Mating call

A mating call is the auditory signal used by animals to attract mates. It can occur in males or females, but literature is abundantly favored toward researching mating calls in males. In addition, mating calls are often the subject of mate choice, in which the preferences of one gender for a certain type of mating call can drive sexual selection in a species. This can result in sympatric speciation of some animals, where two species diverge from each other while living in the same environment.

There are many different mechanisms to produce mating calls, which can be broadly categorized into vocalizations and mechanical calls. Vocalizations are considered as sounds produced by the larynx and are often seen in species of birds, mammals, amphibians, and insects. Mechanical calls refer to any other type of sound that the animal produces using unique body parts and/or tools for communication with potential mates. Examples include crickets that vibrate their wings, birds that flap their feathers, and frogs that use an air sac instead of lungs.

Vocalizations

Birds

Song Sparrow (8381415679)
Song sparrow
Mating call of Japanese bush warbler, Horornis diphone

The use of vocalizations is widespread in avian species and are often used to attract mates. Different aspects and features of bird song such as structure, amplitude and frequency have evolved as a result of sexual selection.[1]

Large song repertoires are preferred by females of many avian species.[2] One hypothesis for this is that song repertoire is positively correlated with the size of the brain's song control nucleus (HVC). A large HVC would indicate developmental success. In song sparrows, males with large repertoires had larger HVCs, better body condition and lower heterophil-to-lymphocyte ratios indicating better immune health. This supports the idea that song sparrows with large song repertoires have better lifetime fitness and that song repertoires are honest indicators of the male's "quality". Possible explanations for this adaptation include direct benefits to the female, such as superior parental care or territory defense, and indirect benefits, such as good genes for their offspring.[2]

Japanese bush warbler songs from island populations have an acoustically simple structure when compared to mainland populations.[3] Song complexity is correlated with higher levels of sexual selection in mainland populations, showing that a more complex song structure is advantageous in an environment with high levels of sexual selection. Another example is in purple-crowned fairywrens; larger males of this species sing advertising songs at a lower frequency than smaller rival males. Since body size is a characteristic of good health, lower frequency calls are a form of honest signaling. Negative correlation between body size and call frequency is supported across multiple species within the taxa.[4] In the rock sparrow, song frequency is positively associated with reproductive success. Slower song rate is associated with age and is preferred by females. Reproductive status of the individual is communicated through higher maximum frequency. There was also positive correlation between age and extra pair copulation frequency.[1]

Red deer stag 2009 denmark
Red deer stag during rut

Bird calls are also known to continue after pair formation in several socially monogamous bird species. In one experimental population of zebra finches, there was increased singing activity by the male after breeding.[5] This increase is positively correlated with the partner's reproductive investment. The female finches were bred in cages with two subsequent males that differed with varying amounts of song output. Females produced larger eggs with more orange yolks when paired with a male with a high song output. This suggests that the relative amount of song production in paired zebra finch males might function to stimulate the partner rather than to attract extra-pair females.[5]

Mammals

During the breeding season, mammals will call out to the opposite sex. Male koalas that are bigger will let out a different sound than smaller koalas. The bigger males which are routinely sought out for are called sires. Females choose sires because of indirect benefits that their offspring could inherit, like larger bodies.[6] Non-sires and females do not vary in their body mass and can reject a male by screaming or hitting him. Male-male competition is rarely exhibited in koalas.[7] Acoustic signaling is a type of call that can be used from a significant distance encoding an organism's location, condition and identity.[8] Sac-winged bats display acoustic signaling, which is often interpreted as songs. When females hear these songs, named a 'whistle', they call onto the males to breed with a screech of their own. This action is termed 'calling of the sexes'.[9] Red deer and spotted hyenas along with other mammals also perform acoustic signaling.[10][11]

Tungara Frog (Engystomops pustulosus) Calling
Tungara frog

Amphibians

Most frogs use an air sac located under their mouth to produce mating calls. Air from the lungs channels to the air sac to inflate it, and the air sac resonates to produce a mating call. The larynx is larger and more developed in males, which causes their call to be louder and stronger[12]

In the túngara frog, males use a whining call followed by up to seven clucks. Males who have a whine-cluck call are more successful in attracting females than males whose call is a whine alone. The ability to produce clucks is due to a specialized fibrous mass attached to the frog's vocal folds, creating an unusual vocalization similar to the two-voiced songs found in some birds.[13]

In the common toad, sexual competition is driven in large part by fighting—successful males often physically displaced other males from the backs of a female in order to gain access to mating with that female. Larger males were more successful in such takeovers, and had higher reproductive success as a result.[14] However, the vocalizations of these toads provide a reliable signal of body size and thus fighting ability, allowing contests for possession of females to be settled without risk of injury.[15]

Insects

While mating calls in insects are usually associated with mechanical mating calls, such as in crickets, several species of insects use vocalizations to attract mates. In the Asian corn borer, males emit clicking sounds that mimic the echolocation of bats which prey on the moths. They then take advantage of the female's "freezing" response to mate with the female.

In the Japanese lichen moth, however, the female is able to distinguish between the sounds made by males and those made by bats and other predators. As a result, the males use ultrasonic clicking as a more conventional mating signal, compared to the "deceptive" courtship song used in the Asian Corn Bearer.[16]

Mechanical calls

Mating calls also take form through mechanical processes. Animals that are unable to vocalize their call may use their body to attract mates.

Crickets

Mating call of field cricket, Gryllus pennsylvanicus

In the field cricket, Gryllus integer, males rub their wings together to create a rapid trill that produces sound.[17] Males individually vary in the durations of their trilling or, what is more sophisticatedly called, bout length. The bout length of each male is heritable and passed on to his future offspring. Also, females prefer to mate with males that have longer bout lengths.[18] The end result is that males with longer bout lengths produce more offspring than males with shorter bout lengths.

Other factors that influence the formation of these bout lengths include temperature and predation. In field crickets, males prefer warmer sites for mating as shown by an increase in the frequency of their mating calls when they were living in warmer climates.[19] Predation also affects the mating calls of field crickets. When in a potentially dangerous environment, males cease calling for longer periods of time when interrupted by a predator cue.[17] This suggests that there is an interplay between intensity of mating call and risk of predation.

Sonation

As described in Sonation, "the term sonate is described as the deliberate production of sounds, not from the throat, but rather from structures such as the bill, wings, tail, feet and body feathers, or by the use of tools". In several amphibian and fish species, other special structures are used to produce different sounds to attract mates. Birds are common users of sonation, although several amphibian and fish species have been shown to use sonation as a form of mating call as well. In general, sonation is one factor that plays into how a female may choose a mate. There are other features of mating such as territory defense or mate defense, which contribute to the cause of finding suitable mates.

As outlined below, each species uses a distinct method to produce a non-vocal mating call in order to be most successful in attracting mates. The examples below represent the most common examples found in the literature, although many more examples may exist in nature that are still currently unknown.

Feather of male Pavo cristatus (Indian peafowl)
Feather of male Pavo cristatus (Indian peafowl). These feathers are used in sonation to create infrasound with intent of mating.

Birds

The feathers, the beak, the feet, and different tools are all used by different bird species to produce mating calls to attract mates. For example, the snipe uses its feathers to produce a "drumming" sound to attract mates during a special mating dance. Snipes used specialized tail feathers to create a sound described as a "rattle" or "throbbing" noise.[20] Palm cockatoos use sticks to drum on hollow trees, creating a loud noise to attract the attention of mates.[21] Bustards are large, highly terrestrial birds that stamp their feet during mating displays to attract mates.[22] Mirafra apiata, commonly known as the Clapper lark, engages in a complex display flight that is characterized by the rattling of the wings.[23]

Many species of birds, such as manakins and hummingbirds, use sonation for mating calls. However, peacocks exhibit a feature of sonation that reveals intrasexual and intersexual properties of this type of mating call.[24] Males move their feathers to produce a low-frequency sonation (infrasound) and sonate more frequently in response to a sonation by other males. This is attributable to a male's desire to advertise its presence above other males looking for mates, suggesting that sonation carries an intrasexual function. In addition, females show increased alertness when hearing the infrasound signals produced by males' wing-shaking, which highlights how the two sexes use sonation to interact with each other.[24]

Fish

While most bird species use their feathers, tools, or feet to produce sounds and attract mates, many fish species use specialized internal organs to sonate. In Gadoid fish, special muscles attached to the swimbladder assist in the production of knocking or grunting sounds to attract mates.[25]

Lepidoptera

In many lepidoptera species including the adzuki bean borer (Ostrinia scapulalis), ultrasonic mating calls are used to attract females and keep them motionless during copulation. These pulses have an average frequency of 40 kHz.[26]

Speciation due to mating call differences

Differences in mating calls can lead to the separation of different populations within a species. These differences can be due to several factors, including body size, temperature, and other ecological factors. These can arise in the form of tonal, temporal, or behavioral variations in mating calls that subsequently lead to the separation of populations. The separation of these populations due to differences in mating call and mating call preferences can lead to the evolution and creation of new, unique species.

This type of speciation is most often sympatric speciation: where two or more species are created from an existing parent species that all live in the same geographic location. Although there is an absence of research on mammals and birds, this phenomenon has been heavily researched in several frog species around the world. The examples below illuminate speciation due to mating call differences in several frog species around the world. These distinct species are included because they are the focus of the majority of current research.

Gastrophryne olivacea01a
Two Microhyla olivacea in a mating position

Microhyla olivacea and Microhyla carolinensis

These two species of narrow-mouthed frog live in the southern United States and have overlapping ranges in Texas and Oklahoma. Researchers have discovered that these two different species alter the frequencies of their call in the overlap zone of their ranges. For example, the Microhyla olivacea mating call has a significantly lower midpoint frequency in the overlap zone than the mating call outside this zone. This leads researchers to suggest that the differences in mating call in the overlap zone of M. olivacea and M. carolinensis act as an isolating mechanism between the two species. They also hypothesize that the evolution of these differences in mating call led to the separation of these two different frog species from one common species.[27]

Engystomops petersi 1
Engystomops petersi

Engystomops petersi

Female preferences for specific male mating calls can lead to sexual selection in mating calls. Females may prefer a specific type of call that certain males possess, in which only those males will be able to mate with females and pass on their genes and specific mating call. As a result, this female preference may lead to divergence of two species.

In Amazonian frogs, sexual selection for different calls has led to the behavioral isolation and speciation of the túngara frog (Engystomops petersi).[28] From genetic and mating call analysis and, researchers were able to identify that two populations of the túngara frog were almost completely reproductively isolated. From their research, scientists believe that differences in female preferences for mating call type have led to the evolution of this speciation process. Specifically, the Yasuní population females prefer the male mating call that includes a whine, while the other population does not prefer this whine. Subsequently, the Yasuní males include the whine in their call, while the other males do not. For this reason, the differences in call have led to the mechanical separation of this species.

Pseudacris triseriata

Western Chorus Frog (6922520670)
A Chorus Frog making a mating call

Several studies have shown that the species Pseudacris triseriata (Chorus Frog) can be divided into two subspecies, P. t. maculata and P. t. triseriata, due to speciation events from mating call differences. The Chorus Frog has a very large home range, from New Mexico to Southern Canada. These two subspecies have an overlapping range from South Dakota to Oklahoma. In this overlapping range, both the call duration and the calls per second for each species is much different than outside of this range. This means that calls of these two subspecies are more similar outside of this range, and starkly different within the range. For this reason, scientists suggest that these subspecies evolved from differences in mating call type.[29] Additionally, these subspecies are rarely recorded to have hybrid offspring, which further suggests that there is complete speciation due to mating call differences. The differences in mating calls also help to reinforce the speciation process.

References

  1. ^ a b Nemeth, E; Kempenaers, B; Matessi, G; Brumm, H (2012). "Rock sparrow song reflects male age and reproductive success". PLOS One. 7 (8): e43259. doi:10.1371/journal.pone.0043259. PMC 3426517. PMID 22927955.
  2. ^ a b Pfaff, JA; Zanette, L; MacDougall-Shackleton, SA; MacDougall-Shackleton, EA (Aug 22, 2007). "Song repertoire size varies with HVC volume and is indicative of male quality in song sparrows (Melospiza melodia)". Proceedings of the Royal Society B. 274 (1621): 2035–40. doi:10.1098/rspb.2007.0170. PMC 2275172. PMID 17567560.
  3. ^ Hamao, Shoji (2012). "Acoustic structure of songs in island populations of the Japanese bush warbler, Cettia diphone, in relation to sexual selection". Journal of Ethology. 31 (1): 9–15. doi:10.1007/s10164-012-0341-1.
  4. ^ Hall, ML; Kingma, SA; Peters, A (2013). "Male songbird indicates body size with low-pitched advertising songs". PLOS One. 8 (2): e56717. doi:10.1371/journal.pone.0056717. PMC 3577745. PMID 23437221.
  5. ^ a b Bolund, Elisabeth; Schielzeth, Holger; Forstmeier, Wolfgang (2012). "Singing activity stimulates partner reproductive investment rather than increasing paternity success in zebra finches". Behavioral Ecology and Sociobiology. 66 (6): 975–984. doi:10.1007/s00265-012-1346-z.
  6. ^ Charlton, B. D.; Ellis; Brumm, J.; Nilsson, K.; Fitch, W. T. (2012). "Female koalas prefer bellows in which lower formants indicate larger males". Animal Behaviour. 84 (6): 1565–1571. doi:10.1016/j.anbehav.2012.09.034.
  7. ^ Ellis, W. A. H.; Bercovitch, F. B. (2011). "Body size and sexual selection in the koala". Behavioral Ecology and Sociobiology. 65 (6): 1229–1235. doi:10.1007/s00265-010-1136-4.
  8. ^ Wilkins, M. R.; Seddon, N.; Safran, R. J. (2013). "Evolutionary divergence in acoustic signals: causes and consequences". Trends in Ecology & Evolution. 28 (3): 156–66. doi:10.1016/j.tree.2012.10.002. PMID 23141110.
  9. ^ Voigt, Christian C.; Behr, Oliver; Caspers, Barbara; von Helversen, Otto; Knörnschild, Mirjam; Mayer, Frieder; Nagy, Martina (2008). "Songs, Scents, and Senses: Sexual Selection in the Greater Sac-Winged Bat, Saccopteryx bilineata". Ecology. 89 (6): 1401–1410. doi:10.1644/08-mamm-s-060.1.
  10. ^ Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behavioural processes 2013; 92, 143–6
  11. ^ Goller, K. V; Fickel, J.; Hofer, H.; Beier, S.; East, M. L. (2013). "Coronavirus genotype diversity and prevalence of infection in wild carnivores in the Serengeti National Park, Tanzania". Archives of Virology. 158 (4): 729–34. doi:10.1007/s00705-012-1562-x. PMID 23212740.
  12. ^ Wilczynski, W.; McClelland, B. E.; Rand, A. S. (1993). "Acoustic, auditory, and morphological divergence in three species of neotropical frog". Journal of Comparative Physiology A. 172 (4): 425–438. doi:10.1007/bf00213524.
  13. ^ Gridi-Papp, M.; Rand, A. S.; Ryan, M. J. (2006-05-04). "Animal communication: Complex call production in the túngara frog". Nature. 441 (7089): 38. doi:10.1038/441038a. ISSN 0028-0836. PMID 16672962.
  14. ^ Davies, N.B.; Halliday, T.R. (November 1979). "Competitive mate searching in male common toads, Bufo bufo". Animal Behaviour. 27: 1253–1267. doi:10.1016/0003-3472(79)90070-8.
  15. ^ Davies, N. B.; Halliday, T. R. (1978-08-17). "Deep croaks and fighting assessment in toads Bufo bufo". Nature. 274 (5672): 683–685. doi:10.1038/274683a0.
  16. ^ Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie; Skals, Niels; Ishikawa, Yukio (2013-06-20). "Evolution of deceptive and true courtship songs in moths". Scientific Reports. 3: 2003. doi:10.1038/srep02003. PMC 3687589. PMID 23788180.
  17. ^ a b Hedrick, A. V. (2000). "Crickets with extravagant mating songs compensate for predation risk with extra caution". Proceedings of the Royal Society B: Biological Sciences. 267 (1444): 671–675. doi:10.1098/rspb.2000.1054. PMC 1690585. PMID 10821611.
  18. ^ Hedrick, AV (1986). "Female preferences for male calling bout duration in a field cricket". Behavioral Ecology and Sociobiology. 19: 73–77. doi:10.1007/bf00303845.
  19. ^ Hedrick, A.; Perez, D.; Lichti, N.; Yew, J. (2002). "Temperature preferences of male field crickets (Gryllus integer) alter their mating calls". Journal of Comparative Physiology A. 188 (10): 799–805. doi:10.1007/s00359-002-0368-9. PMID 12466955.
  20. ^ Bahr, P. H. "On the "bleating" or "drumming" of the snipe (Gallinago coelestis)." Proceedings of the Zoological Society of London. Vol. 77. No. 1. Blackwell Publishing Ltd, 1907
  21. ^ Gray, Patricia M.; et al. (1915). "Enhanced: The Music of Nature and the Nature of Music". Science Online. 291: 52–54.
  22. ^ Alonso, Juan C.; et al. (2010). "Correlates of male mating success in great bustard leks: the effects of age, weight, and display effort". Behavioral Ecology and Sociobiology. 64 (10): 1589–1600. doi:10.1007/s00265-010-0972-6. hdl:10261/76985.
  23. ^ Maclean, Gordon L (1970). "Breeding behaviour of larks in the Kalahari Sandveld" (PDF). Annals of the Natal Museum. 20: 388–401.
  24. ^ a b Freeman, Angela R.; Hare, James F. (2015-04-01). "Infrasound in mating displays: a peacock's tale". Animal Behaviour. 102: 241–250. doi:10.1016/j.anbehav.2015.01.029.
  25. ^ Hawkins, A. D.; Just Rasmussen, Knud (1978). "The calls of gadoid fish". Journal of the Marine Biological Association of the United Kingdom. 58 (4): 891–911. doi:10.1017/s0025315400056848.
  26. ^ Takanashi, Takuma; Nakano, Ryo; Surlykke, Annemarie; Tatsuta, Haruki; Tabata, Jun; Ishikawa, Yukio; Skals, Niels (2010-10-04). "Variation in Courtship Ultrasounds of Three Ostrinia Moths with Different Sex Pheromones". PLOS One. 5 (10): e13144. doi:10.1371/journal.pone.0013144. ISSN 1932-6203. PMID 20957230.
  27. ^ Blair, Frank (1958). "Mating Call in the Speciation of Anuran Amphibians". The American Naturalist. 92 (862): 27–51. doi:10.1086/282007.
  28. ^ Boul, Kathryn E.; Funk, W. Chris; Darst, Catherine R.; Cannatella, David C.; Ryan, Michael J. (2007-02-07). "Sexual selection drives speciation in an Amazonian frog". Proceedings of the Royal Society of London B: Biological Sciences. 274 (1608): 399–406. doi:10.1098/rspb.2006.3736. ISSN 0962-8452. PMC 1702375. PMID 17164204.
  29. ^ Platz, James E. (1989-08-08). "Speciation within the Chorus Frog Pseudacris triseriata: Morphometric and Mating Call Analyses of the Boreal and Western Subspecies". Copeia. 1989 (3): 704–712. doi:10.2307/1445498. JSTOR 1445498.
Atlantic Coast leopard frog

The Atlantic Coast leopard frog (Lithobates kauffeldi; synonym: Rana kauffeldi) is a species of amphibian that is endemic to the United States. As a member of the genus Rana sensu lato, it is classified as a true frog, with typical smooth skin and a narrow waist. Its range stretches along the northern part of Eastern Seaboard, from Connecticut to North Carolina. The species takes its common name from the speckles on its legs and back reminiscent of a leopard pattern.It is one of several species classified as leopard frogs, distinguished as unique through its mating call, genetic differences, habitat, and morphological distinctions.

Buhay

This article refers to the percussive instrument. For the Philippine party-list group, see Buhay Hayaan Yumabong

The buhay (Ukrainian: бугай) (also known as a bugai, buhai, berebenytsia, bika, buga, bochka) is a percussive that is used in Ukraine and is classified as a friction drum. Buhay is the Ukrainian word for great bittern (Botaurus stellaris), and its use as name of the instrument refers to the sound produced. The mating call or contact call of the male Buhay (Botaurus stellaris) is a deep, sighing fog-horn or bull-like boom with a quick rise and an only slightly longer fall, easily audible from a distance of 3 mi (4.8 km) on a calm night.

Hornbostel-Sachs classification number 232.11-92

The buhay consists of a conical barrel (sometimes a wooden bucket). At one end a sheep membrane is stretched with a hole in this skin's center. Through this hole a tuft of horse hair with a knot at one end is passed. Usually two performers are needed to operate the instrument, one to hold the instrument, the other to pull the horsehair with moistened fingers. In recent times versions of the buhay have been made which are held in position by the players feet allowing one player to play the instrument. These instruments can be played successfully by one player without assistance. Five to six different sounds can be obtained from the instrument, depending on the skill of the player.

The buhay plays an important part in New Years and Christmas rituals.

It is used in works by the Ukrainian folk instruments orchestra.

The buhay and local variants is common to Ukraine, Romania, Moldova, Hungary and Lithuania.

The buhay has been used as a leading instrument in the title track on the album "Vidlik" by the Ukrainian electronic experimental music band ONUKA. It is also used as a leading instrument in the "Boogaj Boogie" song by Ukrainian neofolk rock ethnofussion gospel band "Voanerges".

Coquí

Coquí is the common name for several species of small frogs in the genus Eleutherodactylus native to Puerto Rico. They are onomatopoeically named for the very loud mating call which the males of two species, the common coqui and the upland coqui, make at night. The coquí is one of the most common frogs in Puerto Rico, with more than 16 different species found within its territory, including 13 in the El Yunque National Forest. Other species of this genus can be found in the rest of the Caribbean and elsewhere in the Neotropics, in Central and South America. The Eleutherodactylus Coquí is a national symbol to their native island, Puerto Rico. There is a Puerto Rican expression that goes, “Soy de aqui, como el coquí”, which translates to “I’m from here, like the coquí."

Cricket frog

Cricket frogs, genus Acris, are small, North American frogs of the family Hylidae. They occur in northern Mexico (Coahuila), the USA east of the Rocky Mountains, and southern Ontario, Canada.They are more aquatic than other members of the family, and are generally associated with permanent bodies of water with surface vegetation. The common and scientific names refer to their call, which resembles that of a cricket. The two popular subspecies are A. crepitans and A. gryllus. A. crepitans are found in mesic woodlands as well as xeric grasslands, whereas A. gryllus are concentrated in mesic woodlands.

Cricket frogs are able to communicate and attract each other using a specific frequency of their mating call, but it can only be heard by members of the same population. Cricket frogs from other locales are unable to aurally process the new frequency, causing for a genetic differentiation among the species.

Crinia

Crinia is a genus of frog, native to Australia, and part of the family Myobatrachidae. It consists of small frogs, which are distributed throughout most of Australia, excluding the central arid regions. Many of the species within this genus are non-distinguishable through physical characteristics, and can only be distinguished by their calls.

They have unwebbed toes and fingers, most of the species in these genus are polymorphic - meaning that several variations of colour and skin patterning exist in a single population and all species lay their eggs in small clumps in water.

The generic name Crinia likely derives from the Greek verb κρῑνω (krīnō) "to separate" as a reference to the frog’s unwebbed digits, meaning "separated (toes)." Although Johann Jakob von Tschudi did not provide an etymology in 1838, he cited the frog's "free toes" (without webbing) as an important distinctive feature (most frogs have webbed feet).

During the 1950s, 1960s and 1970s a lot of taxonomic work was done on this genus, frogs that were originally thought to be common eastern froglets (Crinia signifera) were described as other species of Crinia by mating call analysis and hybridization experiments. Two species originally described as Crinia were then placed in their own genus, Assa and Paracrinia. One species of both Geocrinia and Taudactylus were split from Crinia and the genus Bryobatrachus was also described only to be recently placed back into Crinia. The moss froglet, (Crinia nimbus) is very different physically and in its tadpole development. Due to the obvious differences with other species in Crinia this species is likely to be placed again into a separate genus.

Female copulatory vocalizations

Female copulatory vocalizations, also called female copulation calls or coital vocalizations, are produced by female primates, including human females, and female non-primates. Copulatory vocalizations usually occur during sexual intercourse and are hence related to sexual activity. Vocalizations that occur before intercourse, for the purpose of attracting mates, are known as mating calls.

In primates, copulation calling is typically observed at the end of mating and there are vast variations between species regarding its occurrence, frequency and form. It is agreed that coital vocalizations fulfill an evolutionary purpose and that they serve as adaptive solutions to problems that the females face, such as infanticide, as well as obtaining high quality sperm.In non-primates, copulatory calling predominantly occurs before copulation in order to attract mates (mating call). Calls vary in frequency (14 Hz to 70,000 Hz) and function. One of the main purposes of females vocalizing is the induction of mate guarding behavior in males. Conversely, calls may also be used in order to attract high ranking mates who can prevent intercourse with the initial partner. This is done to incite male mate competition.

In humans, coital vocalizations are linked to orgasm, hence occurring during copulation and serving as an expression of sexual pleasure. Vocalizations can be used intentionally by women in order to boost the self-esteem of their partner and to cause quicker ejaculation.

Motorbike frog

The motorbike frog (Litoria moorei) is a frog well known in Southwest Australia. It is a ground-dwelling tree frog of the family Hylidae, one of only three species of hylids occurring in that region. Its common name comes from the male frog's mating call, which sounds similar to a motorbike changing up through gears; it is also known as Moore's frog, the western bell frog, western green and golden bell frog, and western green tree frog.

Natterjack toad

The natterjack toad (Epidalea calamita) is a toad native to sandy and heathland areas of Europe. Adults are 60–70 mm in length and are distinguished from common toads by a yellow line down the middle of the back, and parallel paratoid glands. They have relatively short legs, and this gives them a distinctive gait, contrasting with the hopping movement of many other toad species.

Natterjacks have a very loud and distinctive mating call amplified by the single vocal sac found under the chin of the male, so their name literally means the chattering toad - the jack (or toad) that natters (or chatters).

Nick Monaco

Nick Monaco is an electronic music DJ and LGBT advocate. He has released three albums over his career: Mating Call in 2014, Half Naked in 2016, and Heroin Disco in 2018. Monaco is the cofounder of Unisex Records and founder of the lip stick company Freak Flag.

Northern green frog

The northern green frog (Lithobates clamitans melanota) is a subspecies of the green frog, Lithobates clamitans. It is native to the northeastern North America and has been introduced to British Columbia. Its mating call sounds like the single note of a plucked banjo. It is also quite common in the pet trade.

Ormia ochracea

Ormia ochracea is a small yellow nocturnal fly, a parasitoid of crickets. It is notable because of its exceptionally acute directional hearing. The female is attracted by the song of the male cricket and deposits larvae on or around him, as was discovered in 1975 by the zoologist William H. Cade. The fly is found throughout the southern US and into Mexico, though its exact range is not known.

The mating call of the male field cricket is used by Ormia ochracea in locating the cricket. Once a female fly finds a host (male cricket) she deposits a larva which then quickly burrows into the host, emerging about 7 – 10 days later, killing the host. Flies have been observed responding to various cricket songs, but seem to be limited to the family Gryllidae.

The prey cricket Teleogryllus oceanicus has recently shown adaptation by evolving flat wings without sound-producing structures. The flat wing was first observed in 2003 on the Hawaiian island of Kauai, and was also found on neighbouring Oahu two years later. Genetic studies of crickets from each island show that the mutations arose from different genomic variations.

Ormia ochracea has become a model organism in sound localization experiments because of its unique "ears", which are complex structures inside the fly's prothorax near the bases of their front legs. The animal is too small for the time difference of sound arriving at the two ears to be calculated in the usual way, yet it can determine the direction of sound sources with exquisite precision. The tympanic membranes of opposite ears are directly connected mechanically, allowing resolution of nanosecond time differences and requiring a new neural coding strategy.In April 2015, a group from the University of Strathclyde and the MRC/CSO Institute for Hearing Research (IHR) announced that it had created a microphone based on O. ochracea's hearing system, and had been awarded a £430,000 grant by the U.K. Engineering and Physical Sciences Research Council to build and test the hearing aid for three years.

Patrick Saul

Anthony Patrick Hodgins Saul OBE (15 October 1913, Dover – 9 May 1999, London) was an English sound archivist.

Known as Patrick Saul, he was the founder of the British Institute of Recorded Sound, which later became the British Library Sound Archive. His own favourite recording in the archive he created was of the mating call of the haddock.Patrick Saul was created OBE in 1971. When he retired in 1978, Lord Boyle of Handsworth, who was Financial Secretary to the Treasury when the Archive received government funding in the early 1960s, described Patrick Saul's career as one of ‘quite exceptional modesty and humility on the one side and ruthless determination on the other.’He did not have any children and his estate was left to his South American cleaner, who sold his extensive collection of LPs and 78s to Leslie Laine of Revolutions Records in Worthing, West Sussex.

Tadd Dameron

Tadley Ewing Peake Dameron (February 21, 1917 – March 8, 1965) was an American jazz composer, arranger, and pianist. Saxophonist Dexter Gordon called him the "romanticist" of the bop movement, while reviewer Scott Yanow wrote that Dameron was the "definitive arranger/composer of the bop era".

The Mating Call

The Mating Call is a 1928 pre-Code silent drama film about a soldier who returns home from World War I to find his marriage has been annulled and his wife has remarried. The film was produced by Howard Hughes for his Caddo Corporation, and was originally released by Paramount Pictures. It is based on a novel, The Mating Call, by Rex Beach. In 2006, the film was restored and re-released by Turner Classic Movies in partnership with the University of Nevada, Las Vegas, along with two other Hughes-produced films Two Arabian Knights (1927) and The Racket (1928). Renée Adorée had a brief nude scene in the film.

The Prestige Recordings

The Prestige Recordings is a box set by jazz musician John Coltrane.

Toadfish

Toadfish is the common name for a variety of species from several different families of fish, usually because of their toad-like appearance. "Dogfish" is a name for certain species along the gulf coast.

Tokay gecko

The tokay gecko (Gekko gecko) is a nocturnal arboreal gecko in the genus Gekko, the true geckos. It is native to Asia and some Pacific Islands.

Túngara frog

The túngara frog (Engystomops pustulosus; formerly known as Physalaemus pustulosus) is a species of frog in the family Leptodactylidae. Its local Spanish name is sapito de pustulas ("pustulated toadlet").

It is found in Belize, Colombia, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Trinidad and Tobago, Venezuela, and possibly Guyana.

Its natural habitats are subtropical or tropical dry forest, dry savanna, moist savanna, subtropical or tropical dry lowland grassland, subtropical or tropical seasonally wet or flooded lowland grassland, freshwater marshes, intermittent freshwater marshes, pastureland, heavily degraded former forest, ponds, and canals and ditches.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.