasingly important, and are still a major part of the city's economy. It is also home to the football club SV Darmstadt 98.

Extended periodic table

An extended periodic table theorizes about chemical elements beyond those currently known in the periodic table and proven up through oganesson, which completes the seventh period (row) in the periodic table at atomic number (Z) 118.

If further elements with higher atomic numbers than this are discovered, they will be placed in additional periods, laid out (as with the existing periods) to illustrate periodically recurring trends in the properties of the elements concerned. Any additional periods are expected to contain a larger number of elements than the seventh period, as they are calculated to have an additional so-called g-block, containing at least 18 elements with partially filled g-orbitals in each period. An eight-period table containing this block was suggested by Glenn T. Seaborg in 1969. The first element of the g-block may have atomic number 121, and thus would have the systematic name unbiunium. Despite many searches, no elements in this region have been synthesized or discovered in nature.According to the orbital approximation in quantum mechanical descriptions of atomic structure, the g-block would correspond to elements with partially filled g-orbitals, but spin-orbit coupling effects reduce the validity of the orbital approximation substantially for elements of high atomic number. While Seaborg's version of the extended period had the heavier elements following the pattern set by lighter elements, as it did not take into account relativistic effects, models that take relativistic effects into account do not. Pekka Pyykkö and Burkhard Fricke used computer modeling to calculate the positions of elements up to Z = 172, and found that several were displaced from the Madelung rule. As a result of uncertainty and variability in predictions of chemical and physical properties of elements beyond 120, there is currently no consensus on their placement in the extended periodic table.

Elements in this region are likely to be highly unstable with respect to radioactive decay and undergo alpha decay or spontaneous fission with extremely short half-lives, though element 126 is hypothesized to be within an island of stability that is resistant to fission but not to alpha decay. Other islands of stability beyond the known elements may also be possible, including one theorized around element 164, though the extent of stabilizing effects from closed nuclear shells is uncertain. It is not clear how many elements beyond the expected island of stability are physically possible, whether period 8 is complete, or if there is a period 9. The International Union of Pure and Applied Chemistry (IUPAC) defines an element to exist if its lifetime is longer than 10−14 seconds (0.01 picoseconds, or 10 femtoseconds), which is the time it takes for the nucleus to form an electron cloud.As early as 1940, it was noted that a simplistic interpretation of the relativistic Dirac equation runs into problems with electron orbitals at Z > 1/α ≈ 137, suggesting that neutral atoms cannot exist beyond element 137, and that a periodic table of elements based on electron orbitals therefore breaks down at this point. On the other hand, a more rigorous analysis calculates the analogous limit to be Z ≈ 173 where the 1s subshell dives into the Dirac sea, and that it is instead not neutral atoms that cannot exist beyond element 173, but bare nuclei, thus posing no obstacle to the further extension of the periodic system. Atoms beyond this critical atomic number are called supercritical atoms.

Gottfried Münzenberg

Gottfried Münzenberg (born 17 March 1940 in Nordhausen, Province of Saxony) is a German physicist.

He studied physics at Justus-Liebig-Universität in Giessen and Leopold-Franzens-Universität Innsbruck and completed his studies with a Ph.D. at the University of Giessen, Germany, in 1971. In 1976 he moved to the department of nuclear chemistry at GSI in Darmstadt, Germany, which was headed by Peter Armbruster. He played a leading role in the construction of SHIP, the 'Separator of Heavy Ion Reaction Products'. He was the driving force in the discovery of the cold heavy ion fusion and the discovery of the elements bohrium (Bh Z=107), hassium (Hs Z=108), meitnerium (Mt Z=109), darmstadtium (Ds Z=110), roentgenium (Rg Z=111) and copernicium (Cn Z=112). In 1984 he became head of the new GSI project, the fragment separator, a project which opened new research topics, such as interactions of relativistic heavy ions with matter, production and separation of exotic nuclear beams and structure of exotic nuclei. He directed the Nuclear Structure and Nuclear Chemistry department of the GSI and was professor of physics at the University of Mainz until he retired in March 2005.

Gottfried Münzenberg was born into a family of Protestant ministers (father Pastor Heinz and mother Helene Münzenberg). All his life he is deeply concerned about the philosophical and theological implications of physics.

Among the rewards he received should be mentioned the Röntgen-Prize of the University of Giessen in 1983 and (together with Sigurd Hofmann) the Otto-Hahn-Prize of the city of Frankfurt/Main in 1996.

Group 10 element

Group 10, numbered by current IUPAC style, is the group of chemical elements in the periodic table that consists of nickel (Ni), palladium (Pd), platinum (Pt), and perhaps also the chemically uncharacterized darmstadtium (Ds). All are d-block transition metals. All known isotopes of darmstadtium are radioactive with short half-lives, and are not known to occur in nature; only minute quantities have been synthesized in laboratories.

Like other groups, the members of this group show patterns in electron configuration, especially in the outermost shells, although for this group they are particularly weak, with palladium being an exceptional case. The relativistic stabilization of the 7s orbital is the explanation to the predicted electron configuration of darmstadtium, which, unusually for this group, conforms to that predicted by the Aufbau principle.

Group 8 element

Group 8 is a group (column) of chemical elements in the periodic table. It consists of iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs). They are all transition metals.

Like other groups, the members of this family show patterns in electron configuration, especially in the outermost shells, resulting in trends in chemical behavior.

"Group 8" is the modern standard designation for this group, adopted by the IUPAC in 1990.In the older group naming systems, this group was combined with group 9 (cobalt, rhodium, iridium, and meitnerium) and group 10 (nickel, palladium, platinum, and darmstadtium) and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system" (and in Mendeleev's original table).

Group 8 (current IUPAC) should not be confused with "group VIIIA" in the CAS system, which is group 18 (current IUPAC), the noble gases.

While groups (columns) of the periodic table are sometimes named after their lighter member (as in "the oxygen group" for group 16), the term iron group does not mean "group 8". Most often, it means a set of adjacent elements on period (row) 4 of the table that includes iron, such as chromium, manganese, iron, cobalt, and nickel; or only the last three; or some other set — depending on the context.

Group 9 element

Group 9 is a group (column) of chemical elements in the periodic table. Members are cobalt (Co), rhodium (Rh), iridium (Ir) and meitnerium (Mt). These are all transition metals in the d-block.

Like other groups, the members of this family show patterns in electron configuration, especially in the outermost shells, resulting in trends in chemical behavior; however, rhodium deviates from the pattern.

"Group 9" is the modern standard designation for this group, adopted by the IUPAC in 1990.In the older group naming systems, this group was combined with group 8 (iron, ruthenium, osmium, and hassium) and group 10 (nickel, palladium, platinum, and darmstadtium) and called group "VIIIB" in the Chemical Abstracts Service (CAS) "U.S. system", or "VIII" in the old IUPAC (pre-1990) "European system" (and in Mendeleev's original table).

Inorganic compounds by element

This is a list of common inorganic and organometallic compounds of each element. Compounds are listed alphabetically by their chemical element name rather than by symbol, as in list of inorganic compounds.

Isotopes of meitnerium

Meitnerium (109Mt) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 266Mt in 1982, and this is also the only isotope directly synthesized; all other isotopes are only known as decay products of heavier elements. There are eight known isotopes, from 266Mt to 278Mt. There may also be two isomers. The longest-lived of the known isotopes is 278Mt with a half-life of 8 seconds. The unconfirmed heavier 282Mt appears to have an even longer half-life of 67 seconds.

Lise Meitner

Lise Meitner (; German: [ˈmaɪtnɐ]; 7 November 1878 – 27 October 1968) was an Austrian-Swedish physicist who worked on radioactivity and nuclear physics. Meitner, Otto Hahn and Otto Robert Frisch led the small group of scientists who first discovered nuclear fission of uranium when it absorbed an extra neutron; the results were published in early 1939. Meitner, Hahn and Frisch understood that the fission process, which splits the atomic nucleus of uranium into two smaller nuclei, must be accompanied by an enormous release of energy. Their research into nuclear fission helped to pioneer nuclear reactors to generate electricity as well as the development of nuclear weapons during World War II.

Meitner spent most of her scientific career in Berlin, Germany, where she was a physics professor and a department head at the Kaiser Wilhelm Institute; she was the first woman to become a full professor of physics in Germany. She lost these positions in the 1930s because of the anti-Jewish Nuremberg Laws of Nazi Germany, and in 1938 she fled to Sweden, where she lived for many years, ultimately becoming a Swedish citizen.

Meitner received many awards and honors late in her life, but she and Otto Frisch, did not share in the 1944 Nobel Prize in Chemistry for nuclear fission that was awarded exclusively to her long-time collaborator Otto Hahn. In the 1990s, the records of the committee that decided on that prize were opened. Based on this information, several scientists and journalists have called her exclusion "unjust", and Meitner has received many posthumous honors, including naming chemical element 109 meitnerium in 1992. Despite not having been awarded the Nobel Prize, Lise Meitner was invited to attend the Lindau Nobel Laureate Meeting in 1962.

List of chemical elements naming controversies

The currently accepted names and symbols of the chemical elements are determined by the International Union of Pure and Applied Chemistry (IUPAC), usually following recommendations by the recognized discoverers of each element. However the names of several elements have been the subject of controversies until IUPAC established an official name. In most cases the controversy was due to a priority dispute as to who first found conclusive evidence for the existence of an element, or as to what evidence was in fact conclusive.

Major actinide

Major actinides is a term used in the nuclear power industry that refers to the plutonium and uranium present in used nuclear fuel, as opposed to the minor actinides neptunium, americium, curium, berkelium, and californium.

Minor actinide

The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkelium (element 97), californium (element 98), einsteinium (element 99), and fermium (element 100). The most important isotopes in spent nuclear fuel are neptunium-237, americium-241, americium-243, curium-242 through -248, and californium-249 through -252.

Plutonium and the minor actinides will be responsible for the bulk of the radiotoxicity and heat generation of used nuclear fuel in the medium term (300 to 20,000 years in the future).The plutonium from a power reactor tends to have a greater amount of Pu-241 than the plutonium generated by the lower burnup operations designed to create weapons-grade plutonium. Because the reactor-grade plutonium contains so much Pu-241 the presence of americium-241 makes the plutonium less suitable for making a nuclear weapon. The ingrowth of americium in plutonium is one of the methods for identifying the origin of an unknown sample of plutonium and the time since it was last separated chemically from the americium.

Americium is commonly used in industry as both an alpha particle and as a low photon energy gamma radiation source. For instance it is used in many smoke detectors. Americium can be formed by neutron capture of Pu-239 and Pu-240 forming Pu-241 which then beta decays to Am-241. In general, as the energy of the neutrons increases, the ratio of the fission cross section to the neutron capture cross section changes in favour of fission. Hence if MOX is used in a thermal reactor such as a boiling water reactor (BWR) or pressurized water reactor (PWR) then more americium can be expected in the used fuel than that from a fast neutron reactor.Some of the minor actinides have been found in fallout from bomb tests. See Actinides in the environment for details.

Peter Armbruster

Peter Armbruster (born 25 July 1931 in Dachau, Bavaria) is a physicist at the Gesellschaft für Schwerionenforschung (GSI) facility in Darmstadt, Germany, and is credited with co-discovering elements 107 (bohrium), 108 (hassium), 109 (meitnerium), 110 (darmstadtium), 111 (roentgenium), and 112 (copernicium) with research partner Gottfried Münzenberg.

He studied physics at the Technical University of Stuttgart and Munich, and obtained his Ph.D. in 1961 under Heinz Maier-Leibnitz, Technical University of Munich. His major research fields are fission, interaction of heavy ions in matter and atomic physics with fission product beams at the Research Centre of Jülich (1965 to 1970). He was Senior Scientist at the Gesellschaft für Schwerionenforschung Darmstadt, GSI, from 1971 to 1996. From 1989 to 1992 he was research Director of the European Institut Laue-Langevin (ILL), Grenoble. Since 1996 he has been involved in a project on incineration of nuclear waste by spallation and fission reactions.

He was affiliated as professor to the University of Cologne (1968) and the Darmstadt University of Technology since 1984.

He has received many awards for his work, including the Max-Born Medal awarded by the Institute of Physics London and the Deutsche Physikalische Gesellschaft in 1988, and the Stern-Gerlach Medal awarded by the Deutsche Physikalische Gesellschaft in 1997. The American Chemical Society honoured Peter Armbruster 1997 as one of few non-Americans with the 'Nuclear Chemistry Award'.


Seaborgium is a synthetic chemical element with symbol Sg and atomic number 106. It is named after the American nuclear chemist Glenn T. Seaborg. As a synthetic element, it can be created in a laboratory but is not found in nature. It is also radioactive; the most stable known isotope, 269Sg, has a half-life of approximately 14 minutes.In the periodic table of the elements, it is a d-block transactinide element. It is a member of the 7th period and belongs to the group 6 elements as the fourth member of the 6d series of transition metals. Chemistry experiments have confirmed that seaborgium behaves as the heavier homologue to tungsten in group 6. The chemical properties of seaborgium are characterized only partly, but they compare well with the chemistry of the other group 6 elements.

In 1974, a few atoms of seaborgium were produced in laboratories in the Soviet Union and in the United States. The priority of the discovery and therefore the naming of the element was disputed between Soviet and American scientists, and it was not until 1997 that International Union of Pure and Applied Chemistry (IUPAC) established seaborgium as the official name for the element. It is one of only two elements named after a living person at the time of naming, the other being oganesson, element 118.

Synthetic element

In chemistry, a synthetic element is a chemical element that does not occur naturally on Earth, and can only be created artificially. So far, 24 synthetic elements have been created (those with atomic numbers 95–118). All are unstable, decaying with half-lives ranging from 15.6 million years to a few hundred microseconds.

Seven other elements were first created artificially and thus considered synthetic, but later discovered to exist naturally (in trace quantities) as well; among them plutonium—first synthesized in 1940—the one best known to laypeople, because of its use in atomic bombs and nuclear reactors.

Transactinide element

In chemistry, transactinide elements (also transactinides, superheavy elements, or super-heavy elements) are the chemical elements with atomic numbers from 104 to 120. Their atomic numbers are immediately greater than those of the actinides, the heaviest of which is lawrencium (atomic number 103).

Glenn T. Seaborg first proposed the actinide concept, which led to the acceptance of the actinide series. He also proposed the transactinide series ranging from element 104 to 121 and the superactinide series approximately spanning elements 122 to 153. The transactinide seaborgium was named in his honor.By definition, transactinide elements are also transuranic elements, i.e. have an atomic number greater than uranium (92).

The transactinide elements all have electrons in the 6d subshell in their ground state. Except for rutherfordium and dubnium, even the longest-lasting isotopes of transactinide elements have extremely short half-lives of minutes or less. The element naming controversy involved the first five or six transactinide elements. These elements thus used systematic names for many years after their discovery had been confirmed. (Usually the systematic names are replaced with permanent names proposed by the discoverers relatively shortly after a discovery has been confirmed.)

Transactinides are radioactive and have only been obtained synthetically in laboratories. None of these elements have ever been collected in a macroscopic sample. Transactinide elements are all named after physicists and chemists or important locations involved in the synthesis of the elements.

IUPAC defines an element to exist if its lifetime is longer than 10−14 seconds, which is the time it takes for the nucleus to form an electron cloud.

Transfermium Wars

The names for the chemical elements 104 to 106 were the subject of a major controversy starting in the 1960s, described by some nuclear chemists as the Transfermium Wars because it concerned the elements following fermium (element 100) on the periodic table.

This controversy arose from disputes between American scientists and Soviet scientists as to which had first isolated these elements. The final resolution of this controversy in 1997 also decided the names of elements 107 to 109.

Transuranium element

The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.