Macroecology

Macroecology is the subfield of ecology that deals with the study of relationships between organisms and their environment at large spatial scales to characterise and explain statistical patterns of abundance, distribution and diversity. The term was coined by James Brown of the University of New Mexico and Brian Maurer of Michigan State University in a 1989 paper in Science.[1]

Macroecology approaches the idea of studying ecosystems using a "top down" approach. It seeks understanding through the study of the properties of the system as a whole; Kevin Gaston and Tim Blackburn make the analogy to seeing the forest for the trees.[2]

Macroecology examines how global development in climate change affect wildlife populations. Classic ecological questions amenable to study through the techniques of macroecology include questions of species richness, latitudinal gradients in species diversity, the species-area curve, range size, body size, and species abundance. For example, the relationship between abundance and range size (why species that maintain large local population sizes tend to be widely distributed, while species that are less abundant tend to have restricted ranges) has received much attention.[3]

References

  1. ^ Brown J.H. & Maurer B.A. (1989) Macroecology: the division of food and space among species on continents. Science, 243, 1145-1150.
  2. ^ Gaston, K.J. and T.M. Blackburn. 2000. Pattern and Process in Macroecology. Blackwell Science. ISBN 0-632-05653-3
  3. ^ Brown, J.H. (1995). Macroecology. University of Chicago Press. ISBN 978-0-226-07614-0.

External links

Scientific journals covering macroecology:

Bacterivore

Bacterivores are free-living, generally heterotrophic organisms, exclusively microscopic, which obtain energy and nutrients primarily or entirely from the consumption of bacteria. Many species of amoeba are bacterivores, as well as other types of protozoans. Commonly, all species of bacteria will be prey, but spores of some species, such as Clostridium perfringens, will never be prey, because of their cellular attributes.

Copiotroph

A copiotroph is an organism found in environments rich in nutrients, particularly carbon. They are the opposite to oligotrophs, which survive in much lower carbon concentrations.

Copiotrophic organisms tend to grow in high organic substrate conditions. For example, copiotrophic organisms grow in Sewage lagoons. They grow in organic substrate conditions up to 100x higher than oligotrophs.

Dominance (ecology)

Ecological dominance is the degree to which a taxon is more numerous than its competitors in an ecological community, or makes up more of the biomass.

Most ecological communities are defined by their dominant species.

In many examples of wet woodland in western Europe, the dominant tree is alder (Alnus glutinosa).

In temperate bogs, the dominant vegetation is usually species of Sphagnum moss.

Tidal swamps in the tropics are usually dominated by species of mangrove (Rhizophoraceae)

Some sea floor communities are dominated by brittle stars.

Exposed rocky shorelines are dominated by sessile organisms such as barnacles and limpets.

Feeding frenzy

In ecology, a feeding frenzy occurs when predators are overwhelmed by the amount of prey available. For example, a large school of fish can cause nearby sharks, such as the lemon shark, to enter into a feeding frenzy. This can cause the sharks to go wild, biting anything that moves, including each other or anything else within biting range. Another functional explanation for feeding frenzy is competition amongst predators. This term is most often used when referring to sharks or piranhas. It has also been used as a term within journalism.

Global Ecology and Biogeography

Global Ecology and Biogeography is a bimonthly peer-reviewed scientific journal that was established in 1991. It covers research in the field of macroecology. The current editor-in-chief is Brian McGill. According to the Journal Citation Reports, the journal has a 2010 impact factor of 5.273, ranking it first among 42 journals in the category "Geography, Physical" and 7th out of 129 journals in the category "Ecology", and 4th in the category "Biodiversity and Conservation".

James Brown (ecologist)

James Hemphill Brown (born 1942) is an American biologist and academic.

He is an ecologist, and as of 2001 a Distinguished Professor of Biology at the University of New Mexico. His work has focused on 3 distinct aspects of ecology: 1) the population and community ecology of rodents and harvester ants in the Chihuahuan Desert, 2) large-scale questions relating to the distribution of body size, abundance and geographic range of animals, leading to the development of the field of macroecology, a term that was coined in a paper Brown co-authored with Brian Maurer of Michigan State University. and 3) the Metabolic Theory of Ecology. In 2005 he was awarded the Robert H. MacArthur Award by the Ecological Society of America for his work, including his work toward a metabolic theory of ecology. Between 1969 and 2011 he was awarded over $18.4 million in grants for his research.

Latitudinal gradients in species diversity

Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient (LDG). The LDG is one of the most widely recognized patterns in ecology. The LDG has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation (elevational diversity gradient), though this is less well-studiedExplaining the latitudinal diversity gradient has been called one of the great contemporary challenges of biogeography and macroecology (Willig et al. 2003, Pimm and Brown 2004, Cardillo et al. 2005). The question "What determines patterns of species diversity?" was among the 25 key research themes for the future identified in 125th Anniversary issue of Science (July 2005). There is a lack of consensus among ecologists about the mechanisms underlying the pattern, and many hypotheses have been proposed and debated. A recent review noted that among the many conundrums associated with the LDG (or LBG, Latitudinal Biodiversity Gradient) the causal relationship between rates of molecular evolution and speciation has yet to be demonstrated.

Understanding the global distribution of biodiversity is one of the most significant objectives for ecologists and biogeographers. Beyond purely scientific goals and satisfying curiosity, this understanding is essential for applied issues of major concern to humankind, such as the spread of invasive species, the control of diseases and their vectors, and the likely effects of global climate change on the maintenance of biodiversity (Gaston 2000). Tropical areas play prominent roles in the understanding of the distribution of biodiversity, as their rates of habitat degradation and biodiversity loss are exceptionally high.

Mesotrophic soil

Mesotrophic soils are soils with a moderate inherent fertility. An indicator of soil fertility is its base status, which is expressed as a ratio relating the major nutrient cations (calcium, magnesium, potassium and sodium) found there to the soil's clay percentage. This is commonly expressed in hundredths of a mole of cations per kilogram of clay, i.e. cmol (+) kg−1 clay.

Mycotroph

A mycotroph is a plant that gets all or part of its carbon, water, or nutrient supply through symbiotic association with fungi. The term can refer to plants that engage in either of two distinct symbioses with fungi:

Many mycotrophs have a mutualistic association with fungi in any of several forms of mycorrhiza. The majority of plant species are mycotrophic in this sense. Examples include Burmanniaceae.

Some mycotrophs are parasitic upon fungi in an association known as myco-heterotrophy.

Occupancy frequency distribution

In macroecology and community ecology, an occupancy frequency distribution (OFD) is the distribution of the numbers of species occupying different numbers of areas. It was first reported in 1918 by the Danish botanist Christen C. Raunkiær in his study on plant communities. The OFD is also known as the species-range size distribution in literature.

Occupancy–abundance relationship

In ecology, the occupancy–abundance (O–A) relationship is the relationship between the abundance of species and the size of their ranges within a region. This relationship is perhaps one of the most well-documented relationships in macroecology, and applies both intra- and interspecifically (within and among species). In most cases, the O–A relationship is a positive relationship. Although an O–A relationship would be expected, given that a species colonizing a region must pass through the origin (zero abundance, zero occupancy) and could reach some theoretical maximum abundance and distribution (that is, occupancy and abundance can be expected to co-vary), the relationship described here is somewhat more substantial, in that observed changes in range are associated with greater-than-proportional changes in abundance. Although this relationship appears to be pervasive (e.g. Gaston 1996 and references therein), and has important implications for the conservation of endangered species, the mechanism(s) underlying it remain poorly understood

Organotroph

An organotroph is an organism that obtains hydrogen or electrons from organic substrates. This term is used in microbiology to classify and describe organisms based on how they obtain electrons for their respiration processes. Some organotrophs such as animals and many bacteria, are also heterotrophs. Organotrophs can be either anaerobic or aerobic.

Antonym: Lithotroph, Adjective: Organotrophic.

Phytogeography

Phytogeography (from Greek φυτόν, phytón = "plant" and γεωγραφία, geographía = "geography" meaning also distribution) or botanical geography is the branch of biogeography that is concerned with the geographic distribution of plant species and their influence on the earth's surface. Phytogeography is concerned with all aspects of plant distribution, from the controls on the distribution of individual species ranges (at both large and small scales, see species distribution) to the factors that govern the composition of entire communities and floras. Geobotany, by contrast, focuses on the geographic space's influence on plants.

Rapoport's rule

Rapoport's rule is an ecogeographical rule that states that latitudinal ranges of plants and animals are generally smaller at lower latitudes than at higher latitudes.

Recruitment (biology)

In biology, especially marine biology, recruitment occurs when a juvenile organism joins a population, whether by birth or immigration, usually at a stage whereby the organisms are settled and able to be detected by an observer.There are two types of recruitment: closed and open.In the study of fisheries, recruitment is "the number of fish surviving to enter the fishery or to some life history stage such as settlement or maturity".

Relative abundance distribution

In the field of ecology, the relative abundance distribution (RAD) or species abundance distribution describes the relationship between the number of species observed in a field study as a function of their observed abundance. The graphs obtained in this manner are typically fitted to a Zipf–Mandelbrot law, the exponent of which serves as an index of biodiversity in the ecosystem under study.

Relative species abundance

Relative species abundance is a component of biodiversity and refers to how common or rare a species is relative to other species in a defined location or community. Relative abundance is the percent composition of an organism of a particular kind relative to the total number of organisms in the area. Relative species abundances tend to conform to specific patterns that are among the best-known and most-studied patterns in macroecology. Different populations in a community exist in relative proportions; this idea is known as relative abundance.

Terry Hughes (scientist)

Terry Hughes (born 1956, in Dublin, Ireland) is a professor of marine biology at James Cook University in Queensland, Australia. He is known for research on the global coral bleaching event caused by climate change. Nature dubbed him "Reef sentinel" for the global role he plays in applying multi-disciplinary science to securing reef sustainability. He is currently an Australian Research Council Laureate Fellow and Director of the Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies. His research interests encompass coral reef ecology, macroecology and evolution, as well as social-ecological interactions. His recent work has focused on marine ecology, macroecology, climate change, identifying safe planetary boundaries for human development, and on transformative governance of the sea in Australia, Chile, China, the Galapagos Islands, Gulf of Maine and the Coral Triangle. His career citations in Google Scholar exceed 43,000.

William Li (oceanographer)

William Li (Chinese: 李國為; born 1952) is a Canadian biological oceanographer. He is recognized for his research on marine picoplankton, marine macroecology, ocean surveys of plankton from measurements of flow cytometry, and detection of multi-annual ecological change in marine phytoplankton..

General
Producers
Consumers
Decomposers
Microorganisms
Food webs
Example webs
Processes
Defense,
counter
Ecology: Modelling ecosystems: Other components
Population
ecology
Species
Species
interaction
Spatial
ecology
Niche
Other
networks
Other

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.