List of most massive stars

This is a list of the most massive stars so far discovered, in solar masses (M).

Uncertainties and caveats

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to revision. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of the stars’ temperatures and absolute brightnesses. All the masses listed below are uncertain: both the theory and the measurements are pushing the limits of current knowledge and technology. Either measurement or theory, or both, could be incorrect. For example, VV Cephei could be between 25–40 M, or 100 M, depending on which property of the star is examined.

Dust disk around massive star
Artist's impression of disc of obscuring material around a massive star.

Massive stars are rare; astronomers must look very far from the Earth to find one. All the listed stars are many thousands of light years away and that alone makes measurements difficult.

In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas created by powerful stellar winds; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses and greatly complicates the issue of estimating internal chemical compositions.[a]

Both the obscuring clouds and the great distances make it difficult to judge whether the star is just a single supermassive object or, instead, a multiple star system. A number of the "stars" listed below may actually be two or more companions orbiting too closely to distinguish, each star being massive in itself but not necessarily “supermassive”. Other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star – but without being able to see inside the surrounding cloud, it is difficult to know the truth of the matter. More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 100–200 solar mass range.

Rare reliable estimates

Eclipsing binary stars are the only stars whose masses are estimated with some confidence. However note that almost all of the masses listed in the table below were inferred by indirect methods; only a few of the masses in the table were determined using eclipsing systems.

Amongst the most reliable listed masses are those for the eclipsing binaries NGC 3603-A1, WR21a, and WR20a. Masses for all three were obtained from orbital measurements.[b] This involves measuring their radial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but light curves of eclipsing binaries provide the missing information: inclination of the orbit to our line of sight.

Relevance of stellar evolution

Some stars may once have been heavier than they are today. It is likely that many have suffered significant mass loss, perhaps as much as several tens of solar masses, expelled by the process of superwind, where high velocity winds are expelled from the hot photosphere into interstellar space. This process is similar to superwinds generated by Asymptotic Giant Branch (AGB) stars in form red giants or planetary nebulae. The process forms an enlarged extended envelope around the star that interacts with the nearby interstellar medium and infusing the region with elements heavier than Hydrogen or Helium.

There are also – or rather were – stars that might have appeared on the list but no longer exist as stars, or are supernova impostors; today we see only the debris.[c] The masses of the precursor stars that fueled these cataclysms can be estimated from the type of explosion and the energy released, but those masses are not listed here (see the section #Black holes below).

Mass limits

There are two related theoretical limits on how massive a star can possibly be. One is related to star formation: After about 120 M have accreted in a protostar, the combined mass should have become hot enough for its heat to drive away any further incoming matter. In effect, the protostar reaches a point where it evaporates material away as fast as it collects new material. The other limit is based on light pressure from the core of an already-formed star: As mass increases past ~150 M, the intensity of light radiated from a Population I star's core will become sufficient for the light-pressure pushing outward to exceed the gravitational force pulling inward, and the surface material of the star will be free to float away into space.

Eddington mass limit

A limit on stellar mass arises because of light-pressure: For a sufficiently massive star the outward pressure of radiant energy generated by nuclear fusion in the star’s core exceeds the inward pull of its own gravity. This effect is called the Eddington limit.

Stars of greater mass have a higher rate of core energy generation, and heavier stars' luminosities increase far out of proportion to the increase in their masses. The Eddington limit is the point, beyond which a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, maintainable rate. The actual limit-point mass depends on how opaque the gas in the star is, and metal-rich Population I stars have lower mass limits than metal-poor Population II stars, with the hypothetical metal-free Population III stars having the highest allowed mass, somewhere around 300 M.

In theory, a more massive star could not hold itself together because of the mass loss resulting from the outflow of stellar material. In practice the theoretical Eddington Limit must be modified for high luminosity stars and the empirical Humphreys-Davidson limit is used instead.[1]

Accretion limits

Astronomers have long hypothesized that as a protostar grows to a size beyond 120 M, something drastic must happen. Although the limit can be stretched for very early Population III stars, and although the exact value is uncertain, if any stars still exist above 150–200 M they would challenge current theories of stellar evolution.

Studying the Arches cluster, which is currently the densest known cluster of stars in our galaxy, astronomers have confirmed that stars in that cluster do not occur any larger than about 150 M.

Rare ultramassive stars that exceed this limit – for example in the R136 star cluster – might be explained by the following proposal: Some of the pairs of massive stars in close orbit in young, unstable multiple-star systems must occasionally collide and merge where certain unusual circumstances hold that make a collision possible.[2]

List of the most massive stars

The following is a list of a few stars with an estimated mass of 25 M or greater, including the stars of Arches cluster, Cygnus OB2 cluster, Pismis 24 cluster, and R136 cluster. Note that all O-type stars have masses greater than 15 M and catalogs of such stars (GOSS, Reed) list hundreds of cases.

The majority of stars thought to be more than 100 M are shown, but this list is far from complete – especially below 80 M. The method used to determine the mass is included in the list to give an idea of uncertainty: direct methods (binary stars) being more secure than indirect ones (conversion from luminosity, extrapolation from stellar atmosphere models, ...).

The masses listed below are the stars’ current (evolved) mass, not their initial (formation) mass.

Legend
Wolf–Rayet star
Luminous blue variable star
O-class star
B-class star
Hypergiant
Grand star-forming region R136 in NGC 2070 (captured by the Hubble Space Telescope)
The R136 cluster
Star name Mass
(M, Sun = 1)
Distance from earth (ly) Method used to estimate mass Refs.
R136a1  315 163,000 Evolutionary model [3]
R136c  230 163,000 Evolutionary model [3]
BAT99-98 226 165,000 Luminosity/Atmosphere model [4]
R136a2  195 163,000 Evolutionary model [3]
Melnick 42 189 163,000 Luminosity/Atmosphere model [5]
R136a3  180 163,000 Evolutionary model [3]
Melnick 34 179 163,000 Luminosity/Atmosphere model [6]
HD 15558 >152 ± 51 24,400 Binary [7][8]
VFTS 682  150 164,000 Luminosity/Atmosphere model [9]
R136a6  150 157,000 Evolutionary model [3]
LH 10-3209 A 140 ? [10]
NGC 3603-B  132 ± 13 24,700 Luminosity/Atmosphere model [11]
HD 269810   130 Luminosity/Atmosphere model [12]
P871 130 ? [10]
WR 42e 125–135 25,000 Ejection in triple system [13][d]
R136a4  124 157,000 Evolutionary model [3]
NGC 3603-A1a  120 24,700 Eclipsing binary [11]
LSS 4067 120 Evolutionary model [14]
NGC 3603-C 113 ± 10 22,500 Luminosity/Atmosphere model [11]
Arches-F9  111–131 25,000 Luminosity/Atmosphere model [15]
Cygnus OB2-12  110 5,220 Luminosity/Atmosphere model [16]
WR 25 110 10,500 Binary?
HD 93129 A  110 7,500 Luminosity/Atmosphere model
WR21a A 103.6 26,100 Binary [17]
BAT99-33 (R99) 103 16,400 Luminosity/Atmosphere model [4]
Arches-F1  101–119 25,000 Luminosity/Atmosphere model [15]
Arches-F6  101–119 25,000 Luminosity/Atmosphere model [15]
R136a5  101 157,000 Evolutionary model [3]
η Carinae A 100 - 200 7,500 Luminosity/Binary [18][19]
Peony Star (WR 102ka) 100 26,000 Luminosity/Atmosphere model? [20]
Cygnus OB2 #516 100 4,700 Luminosity?
Sk -68°137 99 ? [10]
R136a8  96 157,000 Evolutionary model [3]
HST-42 95 ? [10]
P1311 94 ? [10]
Sk -66°172 94 ? [10]
R136b  93 163,000 Evolutionary model [3]
NGC 3603-A1b  92 24,800 Eclipsing binary [11]
HST-A3 91 ? [10]
HD 38282 B >90 Luminosity [21]
Cygnus OB2 #771 90 Luminosity/Atmosphere model?
HSH95 31 87 Evolutionary model[3]
HD 93250  86.83 Luminosity/Atmosphere model [22]
Arches-F7  86–102 25,000 Luminosity/Atmosphere model [15]
LH 10-3061 85 ? [10]
BI 253 84
WR20a A 82.7 ± 5.5 Eclipsing binary [23]
MACHO 05:34-69:31 82 ? [10]
WR20a B  81.9 ± 5.5 Eclipsing binary [23]
NGC 346-3 81 ? [10]
HD 38282 A >80 Luminosity [21]
Arches-F15  80–97 Luminosity/Atmosphere model [15]
Sk -71 51 80 Luminosity [24]
Cygnus OB2-8B 80 Luminosity?
WR 148 80 ? [25]
HD 97950 80 ?

A few additional examples with masses lower than 80 M.

Star name Mass
(M, Sun = 1)
Method Refs.
R139 A 78 [26]
V429 Carinae A 78
WR 22 78
Pismis 24-17 78 [27]
Cygnus OB2-11 73+32
−24
[28]
Arches-F12 70–82
R126 70
Companion to M33 X-7 70 [29]
BD+43° 3654 70
HD 93205 69 [10]
R136a7  69 Evolutionary model[3]
HD 93403 A 68.5
Arches-F18 67–82
Arches-F4 66–76
Arches-F28 66–76
HD 5980 B 66
HD 5980 A 61
Var 83 in M33 60–85
S Monocerotis 59
WR21a B 58.3 [17]
WR 102ea 58 [30]
CD Crucis A 57 [31]
HD 16691 56.6 [32]
ζ Puppis (Naos) 56.1 [32]
Arches-F21 56–70
Plaskett's star B 56
Arches-F10 55–69
9 Sagittarii A 55
AG Carinae 55
BAT99-119 (R145) 53+20
−40
+ 54+20
−40
Binary [33][e]
Arches-F14 54–65
BD+40° 4210 54
Plaskett's star A 54
Arches-F3 52–63
HD 93129 B 52 [34]
Cygnus OB2-4 52
Arches-B1 50–60
CD Crucis B 48 [31]
Arches-F20 47–57
LH54-425 A=47 ± 2, B=28 ± 1 Binary[35] [35]
Arches-F16 46–56
WR 102c 45–55 [20]
HD 15558 45 ± 11 [7][8]
S Doradus 45
HD 50064 45
WR 141 45 [25]
IRS-8* 44.5 [36]
Cygnus OB2-8A A 44.1
Cygnus OB2-1 44
Cygnus OB2-10 43.1±14 [28]
Arches-F8 43–51
α Camelopardalis 43
Pismis 24-2 43
χ2 Orionis 42.3
Cygnus OB2-8C 42.2±14 [28]
Arches-F2 42–49
Cygnus OB2-6 42
HD 108 42
Sher 25 in NGC 3603 40–52
θ1 Orionis C 40
μ Nor 40
ρ Cassiopeiae 40 [37]
Cygnus OB2-7  39.7+17
−10
[28]
Companion to NGC 300 X-1 38 [38]
Pismis 24-16 38
Pismis 24-25 38
Cygnus OB2-8A B 37.4
HD 93403 B 37.3
ζ1 Scorpii 36
Pismis 24-13 35
Companion to IC 10 X-1[39] 35
Cygnus OB2-9 A >34
Cygnus OB2-18 33
ζ Orionis (Alnitak) 33
Arches-F5 31–36
Cygnus OB2-5 A 31
Cygnus OB2-9 B >30
η Carinae B 30-80 Luminosity/Binary [19]
ε Orionis (Alnilam) 30-64.5[40]
19 Cephei 30–35
γ Velorum A (Regor A) 30
P Cygni 30
VY Canis Majoris 30 (17–40) [41][42]
VFTS 352 A=28.63 ± 0.3, B=28.85 ± 0.3 [43]
The Pistol Star (V4647 Sgr) 27.5
10 Lacertae 26.9
ξ Persei 26–36
6 Cassiopeiae 25 [44]
Pismis 24-3 25
NGC 7538 S 25 [45]
VFTS 102 25

Black holes

Black holes are the end point evolution of massive stars. Technically they are not stars, as they no longer generate heat and light via nuclear fusion in their cores.[f]

See also

Notes

  1. ^ For some methods, different determinations of chemical composition lead to different estimates of mass.
  2. ^ For a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, using Kepler's laws of planetary motion.
  3. ^ For examples of stellar debris see hypernovae and supernova remnant.
  4. ^ This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
  5. ^ The masses were revised with better data, but refinements are still needed.
  6. ^ Note that some black holes may have cosmological origins, and would then never have been stars. This is thought to be especially likely in the cases of the most massive black holes.

References

  1. ^ Ulmer, A.; Fitzpatrick, E. L. (1998). "Revisiting the modified Eddington limit for massive stars". The Astrophysical Journal. 504: 200–206. arXiv:astro-ph/9708264Freely accessible. Bibcode:1998ApJ...504..200U. doi:10.1086/306048.
  2. ^ Banerjee, S.; Kroupa, P.; Oh, S. (2012). "The emergence of super-canonical stars in R136-type starburst clusters". Monthly Notices of the Royal Astronomical Society. 426 (2): 1416–1426. arXiv:1208.0826Freely accessible. Bibcode:2012MNRAS.426.1416B. doi:10.1111/j.1365-2966.2012.21672.x.
  3. ^ a b c d e f g h i j k Crowther, Paul A.; Caballero-Nieves, S. M.; Bostroem, K. A.; Maíz Apellániz, J.; Schneider, F. R. N.; Walborn, N. R.; Angus, C. R.; Brott, I.; Bonanos, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gräfener, G.; Herrero, A.; Howarth, I. D.; Langer, N.; Lennon, D. J.; Puls, J.; Sana, H.; Vink, J. S. (2016). "The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ1640 in young star clusters". Monthly Notices of the Royal Astronomical Society. 458: 624–659. arXiv:1603.04994Freely accessible. Bibcode:2016MNRAS.458..624C. doi:10.1093/mnras/stw273.
  4. ^ a b Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565: A27. arXiv:1401.5474Freely accessible. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696.
  5. ^ Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R. (2014). "The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence". Astronomy & Astrophysics. 570. A38. arXiv:1407.1837Freely accessible. Bibcode:2014A&A...570A..38B. doi:10.1051/0004-6361/201423643.
  6. ^ Portegies Zwart, Simon F.; Pooley, David; Lewin, Walter H. G. (2002). "A Dozen Colliding-Wind X-Ray Binaries in the Star Cluster R136 in the 30 Doradus region". The Astrophysical Journal. 574 (2): 762–770. arXiv:astro-ph/0106109Freely accessible. Bibcode:2002ApJ...574..762P. doi:10.1086/340996.
  7. ^ a b De Becker, M.; Rauw, G.; Manfroid, J.; Eenens, P. (2006). "Early-type stars in the young open cluster IC 1805". Astronomy and Astrophysics. 456 (3): 1121–1130. arXiv:astro-ph/0606379Freely accessible. Bibcode:2006A&A...456.1121D. doi:10.1051/0004-6361:20065300.
  8. ^ a b Garmany, C. D.; Massey, P. (1981). "HD 15558 - an extremely luminous O-type binary star". Publications of the Astronomical Society of the Pacific. 93: 500. Bibcode:1981PASP...93..500G. doi:10.1086/130866.
  9. ^ Bestenlehner, J. M.; Vink, J. S.; Gräfener, G.; Najarro, F.; Evans, C. J.; Bastian, N.; Bonanos, A. Z.; Bressert, E.; Crowther, P. A.; Doran, E.; Friedrich, K.; Hénault-Brunet, V.; Herrero, A.; De Koter, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Sana, H.; Soszynski, I.; Taylor, W. D. (2011). "The VLT-FLAMES Tarantula Survey". Astronomy & Astrophysics. 530: L14. arXiv:1105.1775Freely accessible. Bibcode:2011A&A...530L..14B. doi:10.1051/0004-6361/201117043.
  10. ^ a b c d e f g h i j k Walborn, Nolan R.; Howarth, Ian D.; Lennon, Daniel J.; Massey, Philip; Oey, M. S.; Moffat, Anthony F. J.; Skalkowski, Gwen; Morrell, Nidia I.; Drissen, Laurent; Parker, Joel Wm. (2002). "A New Spectral Classification System for the Earliest O Stars: Definition of Type O2". The Astronomical Journal. 123 (5): 2754–2771. Bibcode:2002AJ....123.2754W. doi:10.1086/339831.
  11. ^ a b c d Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284Freely accessible. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x.
  12. ^ Evans, C. J.; Walborn, N. R.; Crowther, P. A.; Hénault-Brunet, V.; Massa, D.; Taylor, W. D.; Howarth, I. D.; Sana, H.; Lennon, D. J.; Van Loon, J. T. (2010). "A Massive Runaway Star from 30 Doradus". The Astrophysical Journal. 715 (2): L74. arXiv:1004.5402Freely accessible. Bibcode:2010ApJ...715L..74E. doi:10.1088/2041-8205/715/2/L74.
  13. ^ Gvaramadze; Kniazev; Chene; Schnurr (2012). "Two massive stars possibly ejected from NGC 3603 via a three-body encounter". Monthly Notices of the Royal Astronomical Society: Letters. 430: L20. arXiv:1211.5926v1Freely accessible. Bibcode:2013MNRAS.430L..20G. doi:10.1093/mnrasl/sls041.
  14. ^ Massey, P.; Degioia-Eastwood, K.; Waterhouse, E. (2001). "The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. II. Results from 12 Galactic Clusters and OB Associations". The Astronomical Journal. 121 (2): 1050–1070. arXiv:astro-ph/0010654Freely accessible. Bibcode:2001AJ....121.1050M. doi:10.1086/318769.
  15. ^ a b c d e Gräfener, G.; Vink, J. S.; De Koter, A.; Langer, N. (2011). "The Eddington factor as the key to understand the winds of the most massive stars". Astronomy & Astrophysics. 535: A56. arXiv:1106.5361Freely accessible. Bibcode:2011A&A...535A..56G. doi:10.1051/0004-6361/201116701.
  16. ^ Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics. 541: A145. arXiv:1202.3991Freely accessible. Bibcode:2012A&A...541A.145C. doi:10.1051/0004-6361/201117472.
  17. ^ a b Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D. (2016). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics. 1604. A22. arXiv:1604.01022Freely accessible. Bibcode:2016A&A...591A..22S. doi:10.1051/0004-6361/201527916.
  18. ^ Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.; Gull, T. R. (2015). "3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron". Monthly Notices of the Royal Astronomical Society. 447 (3): 2445–2458. arXiv:1412.7569Freely accessible. Bibcode:2015MNRAS.447.2445C. doi:10.1093/mnras/stu2614.
  19. ^ a b Kashi, A.; Soker, N. (2010). "Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae". The Astrophysical Journal. 723: 602. arXiv:0912.1439Freely accessible. Bibcode:2010ApJ...723..602K. doi:10.1088/0004-637X/723/1/602.
  20. ^ a b Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics. 486 (3): 971–984. arXiv:0807.2476Freely accessible. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568.
  21. ^ a b Sana, H.; Van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; De Koter, A.; Kaper, L.; Moffat, A. F. J.; Schnurr, O.; Schneider, F. R. N.; Gies, D. R. (2013). "R144 revealed as a double-lined spectroscopic binary". Monthly Notices of the Royal Astronomical Society: Letters. 432: 26. arXiv:1304.4591Freely accessible. Bibcode:2013MNRAS.432L..26S. doi:10.1093/mnrasl/slt029.
  22. ^ Repolust, T.; Puls, J.; Herrero, A. (2004). "Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing". Astronomy and Astrophysics. 415 (1): 349–376. Bibcode:2004A&A...415..349R. doi:10.1051/0004-6361:20034594.
  23. ^ a b Rauw, G.; Crowther, P. A.; De Becker, M.; Gosset, E.; Nazé, Y.; Sana, H.; Van Der Hucht, K. A.; Vreux, J. -M.; Williams, P. M. (2005). "The spectrum of the very massive binary system WR?20a (WN6ha + WN6ha): Fundamental parameters and wind interactions". Astronomy and Astrophysics. 432 (3): 985–998. Bibcode:2005A&A...432..985R. doi:10.1051/0004-6361:20042136.
  24. ^ Meynadier, F.; Heydari-Malayeri, M.; Walborn, N. R. (2005). "The LMC H II region N 214C and its peculiar nebular blob". Astronomy and Astrophysics. 436: 117–126. arXiv:astro-ph/0511439Freely accessible. Bibcode:2005A&A...436..117M. doi:10.1051/0004-6361:20042543.
  25. ^ a b Matteucci, Francesca; Giovannelli, Franco (2000). "The Evolution of the Milky Way". The Evolution of the Milky Way: stars versus clusters. Edited by Francesca Matteucci and Franco Giovannelli. Published by Kluwer Academic Publishers. Astrophysics and Space Science Library. 255. Bibcode:2000ASSL..255.....M. doi:10.1007/978-94-010-0938-6. ISBN 978-94-010-3799-0.
  26. ^ Taylor, W. D.; Evans, C. J.; Sana, H.; Walborn, N. R.; De Mink, S. E.; Stroud, V. E.; Alvarez-Candal, A.; Barbá, R. H.; Bestenlehner, J. M.; Bonanos, A. Z.; Brott, I.; Crowther, P. A.; De Koter, A.; Friedrich, K.; Gräfener, G.; Hénault-Brunet, V.; Herrero, A.; Kaper, L.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Morrell, N.; Monaco, L.; Vink, J. S. (2011). "The VLT-FLAMES Tarantula Survey". Astronomy & Astrophysics. 530: L10. arXiv:1103.5387Freely accessible. Bibcode:2011A&A...530L..10T. doi:10.1051/0004-6361/201116785.
  27. ^ Fang, M.; Van Boekel, R.; King, R. R.; Henning, T.; Bouwman, J.; Doi, Y.; Okamoto, Y. K.; Roccatagliata, V.; Sicilia-Aguilar, A. (2012). "Star formation and disk properties in Pismis 24". Astronomy & Astrophysics. 539: A119. arXiv:1201.0833Freely accessible. Bibcode:2012A&A...539A.119F. doi:10.1051/0004-6361/201015914.
  28. ^ a b c d Herrero, A.; Puls, J.; Najarro, F. (2002). "Fundamental parameters of Galactic luminous OB stars VI. Temperatures, masses and WLR of Cyg OB2 supergiants". Astronomy and Astrophysics. 396 (3): 949–966. arXiv:astro-ph/0210469Freely accessible. Bibcode:2002A&A...396..949H. doi:10.1051/0004-6361:20021432.
  29. ^ Orosz, J. A.; McClintock, J. E.; Narayan, R.; Bailyn, C. D.; Hartman, J. D.; Macri, L.; Liu, J.; Pietsch, W.; Remillard, R. A.; Shporer, A.; Mazeh, T. (2007). "A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33". Nature. 449 (7164): 872–875. arXiv:0710.3165Freely accessible. Bibcode:2007Natur.449..872O. doi:10.1038/nature06218. PMID 17943124.
  30. ^ Adriane Liermann et all (2011). "High-mass stars in the Galactic center Quintuplet cluster". Bulletin de la Societe Royale des Sciences de Liege. 80: 160–164. Bibcode:2011BSRSL..80..160L.
  31. ^ a b Bhatt, H.; Pandey, J. C.; Kumar, B.; Singh, K. P.; Sagar, R. (2010). "X-ray emission characteristics of two Wolf–Rayet binaries: V444 Cyg and CD Cru". Monthly Notices of the Royal Astronomical Society. 402 (3): 1767–1779. arXiv:0911.1489Freely accessible. Bibcode:2010MNRAS.402.1767B. doi:10.1111/j.1365-2966.2009.15999.x.
  32. ^ a b Bouret, J. -C.; Hillier, D. J.; Lanz, T.; Fullerton, A. W. (2012). "Properties of Galactic early-type O-supergiants: A combined FUV-UV and optical analysis". Astronomy & Astrophysics. 544: A67. arXiv:1205.3075v1Freely accessible [astro-ph.SR]. Bibcode:2012A&A...544A..67B. doi:10.1051/0004-6361/201118594.
  33. ^ Shenar, T. (2016). "The Tarantula Massive Binary Monitoring project: II. A first SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145". Astronomy & Astrophysics. 1610: A85. arXiv:1610.07614Freely accessible. Bibcode:2017A&A...598A..85S. doi:10.1051/0004-6361/201629621.
  34. ^ Vink, J. S.; Davies, B.; Harries, T. J.; Oudmaijer, R. D.; Walborn, N. R. (2009). "On the presence and absence of disks around O-type stars". Astronomy and Astrophysics. 505 (2): 743–753. arXiv:0909.0888Freely accessible. Bibcode:2009A&A...505..743V. doi:10.1051/0004-6361/200912610.
  35. ^ a b Williams, S. J.; et al. (2008). "Dynamical Masses for the Large Magellanic Cloud Massive Binary System [L72] LH 54-425". The Astrophysical Journal. 682 (1): 492–498. arXiv:0802.4232Freely accessible. Bibcode:2008ApJ...682..492W. doi:10.1086/589687.
  36. ^ Geballe, T. R.; Najarro, F.; Rigaut, F.; Roy, J. ‐R. (2006). "TheK‐Band Spectrum of the Hot Star in IRS 8: An Outsider in the Galactic Center?". The Astrophysical Journal. 652: 370–375. arXiv:astro-ph/0607550Freely accessible. Bibcode:2006ApJ...652..370G. doi:10.1086/507764.
  37. ^ Gorlova, N.; Lobel, A.; Burgasser, A. J.; Rieke, G. H.; Ilyin, I.; Stauffer, J. R. (2006). "On the CO Near‐Infrared Band and the Line‐splitting Phenomenon in the Yellow Hypergiant ρ Cassiopeiae". The Astrophysical Journal. 651 (2): 1130–1150. arXiv:astro-ph/0607158Freely accessible. Bibcode:2006ApJ...651.1130G. doi:10.1086/507590.
  38. ^ Paul A Crowther; Carpano; Hadfield; Pollock (2007). "On the optical counterpart of NGC300 X-1 and the global Wolf–Rayet content of NGC300". Astronomy and Astrophysics. 469 (31): L31. arXiv:0705.1544Freely accessible. Bibcode:2007A&A...469L..31C. doi:10.1051/0004-6361:20077677.
  39. ^ Bulik, T.; Belczynski, K.; Prestwich, A. (2011). "Ic10 X-1/ngc300 X-1: The Very Immediate Progenitors of Bh-Bh Binaries". The Astrophysical Journal. 730 (2): 140. arXiv:0803.3516Freely accessible. Bibcode:2011ApJ...730..140B. doi:10.1088/0004-637X/730/2/140.
  40. ^ Raul E. Puebla; D. John Hillier; Janos Zsargó; David H. Cohen; Maurice A. Leutenegger (2015). "X-ray, UV and optical analysis of supergiants: ε Ori". Monthly Notices of the Royal Astronomical Society. 456 (3): 2907–2936. arXiv:1511.09365Freely accessible. Bibcode:2016MNRAS.456.2907P. doi:10.1093/mnras/stv2783.
  41. ^ "VLT image of the surroundings of VY Canis Majoris seen with SPHERE". www.eso.org. Retrieved 15 June 2018.
  42. ^ Wittkowski, M.; Hauschildt, P.H.; Arroyo-Torres, B.; Marcaide, J.M. (5 April 2012). "Fundamental properties and atmospheric structure of the red supergiant VY CMa based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics. 540: L12. arXiv:1203.5194Freely accessible. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126.
  43. ^ Almeida, L. A.; Sana, H.; de Mink, S. E.; et al. (13 October 2015). "DISCOVERY OF THE MASSIVE OVERCONTACT BINARY VFTS 352: EVIDENCE FOR ENHANCED INTERNAL MIXING". The Astrophysical Journal. 812 (2): 102. arXiv:1509.08940Freely accessible. Bibcode:2015ApJ...812..102A. doi:10.1088/0004-637X/812/2/102. Retrieved 2015-10-21.
  44. ^ Achmad, L.; Lamers, H. J. G. L. M.; Pasquini, L. (1997). "Radiation driven wind models for A, F and G supergiants". Astronomy and Astrophysics. 320: 196. Bibcode:1997A&A...320..196A.
  45. ^ Moscadelli, L.; Goddi, C. (2014). "A multiple system of high-mass YSOs surrounded by disks in NGC 7538 IRS1". Astronomy & Astrophysics. 566: A150. arXiv:1404.3957Freely accessible. Bibcode:2014A&A...566A.150M. doi:10.1051/0004-6361/201423420.

External links

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.