List of chemical elements naming controversies

The currently accepted names and symbols of the chemical elements are determined by the International Union of Pure and Applied Chemistry (IUPAC), usually following recommendations by the recognized discoverers of each element. However the names of several elements have been the subject of controversies until IUPAC established an official name. In most cases the controversy was due to a priority dispute as to who first found conclusive evidence for the existence of an element, or as to what evidence was in fact conclusive.

Element 23

Vanadium (named after Vanadis, another name for Freyja, the Scandinavian goddess of fertility) was originally discovered by Andrés Manuel del Río (a Spanish-born Mexican mineralogist) in Mexico City in 1801. He discovered the element after being sent a sample of "brown lead" ore (plomo pardo de Zimapán, now named vanadinite). Through experimentation, he found it to form salts with a wide variety of colors, so he named the element panchromium (Greek: all colors). He later renamed this substance erythronium, since most of the salts turned red when heated. The French chemist Hippolyte Victor Collet-Descotils incorrectly declared that del Río's new element was only impure chromium. Del Río thought himself to be mistaken and accepted the statement of the French chemist that was also backed by del Río's friend Alexander von Humboldt.[1]

In 1831, Sefström of Sweden rediscovered vanadium in a new oxide he found while working with some iron ores. He chose to call the element vanadin in Swedish (which has become vanadium in other languages including German and English) after the Old Norse Vanadís, another name for the Norse Vanr goddess Freyja, whose facets include connections to beauty and fertility, because of the many beautifully colored chemical compounds it produces. Later that same year Friedrich Wöhler confirmed del Río's earlier work.[2] Later, George William Featherstonhaugh, one of the first US geologists, suggested that the element should be named "rionium" after del Río, but this never happened.[3]

Elements 41 (Niobium Nb) and 74 (Tungsten W)

Charles Hatchett named element 41 columbium in 1801[4] (Cb),[5] but after the publication of On the Identity of Columbium and Tantalum by William Hyde Wollaston in 1809, the claims of discovery of Hattchet were refused.[6] In 1846 Heinrich Rose discovered that tantalite contained an element similar to tantalum and named it niobium.[7][8]

IUPAC officially adopted niobium in 1950 after 100 years of controversy.[9] This was a compromise of sorts; the IUPAC accepted tungsten (element 74) instead of wolfram (in deference to North American usage)[9][10][11] and niobium instead of columbium (in deference to European usage).[9][11]

Elements 70 (Ytterbium Yb) and 71 (Lutetium Lu)

Gadolinite, a mineral (from Ytterby, a village in Sweden), consists of several compounds (oxides or earths): yttria, erbia (sub-component as ytterbia) and terbia.

In 1878, Jean Charles Galissard de Marignac assumed that ytterbia consisted of a new element he called ytterbium (but actually there were two new elements). In 1907 Georges Urbain isolated element 70 and element 71 from ytterbia. He called element 70 neoytterbium ("new ytterbium") and called element 71 lutecium. At about the same time, Carl Auer von Welsbach also independently isolated these and proposed the names aldebaranium (Ad), after the star Aldebaran (in the constellation of Taurus), for element 70 (ytterbium), and cassiopeium (Cp), after the constellation Cassiopeia, for element 71 (lutetium), but both proposals were rejected.

Neoytterbium (element 70) was eventually reverted to ytterbium (following Marignac) and in 1949 the spelling of lutecium (element 71) was changed to lutetium.

(Other elements, yttrium (element 39) and gadolinium (element 64), were also discovered in gadolinite and its components, but there was no controversy about their names.)

Elements 103–109

At the time of their discovery, there was an element naming controversy as to what (particularly) the elements from 103 to 109 were to be called. At last, a committee of the International Union of Pure and Applied Chemistry (IUPAC) resolved the dispute and adopted one name for each element. They also adopted a temporary systematic element name.

Element 103 (Lawrencium Lr)

IUPAC ratified the name lawrencium (Lr) in honor of Ernest Lawrence during a meeting in Geneva; the name was preferred by the American Chemical Society.

Element 104 (Rutherfordium Rf)

The Joint Institute for Nuclear Research in Dubna (then USSR, today Russia) named element 104 kurchatovium (Ku) in honor of Igor Kurchatov, father of the Soviet atomic bomb. But the University of California, Berkeley, US, named element 104 rutherfordium (Rf) in honor of Ernest Rutherford. In 1997 a committee of IUPAC recommended that element 104 be named rutherfordium.

Element 105 (Dubnium Db)

The Joint Institute for Nuclear Research in Dubna (a Russian city north of Moscow), proposed naming element 105 nielsbohrium (Ns) after Niels Bohr, while the University of California, Berkeley suggested the name hahnium (Ha) in honor of Otto Hahn. IUPAC recommended that element 105 be named dubnium, after Dubna.

Element 106 (Seaborgium Sg)

The element was discovered almost simultaneously by two laboratories. In June 1974, a Soviet team led by G. N. Flyorov at the Joint Institute for Nuclear Research at Dubna reported producing the isotope 259106, and in September 1974, an American research team led by Albert Ghiorso at the Lawrence Radiation Laboratory at the University of California, Berkeley reported creating the isotope 263106. Because their work was independently confirmed first, the Americans suggested the name seaborgium (Sg) in honor of Glenn T. Seaborg, an American chemist. This name was extremely controversial because Seaborg was still alive.

An international committee decided in 1992 that the Berkeley and Dubna laboratories should share credit for the discovery. An element naming controversy erupted and as a result IUPAC adopted unnilhexium (Unh) as a temporary, systematic element name.

In 1994 a committee of IUPAC adopted a rule that no element can be named after a living person.[12] This ruling was fiercely objected to by the American Chemical Society.

Seaborg and Ghiorso pointed out that precedents had been set in the naming of elements 99 and 100 as einsteinium (Es) and fermium (Fm) during the lives of Albert Einstein and Enrico Fermi, although these names were not publicly announced until after Einstein and Fermi's deaths.[13] In 1997, as part of a compromise involving elements 104 to 108, the name seaborgium for element 106 was recognized internationally.

Element 107 (Bohrium Bh)

Some suggested the name nielsbohrium (Ns), in honor of Niels Bohr (this was separate from the proposal of the same name for element 105). IUPAC adopted unnilseptium (Uns) as a temporary systematic element name. In 1994 a committee of IUPAC recommended that element 107 be named bohrium (Bh), also in honor of Niels Bohr but using his surname only. While this conforms to the names of other elements honoring individuals where only the surname is taken, it was opposed by many who were concerned that it could be confused with boron, which is called borium in some languages including Latin. Despite this, the name bohrium for element 107 was recognized internationally in 1997.

Element 108 (Hassium Hs)

IUPAC adopted unniloctium (Uno) as a temporary, systematic element name. In 1997 a committee of IUPAC recommended that element 108 be named hassium (Hs), in honor of the German state of Hesse (or Hassia in Latin). This state includes the city of Darmstadt, which is home to the GSI Helmholtz Centre for Heavy Ion Research where several new elements were discovered or confirmed. The element name was accepted internationally.

Element 109 (Meitnerium Mt)

IUPAC adopted unnilennium (Une) as a temporary, systematic element name. While meitnerium was discussed in the naming controversy, it was the only proposal and thus never disputed. In 1997 a committee of IUPAC adopted the name meitnerium in honor of Lise Meitner (Mt).

Elements 101–112

Summary of element naming proposals and final decisions for elements 101–112 (those covered in the TWG report)[14]
Mendeleev Systematic American Russian German Compromise 92 IUPAC 94 AmericanChemSoc 94 IUPAC 95 IUPAC 97 Present
101 eka-thulium unnilunium mendelevium mendelevium mendelevium mendelevium mendelevium mendelevium mendelevium
102 eka-ytterbium unnilbium nobelium joliotium joliotium nobelium nobelium flerovium nobelium nobelium
103 eka-lutetium unniltrium lawrencium rutherfordium lawrencium lawrencium lawrencium lawrencium lawrencium lawrencium
104 eka-hafnium unnilquadium rutherfordium kurchatovium meitnerium dubnium rutherfordium dubnium rutherfordium rutherfordium
105 eka-tantalum unnilpentium hahnium nielsbohrium kurchatovium joliotium hahnium joliotium dubnium dubnium
106 eka-tungsten unnilhexium seaborgium rutherfordium rutherfordium seaborgium seaborgium seaborgium seaborgium
107 eka-rhenium unnilseptium nielsbohrium nielsbohrium bohrium nielsbohrium nielsbohrium bohrium bohrium
108 eka-osmium unniloctium hassium hassium hahnium hassium hahnium hassium hassium
109 eka-iridium unnilennium meitnerium hahnium meitnerium meitnerium meitnerium meitnerium meitnerium
110 eka-platinum ununnilium hahnium becquerelium darmstadtium darmstadtium
111 eka-gold unununium roentgenium roentgenium
112 eka-mercury ununbium copernicium copernicium

Post-controversial namings

Further elements were named without controversy, starting with elements 110 (Ds, darmstadtium) and 111 (Rg, roentgenium), whose names were approved by IUPAC in 2003 and 2004 respectively. More elements followed in 2010 (112: Cn, copernicium), 2012 (114: Fl, flerovium; 116: Lv, livermorium), and 2016 (113: Nh, nihonium; 115: Mc, moscovium; 117, Ts, tennessine; and 118, Og, oganesson), completing the seventh row of the periodic table.

See also


  • Rayner-Canham, Geoff; Zheng, Zheng (2007). "Naming elements after scientists: an account of a controversy". Foundations of Chemistry. 10 (1): 13. doi:10.1007/s10698-007-9042-1.
  • Holden, N. E. (12 March 2004). "History of the Origin of the Chemical Elements and Their Discoverers". National Nuclear Data Center.


  1. ^ Cintas, Pedro (2004). "The Road to Chemical Names and Eponyms: Discovery, Priority, and Credit". Angewandte Chemie International Edition. 43 (44): 5888–5894. doi:10.1002/anie.200330074. PMID 15376297.
  2. ^ Sefström, Nils Gabriel (1831). "Ueber das Vanadin, ein neues Metall, gefunden im Stangeneisen von Eckersholm, einer Eisenhütte, die ihr Erz von Taberg in Småland bezieht". Annalen der Physik und Chemie. 97 (1): 43–49. Bibcode:1831AnP....97...43S. doi:10.1002/andp.18310970103.
  3. ^ Featherstonhaugh, George William (1831). "New Metal, provisionally called Vanadium". The Monthly American Journal of Geology and Natural Science: 69.
  4. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 976. ISBN 978-0-08-037941-8.
  5. ^ Hatchett, Charles (1802). "Eigenschaften und chemisches Verhalten des von Charlesw Hatchett entdeckten neuen Metalls, Columbium". Annalen der Physik (in German). 11 (5): 120–122. Bibcode:1802AnP....11..120H. doi:10.1002/andp.18020110507.
  6. ^ Wollaston, William Hyde (1809). "On the Identity of Columbium and Tantalum". Philosophical Transactions of the Royal Society of London. 99: 246–252. doi:10.1098/rstl.1809.0017. JSTOR 107264.
  7. ^ Rose, Heinrich (1844). "Ueber die Zusammensetzung der Tantalite und ein im Tantalite von Baiern enthaltenes neues Metall". Annalen der Physik (in German). 139 (10): 317–341. Bibcode:1844AnP...139..317R. doi:10.1002/andp.18441391006.
  8. ^ Rose, Heinrich (1847). "Ueber die Säure im Columbit von Nordamérika". Annalen der Physik (in German). 146 (4): 572–577. Bibcode:1847AnP...146..572R. doi:10.1002/andp.18471460410.
  9. ^ a b c Rayner-Canham, Geoff; Zheng, Zheng (2008). "Naming elements after scientists: an account of a controversy". Foundations of Chemistry. 10 (1): 13–18. doi:10.1007/s10698-007-9042-1.
  10. ^ Patel, Zh.; Khul'ka K. (2001). "Niobium for Steelmaking". Metallurgist. 45 (11–12): 477–480. doi:10.1023/A:1014897029026.
  11. ^ a b Norman N., Greenwood (2003). "Vanadium to dubnium: from confusion through clarity to complexity". Catalysis Today. 78 (1–4): 5–11. doi:10.1016/S0920-5861(02)00318-8.
  12. ^ Naming of element 106 disputed by international committee Lynn Yarris, Lawrence Berkeley National Laboratory (LBL) Science Articles Archive, 1994 Oct.14
  13. ^ Out of His Element : Discovery Won't Be Named for Chemist--Because He's Alive Thomas H. Maugh II, Los Angeles Times, 1994 Oct.12
  14. ^ Hoffman, D.C., Ghiorso, A., Seaborg, G. T. The Transuranium People: The Inside Story, (2000), 369–399
International Union of Pure and Applied Chemistry

The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations that represents chemists in individual countries. It is a member of the International Council for Science (ICSU). IUPAC is registered in Zürich, Switzerland, and the administrative office, known as the "IUPAC Secretariat", is in Research Triangle Park, North Carolina, United States. This administrative office is headed by IUPAC's executive director, currently Lynn Soby.IUPAC was established in 1919 as the successor of the International Congress of Applied Chemistry for the advancement of chemistry. Its members, the National Adhering Organizations, can be national chemistry societies, national academies of sciences, or other bodies representing chemists. There are fifty-four National Adhering Organizations and three Associate National Adhering Organizations. IUPAC's Inter-divisional Committee on Nomenclature and Symbols (IUPAC nomenclature) is the recognized world authority in developing standards for the naming of the chemical elements and compounds. Since its creation, IUPAC has been run by many different committees with different responsibilities. These committees run different projects which include standardizing nomenclature, finding ways to bring chemistry to the world, and publishing works.IUPAC is best known for its works standardizing nomenclature in chemistry and other fields of science, but IUPAC has publications in many fields including chemistry, biology and physics. Some important work IUPAC has done in these fields includes standardizing nucleotide base sequence code names; publishing books for environmental scientists, chemists, and physicists; and improving education in science. IUPAC is also known for standardizing the atomic weights of the elements through one of its oldest standing committees, the Commission on Isotopic Abundances and Atomic Weights (CIAAW).

List of chemical element name etymologies

This article lists the etymology of chemical elements of the periodic table.

Symbol (chemistry)

In relation to the chemical elements, a symbol is a code for a chemical element. Symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised. (Many functional groups have their own chemical symbol, e.g. Ph for the phenyl group, and Me for the methyl group.)

Earlier symbols for chemical elements stem from classical Latin and Greek vocabulary. For some elements, this is because the material was known in ancient times, while for others, the name is a more recent invention. For example, Pb is the symbol for lead (plumbum in Latin); Hg is the symbol for mercury (hydrargyrum in Greek); and He is the symbol for helium (a new Latin name) because helium was not known in ancient Roman times. Some symbols come from other sources, like W for tungsten (Wolfram in German) which was not known in Roman times.

A 3-letter temporary symbol may be assigned to a newly synthesized (or not-yet synthesized) element. For example, "Uno" was the temporary symbol for hassium (element 108) which had the temporary name of unniloctium, based on its atomic number being 8 greater than 100. There are also some historical symbols that are no longer officially used.

In addition to the letter(s) for the element itself, additional details may be added to the symbol as superscripts or subscripts a particular isotope, ionization or oxidation state, or other atomic detail. A few isotopes have their own specific symbols rather than just an isotopic detail added to their element symbol.

Attached subscripts or superscripts specifying a nuclide or molecule have the following meanings and positions:

The nucleon number (mass number) is shown in the left superscript position (e.g., 14N). This number defines the specific isotope. Various letters, such as "m" and "f" may also be used here to indicate a nuclear isomer (e.g., 99mTc). Alternately, the number here can represent a specific spin state (e.g., 1O2). These details can be omitted if not relevant in a certain context.

The proton number (atomic number) may be indicated in the left subscript position (e.g., 64Gd). The atomic number is redundant to the chemical element, but is sometimes used to emphasize the change of numbers of nucleons in a nuclear reaction.

If necessary, a state of ionization or an excited state may be indicated in the right superscript position (e.g., state of ionization Ca2+).

The number of atoms of an element in a molecule or chemical compound is shown in the right subscript position (e.g., N2 or Fe2O3). If this number is one, it is normally omitted - the number one is implicitly understood if unspecified.

A radical is indicated by a dot on the right side (e.g., Cl• for a neutral chlorine atom). This is often omitted unless relevant to a certain context because it is already deducible from the charge and atomic number, as generally true for nonbonded valence electrons in skeletal structures.In Chinese, each chemical element has a dedicated character, usually created for the purpose (see Chemical elements in East Asian languages). However, Latin symbols are also used, especially in formulas.

A list of current, dated, as well as proposed and historical signs and symbols is included here with its signification. Also given is each element's atomic number, atomic weight or the atomic mass of the most stable isotope, group and period numbers on the periodic table, and etymology of the symbol.

Hazard pictographs are another type of symbols used in chemistry.

Transfermium Wars

The names for the chemical elements 104 to 106 were the subject of a major controversy starting in the 1960s, described by some nuclear chemists as the Transfermium Wars because it concerned the elements following fermium (element 100) on the periodic table.

This controversy arose from disputes between American scientists and Soviet scientists as to which had first isolated these elements. The final resolution of this controversy in 1997 also decided the names of elements 107 to 109.


Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. The name tungsten comes from the former Swedish name for the tungstate mineral scheelite, tung sten or "heavy stone". Tungsten is a rare metal found naturally on Earth almost exclusively combined with other elements in chemical compounds rather than alone. It was identified as a new element in 1781 and first isolated as a metal in 1783. Its important ores include wolframite and scheelite.

The free element is remarkable for its robustness, especially the fact that it has the highest melting point of all the elements discovered, melting at 3422 °C (6192 °F, 3695 K). It also has the highest boiling point, at 5930 °C (10706 °F, 6203 K). Its density is 19.3 times that of water, comparable to that of uranium and gold, and much higher (about 1.7 times) than that of lead. Polycrystalline tungsten is an intrinsically brittle and hard material (under standard conditions, when uncombined), making it difficult to work. However, pure single-crystalline tungsten is more ductile and can be cut with a hard-steel hacksaw.Tungsten's many alloys have numerous applications, including incandescent light bulb filaments, X-ray tubes (as both the filament and target), electrodes in gas tungsten arc welding, superalloys, and radiation shielding. Tungsten's hardness and high density give it military applications in penetrating projectiles. Tungsten compounds are also often used as industrial catalysts.

Tungsten is the only metal from the third transition series that is known to occur in biomolecules that are found in a few species of bacteria and archaea. It is the heaviest element known to be essential to any living organism. However, tungsten interferes with molybdenum and copper metabolism and is somewhat toxic to more familiar forms of animal life.

Periodic table forms
Sets of elements
See also

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.