Low frequency

Low frequency (low freq) or LF is the ITU designation[1] for radio frequencies (RF) in the range of 30 kilohertz (kHz) to 300 kHz. As its wavelengths range from ten kilometres to one kilometre, respectively, it is also known as the kilometre band or kilometre wave.

LF radio waves exhibit low signal attenuation, making them suitable for long-distance communications. In Europe and areas of Northern Africa and Asia, part of the LF spectrum is used for AM broadcasting as the "longwave" band. In the western hemisphere, its main use is for aircraft beacon, navigation (LORAN), information, and weather systems. A number of time signal broadcasts are also broadcast in this band.

Low frequency
Frequency range
30 to 300 kHz
Wavelength range
10 to 1 km

Propagation

Atmosphericnoise
Atmospheric radio noise increases with decreasing frequency. At the LF band and below, it is far above the thermal noise floor in receiver circuits. Therefore, inefficient antennas much smaller than the wavelength are adequate for reception

Because of their long wavelength, low frequency radio waves can diffract over obstacles like mountain ranges and travel beyond the horizon, following the contour of the Earth. This mode of propagation, called ground wave, is the main mode in the LF band.[2] Ground waves must be vertically polarized (the electric field is vertical while the magnetic field is horizontal), so vertical monopole antennas are used for transmitting. The attenuation of signal strength with distance by absorption in the ground is lower than at higher frequencies. Low frequency ground waves can be received up to 2,000 kilometres (1,200 mi) from the transmitting antenna.

Low frequency waves can also occasionally travel long distances by reflecting from the ionosphere (the actual mechanism is one of refraction), although this method, called skywave or "skip" propagation, is not as common as at higher frequencies. Reflection occurs at the ionospheric E layer or F layers. Skywave signals can be detected at distances exceeding 300 kilometres (190 mi) from the transmitting antenna.[3]

Uses

Standard time signals

In Europe and Japan, many low-cost consumer devices have since the late 1980s contained radio clocks with an LF receiver for these signals. Since these frequencies propagate by ground wave only, the precision of time signals is not affected by varying propagation paths between the transmitter, the ionosphere, and the receiver. In the United States, such devices became feasible for the mass market only after the output power of WWVB was increased in 1997 and 1999.

Military

Radio signals below 50 kHz are capable of penetrating ocean depths to approximately 200 metres, the longer the wavelength, the deeper. The British, German, Indian, Russian, Swedish, United States [4] and possibly other navies communicate with submarines on these frequencies.

In addition, Royal Navy nuclear submarines carrying ballistic missiles are allegedly under standing orders to monitor the BBC Radio 4 transmission on 198 kHz in waters near the UK. It is rumoured that they are to construe a sudden halt in transmission, particularly of the morning news programme Today, as an indicator that the UK is under attack, whereafter their sealed orders take effect.[5]

In the US, the Ground Wave Emergency Network or GWEN operated between 150 and 175 kHz, until replaced by satellite communications systems in 1999. GWEN was a land based military radio communications system which could survive and continue to operate even in the case of a nuclear attack.

Experimental and amateur

The 2007 World Radiocommunication Conference (WRC-07) made this band a worldwide amateur radio allocation. An international 2.1 kHz allocation, the 2200 meter band (135.7 kHz to 137.8 kHz), is available to amateur radio operators in several countries in Europe,[6] New Zealand, Canada and French overseas dependencies.

The world record distance for a two-way contact is over 10,000 km from near Vladivostok to New Zealand.[7] As well as conventional Morse code many operators use very slow computer-controlled Morse code (QRSS) or specialized digital communications modes.

The UK allocated a 2.8 kHz sliver of spectrum from 71.6 kHz to 74.4 kHz beginning in April 1996 to UK amateurs who applied for a Notice of Variation to use the band on a noninterference basis with a maximum output power of 1 Watt ERP. This was withdrawn on 30 June 2003 after a number of extensions in favor of the European-harmonized 136 kHz band.[8] Very slow Morse Code from G3AQC in the UK was received 3,275 miles (5,271 km) away, across the Atlantic Ocean, by W1TAG in the US on 21-22 November 2001 on 72.401 kHz.[9]

In the United States, there is a exemption within FCC Part 15 regulations permitting unlicensed transmissions in the frequency range of 160 to 190 kHz. Longwave radio hobbyists refer to this as the ' LowFER' band, and experimenters, and their transmitters are called 'LowFERs'. This frequency range between 160 kHz and 190 kHz is also referred to as the 1750 Meter band. Requirements from 47CFR15.217 and 47CFR15.206 include:

  • The total input power to the final radio frequency stage (exclusive of filament or heater power) shall not exceed one watt.
  • The total length of the transmission line, antenna, and ground lead (if used) shall not exceed 15 meters.
  • All emissions below 160 kHz or above 190 kHz shall be attenuated at least 20 dB below the level of the unmodulated carrier.
  • As an alternative to these requirements, a field strength of 2400/F(kHz) microvolts/meter (measured at a distance of 300 meters) may be used (as described in 47CFR15.209).
  • In all cases, operation may not cause harmful interference to licensed services.

Many experimenters in this band are amateur radio operators.[10]

Meteorological information broadcasts

A regular service transmitting RTTY marine meteorological information in SYNOP code on LF is the German Meteorological Service (Deutscher Wetterdienst or DWD). The DWD operates station DDH47 on 147.3 kHz using standard ITA-2 alphabet with a transmission speed of 50 baud and FSK modulation with 85 Hz shift.[11]

Radio navigation signals

In parts of the world where there is no longwave broadcasting service, Non-directional beacons used for aeronavigation operate on 190–300 kHz (and beyond into the MW band). In Europe, Asia and Africa, the NDB allocation starts on 283.5 kHz.

The LORAN-C radio navigation system operated on 100 kHz.

In the past, the Decca Navigator System operated between 70 kHz and 129 kHz. The last Decca chains were closed down in 2000.

Differential GPS telemetry transmitters operate between 283.5 and 325 kHz.[12]

The commercial "Datatrak" radio navigation system operates on a number of frequencies, varying by country, between 120 and 148 kHz.

Radio broadcasting

AM broadcasting is authorized in the longwave band on frequencies between 148.5 and 283.5 kHz in Europe and parts of Asia.

Other applications

Some radio frequency identification (RFID) tags utilize LF. These tags are commonly known as LFIDs or LowFIDs (Low Frequency Identification). The LF RFID tags are near field devices.

Antennas

Low cost DCF77 receiver
Low cost LF time signal crystal receiver using ferrite loop antenna.

Since the ground waves used in this band require vertical polarization, vertical antennas are used for transmission. Mast radiators are most common, either insulated from the ground and fed at the bottom, or occasionally fed through guy-wires. T-antennas and inverted L-antennas are used when antenna height is an issue. Due to the long wavelengths in the band, nearly all LF antennas are electrically short, shorter than one quarter of the radiated wavelength, so their low radiation resistance makes them inefficient, requiring very low resistance grounds and conductors to avoid dissipating transmitter power. These electrically short antennas need loading coils at the base of the antenna to bring them into resonance. Many antenna types, such as the umbrella antenna and L- and T-antenna, use capacitive top-loading (a "top hat"), in the form of a network of horizontal wires attached to the top of the vertical radiator. The capacitance improves the efficiency of the antenna by increasing the current, without increasing its height.

The height of antennas differ by usage. For some non-directional beacons (NDBs) the height can be as low as 10 meters, while for more powerful navigation transmitters such as DECCA, masts with a height around 100 meters are used. T-antennas have a height between 50 and 200 meters, while mast aerials are usually taller than 150 meters.

The height of mast antennas for LORAN-C is around 190 meters for transmitters with radiated power below 500 kW, and around 400 meters for transmitters greater than 1,000 kilowatts. The main type of LORAN-C antenna is insulated from ground.

LF (longwave) broadcasting stations use mast antennas with heights of more than 150 meters or T-aerials. The mast antennas can be ground-fed insulated masts or upper-fed grounded masts. It is also possible to use cage antennas on grounded masts.

For broadcasting stations, directional antennas are often required. They consist of multiple masts, which often have the same height. Some longwave antennas consist of multiple mast antennas arranged in a circle with or without a mast antenna in the center. Such antennas focus the transmitted power toward ground and give a large zone of fade-free reception. This type of antenna is rarely used, because they are very expensive and require much space and because fading occurs on longwave much more rarely than in the medium wave range. One antenna of this kind was used by transmitter Orlunda in Sweden.

For reception, long wire antennas are used, or more often ferrite loop antennas because of their small size. Amateur radio operators have achieved good LF reception using active antennas with a short whip.

LF transmitting antennas for high power transmitters require large amounts of space, and have been the cause of controversy in Europe and the United States due to concerns about possible health hazards associated with human exposure to radio waves.

See also

References

  1. ^ "Rec. ITU-R V.431-7, Nomenclature of the frequency and wavelength bands used in telecommunications" (PDF). ITU. Archived from the original (PDF) on 31 October 2013. Retrieved 20 February 2013.
  2. ^ Seybold, John S. (2005). Introduction to RF Propagation. John Wiley and Sons. pp. 55–58. ISBN 0471743682.
  3. ^ Alan Melia, G3NYK. "Understanding LF Propagation". Radcom. Bedford, UK: Radio Society of Great Britain. 85 (9): 32.
  4. ^ "Very Low Frequency (VLF) - United States Nuclear Forces". 1998. Retrieved 2008-01-09.
  5. ^ "The Human Button". 2008-12-02. BBC. BBC Radio 4. Missing or empty |series= (help)
  6. ^ CEPT/ERC Recommendation 62-01 E (Mainz 1997): Use of the band 135.7-137.8 kHz by the Amateur Service.
  7. ^ "QSO ZL/UA0 on 136 kHz". The World of LF.
  8. ^ "UK Spectrum Strategy 2002". Ofcom.
  9. ^ "G3AQC'S SIGNAL SPANS THE ATLANTIC ON 73 KHZ!". The ARRL Letter. ARRL. 30 November 2001. Retrieved 12 January 2014. Low-frequency experimenter Lawrence "Laurie" Mayhead, G3AQC, has added another LF accomplishment to his list – transatlantic reception of his 73 kHz signal. [...] Mayhead reports that on the night of 21-22 November, his signal on 72.401 kHz was received in the US. "I managed to transmit a full call sign to John Andrews, W1TAG, in Holden, Massachusetts," he said. Mayhead was using dual-frequency CW – or DFCW –featuring elements that are two minutes long, and Andrews detected his signal using ARGO DSP software.
  10. ^ http://www.ecfr.gov/cgi-bin/text-idx?SID=7f66d50bc733c74f45ff68ec5dda7d93&node=47:1.0.1.1.16&rgn=div5#47:1.0.1.1.16.3
  11. ^ "DWD Sendeplan". Archived from the original on 2012-07-30. Retrieved 2008-01-08.
  12. ^ Alan Gale, G4TMV (2011). "World DGPS database for DXers" (PDF). 4.6. Archived from the original (PDF) on 2011-07-21. Retrieved 2008-01-14.

Further reading

5.1 surround sound

5.1 surround sound ("five-point one") is the common name for six channel surround sound audio systems. 5.1 is the most commonly used layout in home theatre. It uses five full bandwidth channels and one low-frequency effects channel (the "point one"). Dolby Digital, Dolby Pro Logic II, DTS, SDDS, and THX are all common 5.1 systems. 5.1 is also the standard surround sound audio component of digital broadcast and music.All 5.1 systems use the same speaker channels and configuration, having a front left and right, a center channel, two surround channels and the low-frequency effects channel designed for a subwoofer.

Electromagnetic spectrum

The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies.

The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from below one hertz to above 1025 hertz, corresponding to wavelengths from thousands of kilometers down to a fraction of the size of an atomic nucleus. This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high-frequency (short wavelength) end. The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. The limit for long wavelengths is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length. Gamma rays, X-rays, and high ultraviolet are classified as ionizing radiation as their photons have enough energy to ionize atoms, causing chemical reactions. Exposure to these rays can be a health hazard, causing radiation sickness, DNA damage and cancer. Radiation of visible light wavelengths and lower are called nonionizing radiation as they cannot cause these effects.

In most of the frequency bands above, a technique called spectroscopy can be used to physically separate waves of different frequencies, producing a spectrum showing the constituent frequencies. Spectroscopy is used to study the interactions of electromagnetic waves with matter. Other technological uses are described under electromagnetic radiation.

Extremely low frequency

Extremely low frequency (ELF) is the ITU designation for electromagnetic radiation (radio waves) with frequencies from 3 to 30 Hz, and corresponding wavelengths of 100,000 to 10,000 kilometers, respectively.

In atmospheric science, an alternative definition is usually given, from 3 Hz to 3 kHz.

In the related magnetosphere science, the lower frequency electromagnetic oscillations (pulsations occurring below ~3 Hz) are considered to lie in the ULF range, which is thus also defined differently from the ITU radio bands.

ELF radio waves are generated by lightning and natural disturbances in Earth's magnetic field, so they are a subject of research by atmospheric scientists. Because of the difficulty of building antennas that can radiate such long waves, ELF frequencies have been used in only a very few man-made communication systems. ELF waves can penetrate seawater, which makes them useful in communication with submarines. The US, Russia, India, and China are the only nations known to have constructed ELF communication facilities. The U.S. facilities were used between 1985 and 2004 but are now decommissioned.

Infrasound

Infrasound, sometimes referred to as low-frequency sound, is sound that is lower in frequency than 20 Hz or cycles per second, the "normal" limit of human hearing. Hearing becomes gradually less sensitive as frequency decreases, so for humans to perceive infrasound, the sound pressure must be sufficiently high. The ear is the primary organ for sensing infrasound, but at higher intensities it is possible to feel infrasound vibrations in various parts of the body.

The study of such sound waves is sometimes referred to as infrasonics, covering sounds beneath 20 Hz down to 0.1 Hz and rarely to 0.001 Hz. People use this frequency range for monitoring earthquakes, charting rock and petroleum formations below the earth, and also in ballistocardiography and seismocardiography to study the mechanics of the heart.

Infrasound is characterized by an ability to get around obstacles with little dissipation. In music, acoustic waveguide methods, such as a large pipe organ or, for reproduction, exotic loudspeaker designs such as transmission line, rotary woofer, or traditional subwoofer designs can produce low-frequency sounds, including near-infrasound. Subwoofers designed to produce infrasound are capable of sound reproduction an octave or more below that of most commercially available subwoofers, and are often about 10 times the size.

Joyner Lucas

Gary Maurice Lucas, Jr. (born August 17, 1988), known professionally as Joyner Lucas, is an American rapper, singer, songwriter, record producer, poet, and actor from Worcester, Massachusetts.

Lucas gained widespread exposure and critical acclaim after the release of his single "Ross Capicchioni" in 2015. In June 2017, he released his fourth mixtape, 508-507-2209, which was his first on a major label. On November 28, 2017, Lucas released his single "I'm Not Racist", onto his YouTube account which quickly went viral and gained critical acclaim. The video was nominated for the Grammy Award for Best Music Video at the 61st Grammy Awards. Lucas was formerly signed to Atlantic Records, until he announced his departure from the label in December 2018.

LFO (British band)

LFO (initialism for Low Frequency Oscillation) were a British electronic music act on the Warp label. Considered to be pioneers of the bass-heavy techno, LFO released Frequencies (1991), Advance (1996), and Sheath (2003). Originally, the group was composed of Gez Varley (born 1971), Martin Williams and Mark Bell (1971–2014). After Varley left in 1996, LFO was Bell alone. Bell died in October 2014.

The group's name is derived from the abbreviation for the term low-frequency oscillator, a synthesizer function widely used in electronic music.

LOFAR

The Low-Frequency Array or LOFAR, is a large radio telescope network located mainly in the Netherlands, completed in 2012 by ASTRON, the Netherlands Institute for Radio Astronomy and its international partners, and operated by ASTRON's radio observatory, of the Netherlands Organisation for Scientific Research.

LOFAR consists of a vast array of omnidirectional antennas using a new concept in which the signals from the separate antennas are not combined in real time as they are in most array antennas. The electronic signals from the antennas are digitized, transported to a central digital processor, and combined in software to emulate a conventional antenna. The project is based on an interferometric array of radio telescopes using about 20,000 small antennas concentrated in at least 48 stations. Forty of these stations are distributed across the Netherlands and were funded by ASTRON. The five stations in Germany, and one each in Great Britain, France, Sweden and Ireland, were funded by these countries. Further stations may also be built in other European countries. The total effective collecting area is approximately 300,000 square meters, depending on frequency and antenna configuration. The data processing is performed by a Blue Gene/P supercomputer situated in the Netherlands at the University of Groningen. LOFAR is also a technology precursor for the Square Kilometre Array.

Low-frequency oscillation

Low-frequency oscillation (LFO) is an electronic frequency which is usually below 20 Hz and creates a rhythmic pulse or sweep. This pulse or sweep is often used to modulate synthesizers, delay lines and other audio equipment in order to create effects used in the production of electronic music. Audio effects such as vibrato, tremolo and phasing are examples. The abbreviation LFO is also very often used to refer to low-frequency oscillators themselves.

Non-ionizing radiation

Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum (photon energy) to ionize atoms or molecules—that is, to completely remove an electron from an atom or molecule. Instead of producing charged

ions when passing through matter, non-ionizing electromagnetic radiation has sufficient energy only for excitation, the movement of an electron to a higher energy state. Ionizing radiation which has a higher frequency and shorter wavelength than nonionizing radiation, has many uses but can be a health hazard; exposure to it can cause burns, radiation sickness, cancer, and genetic damage. Using ionizing radiation requires elaborate radiological protection measures which in general are not required with nonionizing radiation.

The region at which radiation becomes considered as "ionizing" is not well defined, since different molecules and atoms ionize at different energies. The usual definitions have suggested that radiation with particle or photon energies less than 10 electronvolts (eV) be considered non-ionizing. Another suggested threshold is 33 electronvolts, which is the energy needed to ionize water molecules. The light from the Sun that reaches the earth is largely composed of non-ionizing radiation, since the ionizing far-ultraviolet rays have been filtered out by the gases in the atmosphere, particularly oxygen. The remaining ultraviolet radiation from the Sun causes molecular damage (for example, sunburn) by photochemical and free-radical-producing means.Different biological effects are observed for different types of non-ionizing radiation. The upper frequencies of non-ionizing radiation near these energies (much of the spectrum of UV light and some visible light) are capable of non-thermal biological damage, similar to ionizing radiation. Health debate therefore centers on the non-thermal effects of radiation of much lower frequencies (microwave, millimeter and radiowave radiation). The International Agency for Research on Cancer recently stated that there could be some risk from non-ionizing radiation to humans. But a subsequent study reported that the basis of the IARC evaluation was not consistent with observed incidence trends. This and other reports suggest that there is virtually no way that results on which the IARC based its conclusions are correct. The Bioinitiative Report 2012 makes the claim that there are significant health risk associated with low frequency non-ionizing electromagnetic radiation. This report claims that statistically significant increases in cancer among those exposed to even low power levels, low frequency, non-ionizing radiation. There is considerable debate on this matter. Currently regulatory bodies around the world have not seen the need to change current safety standards.

Okinawa Plate

The Okinawa Plate, or Okinawa Platelet, is a minor continental tectonic plate in the northern and eastern hemispheres stretching from the northern end of Taiwan to the southern tip of the island of Kyūshū. The Okinawa Plate hosts typical earthquakes, like the 1911 Kikai Island earthquake, and various types of slow earthquakes, including low frequency earthquakes, very low frequency earthquakes, tremor, and slow slip events.

PNS Hameed

PNS Hameed (Urdu: پایگاه بحریہ حمید‎) is a very low frequency (VLF) radio transmitter facility of the Pakistan Navy, located near at the coastal areas of Karachi, Sindh, Pakistan. The primary mission of this naval base is to communicate orders with the submerged submarines in the Arabian sea at very low frequency. It is the first of its kind facility with very low frequency transmission capabilities, which will enable the Pakistan Navy to communicate with its submerged submarines.It was established in 2016 and is named after in memory of Lieutenant-Commander Pervez Hameed–the first officer of PNS Ghazi which was lost in 1971. The base was inaugurated by the Chairman Joint Chiefs of Staff General Rashad Mahmood and Chief of Naval Staff Admiral Muhammad Zakaullah in November 2016.

Planck (spacecraft)

Planck was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013, which mapped the anisotropies of the cosmic microwave background (CMB) at microwave and infra-red frequencies, with high sensitivity and small angular resolution. The mission substantially improved upon observations made by the NASA Wilkinson Microwave Anisotropy Probe (WMAP). Planck provided a major source of information relevant to several cosmological and astrophysical issues, such as testing theories of the early Universe and the origin of cosmic structure. Since the end of its mission, Planck has defined the most precise measurements of several key cosmological parameters, including the average density of ordinary matter and dark matter in the Universe and the age of the universe.

The project was started around 1996 and was initially called COBRAS/SAMBA: the Cosmic Background Radiation Anisotropy Satellite/Satellite for Measurement of Background Anisotropies. It was later renamed in honour of the German physicist Max Planck (1858–1947), who derived the formula for black-body radiation.

Built at the Cannes Mandelieu Space Center by Thales Alenia Space, and created as a medium-sized mission for ESA's Horizon 2000 long-term scientific programme, Planck was launched in May 2009. It reached the Earth/Sun L2 point by July 2009, and by February 2010 it had successfully started a second all-sky survey. On 21 March 2013, the mission's first all-sky map of the cosmic microwave background was released with an additional expanded release including polarization data in February 2015. The final papers by the Planck team were released in July 2018.At the end of its mission Planck was put into a heliocentric orbit and passivated to prevent it from endangering any future missions. The final deactivation command was sent to Planck in October 2013.

Radiation

In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:

electromagnetic radiation, such as radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, and gamma radiation (γ)

particle radiation, such as alpha radiation (α), beta radiation (β), and neutron radiation (particles of non-zero rest energy)

acoustic radiation, such as ultrasound, sound, and seismic waves (dependent on a physical transmission medium)

gravitational radiation, radiation that takes the form of gravitational waves, or ripples in the curvature of spacetime.Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles. Ionizing radiation carries more than 10 eV, which is enough to ionize atoms and molecules, and break chemical bonds. This is an important distinction due to the large difference in harmfulness to living organisms. A common source of ionizing radiation is radioactive materials that emit α, β, or γ radiation, consisting of helium nuclei, electrons or positrons, and photons, respectively. Other sources include X-rays from medical radiography examinations and muons, mesons, positrons, neutrons and other particles that constitute the secondary cosmic rays that are produced after primary cosmic rays interact with Earth's atmosphere.

Gamma rays, X-rays and the higher energy range of ultraviolet light constitute the ionizing part of the electromagnetic spectrum. The word "ionize" refers to the breaking of one or more electrons away from an atom, an action that requires the relatively high energies that these electromagnetic waves supply. Further down the spectrum, the non-ionizing lower energies of the lower ultraviolet spectrum cannot ionize atoms, but can disrupt the inter-atomic bonds which form molecules, thereby breaking down molecules rather than atoms; a good example of this is sunburn caused by long-wavelength solar ultraviolet. The waves of longer wavelength than UV in visible light, infrared and microwave frequencies cannot break bonds but can cause vibrations in the bonds which are sensed as heat. Radio wavelengths and below generally are not regarded as harmful to biological systems. These are not sharp delineations of the energies; there is some overlap in the effects of specific frequencies.The word radiation arises from the phenomenon of waves radiating (i.e., traveling outward in all directions) from a source. This aspect leads to a system of measurements and physical units that are applicable to all types of radiation. Because such radiation expands as it passes through space, and as its energy is conserved (in vacuum), the intensity of all types of radiation from a point source follows an inverse-square law in relation to the distance from its source. Like any ideal law, the inverse-square law approximates a measured radiation intensity to the extent that the source approximates a geometric point.

Sonar

Sonar (originally an acronym for sound navigation ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, communicate with or detect objects on or under the surface of the water, such as other vessels. Two types of technology share the name "sonar": passive sonar is essentially listening for the sound made by vessels; active sonar is emitting pulses of sounds and listening for echoes. Sonar may be used as a means of acoustic location and of measurement of the echo characteristics of "targets" in the water. Acoustic location in air was used before the introduction of radar. Sonar may also be used in air for robot navigation, and SODAR (an upward-looking in-air sonar) is used for atmospheric investigations. The term sonar is also used for the equipment used to generate and receive the sound. The acoustic frequencies used in sonar systems vary from very low (infrasonic) to extremely high (ultrasonic). The study of underwater sound is known as underwater acoustics or hydroacoustics.

The first recorded use of the technique was by Leonardo da Vinci in 1490 who used a tube inserted into the water to detect vessels by ear. It was developed during World War I to counter the growing threat of submarine warfare, with an operational passive sonar system in use by 1918. Modern active sonar systems use an acoustic transponder to generate a sound wave which is reflected back from target objects.

Subwoofer

A subwoofer (or sub) is a woofer, or a complete loudspeaker, which is dedicated to the reproduction of low-pitched audio frequencies known as bass and sub-bass. The typical frequency range for a subwoofer is about 20–200 Hz for consumer products, below 100 Hz for professional live sound, and below 80 Hz in THX-approved systems. Subwoofers are intended to augment the low frequency range of loudspeakers that cover the higher frequency bands. While the term "subwoofer" technically only refers to the speaker driver, in common parlance, the term often refers to a subwoofer driver mounted in a speaker enclosure (cabinet), often with a built-in amplifier.

Subwoofers are made up of one or more woofers mounted in a loudspeaker enclosure—often made of wood—capable of withstanding air pressure while resisting deformation. Subwoofer enclosures come in a variety of designs, including bass reflex (with a port or vent), using a subwoofer and one or more passive radiator speakers in the enclosure, acoustic suspension (sealed enclosure), infinite baffle, horn-loaded, and bandpass designs, representing unique trade-offs with respect to efficiency, low frequency range, cabinet size and cost. Passive subwoofers have a subwoofer driver and enclosure and they are powered by an external amplifier. Active subwoofers include a built-in amplifier.The first subwoofers were developed in the 1960s to add bass response to home stereo systems. Subwoofers came into greater popular consciousness in the 1970s with the introduction of Sensurround in movies such as Earthquake, which produced loud low-frequency sounds through large subwoofers. With the advent of the compact cassette and the compact disc in the 1980s, the easy reproduction of deep and loud bass was no longer limited by the ability of a phonograph record stylus to track a groove, and producers could add more low frequency content to recordings. As well, during the 1990s, DVDs were increasingly recorded with "surround sound" processes that included a low-frequency effects (LFE) channel, which could be heard using the subwoofer in home theater systems. During the 1990s, subwoofers also became increasingly popular in home stereo systems, custom car audio installations, and in PA systems. By the 2000s, subwoofers became almost universal in sound reinforcement systems in nightclubs and concert venues.

Super low frequency

Super low frequency (SLF) is the ITU designation for electromagnetic waves (radio waves) in the frequency range between 30 hertz and 300 hertz. They have corresponding wavelengths of 10,000 to 1,000 kilometers. This frequency range includes the frequencies of AC power grids (50 hertz and 60 hertz). Another conflicting designation which includes this frequency range is Extremely Low Frequency (ELF), which in some contexts refers to all frequencies up to 300 hertz.

Because of the extreme difficulty of building transmitters that can generate such long waves, frequencies in this range have been used in very few artificial communication systems. However, SLF waves can penetrate seawater to a depth of hundreds of meters. Therefore, in recent decades the U.S., Russian and Indian military have built huge radio transmitters using SLF frequencies to communicate with their submarines. The U.S. naval service is called Seafarer and operates at 76 hertz. It became operational in 1989 but was discontinued in 2004 due to advances in VLF communication systems. The Russian service is called ZEVS and operates at 82 hertz. The Indian Navy has an operational ELF communication facility at the INS Kattabomman naval base to communicate with its Arihant class and Akula class submarines.The requirements for receivers at SLF frequencies is less stringent than transmitters, because the signal strength (set by atmospheric noise) is far above the noise floor of the receiver, so small, inefficient antennas can be used. Radio amateurs have received signals in this range using simple receivers built around personal computers, with coil or loop antennas connected to the PCs sound card. Signals are analysed by a software fast Fourier transform algorithm and converted into audible sound.

The Hum

The Hum is a phenomenon, or collection of phenomena, involving widespread reports of a persistent and invasive low-frequency humming, rumbling, or droning noise not audible to all people. Hums have been widely reported by national media in the UK and the United States. The Hum is sometimes prefixed with the name of a locality where the problem has been particularly publicized: e.g., the "Bristol Hum" or the "Taos Hum" or the "Windsor Hum."

It is unclear whether it is a single phenomenon; different causes have been attributed. In some cases, it may be a manifestation of tinnitus.

Ultra low frequency

Ultra low frequency (ULF) is the ITU designation for the frequency range of electromagnetic waves between 300 hertz and 3 kilohertz. In magnetosphere science and seismology, alternative definitions are usually given, including ranges from 1 mHz to 100 Hz, 1 mHz to 1 Hz, and 10 mHz to 10 Hz. Frequencies above 3 Hz in atmospheric science are usually assigned to the ELF range.

Many types of waves in the ULF frequency band can be observed in the magnetosphere and on the ground. These waves represent important physical processes in the near-Earth plasma environment. The speed of the ULF waves is often associated with the Alfvén velocity that depends on the ambient magnetic field and plasma mass density.

This band is used for communications in mines, as it can penetrate the earth.

Very low frequency

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3 to 30 kilohertz (kHz), corresponding to wavelengths from 100 to 10 kilometers, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters (an obsolete metric unit equal to 10 kilometers). Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations (broadcasting time signals to set radio clocks) and for secure military communication. Since VLF waves can penetrate at least 40 meters (120 ft) into saltwater, they are used for military communication with submarines.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.