Kinetic energy

In physics, the kinetic energy of an object is the energy that it possesses due to its motion.[1] It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.

In classical mechanics, the kinetic energy of a non-rotating object of mass m traveling at a speed v is . In relativistic mechanics, this is a good approximation only when v is much less than the speed of light.

The standard unit of kinetic energy is the joule.

The imperial unit of kinetic energy is the foot-pound.

Kinetic energy (KE)
Wooden roller coaster txgi
The cars of a roller coaster reach their maximum kinetic energy when at the bottom of the path. When they start rising, the kinetic energy begins to be converted to gravitational potential energy. The sum of kinetic and potential energy in the system remains constant, ignoring losses to friction.
Common symbols
KE, Ek, or T
SI unitjoule (J)
Derivations from
other quantities
Ek = ½mv2
Ek = Et+Er

History and etymology

The adjective kinetic has its roots in the Greek word κίνησις kinesis, meaning "motion". The dichotomy between kinetic energy and potential energy can be traced back to Aristotle's concepts of actuality and potentiality.[2]

The principle in classical mechanics that E ∝ mv2 was first developed by Gottfried Leibniz and Johann Bernoulli, who described kinetic energy as the living force, vis viva. Willem 's Gravesande of the Netherlands provided experimental evidence of this relationship. By dropping weights from different heights into a block of clay, Willem 's Gravesande determined that their penetration depth was proportional to the square of their impact speed. Émilie du Châtelet recognized the implications of the experiment and published an explanation.[3]

The terms kinetic energy and work in their present scientific meanings date back to the mid-19th century. Early understandings of these ideas can be attributed to Gaspard-Gustave Coriolis, who in 1829 published the paper titled Du Calcul de l'Effet des Machines outlining the mathematics of kinetic energy. William Thomson, later Lord Kelvin, is given the credit for coining the term "kinetic energy" c. 1849–51.[4][5]

Overview

Energy occurs in many forms, including chemical energy, thermal energy, electromagnetic radiation, gravitational energy, electric energy, elastic energy, nuclear energy, and rest energy. These can be categorized in two main classes: potential energy and kinetic energy. Kinetic energy is the movement energy of an object. Kinetic energy can be transferred between objects and transformed into other kinds of energy.[6]

Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy. For example, a cyclist uses chemical energy provided by food to accelerate a bicycle to a chosen speed. On a level surface, this speed can be maintained without further work, except to overcome air resistance and friction. The chemical energy has been converted into kinetic energy, the energy of motion, but the process is not completely efficient and produces heat within the cyclist.

The kinetic energy in the moving cyclist and the bicycle can be converted to other forms. For example, the cyclist could encounter a hill just high enough to coast up, so that the bicycle comes to a complete halt at the top. The kinetic energy has now largely been converted to gravitational potential energy that can be released by freewheeling down the other side of the hill. Since the bicycle lost some of its energy to friction, it never regains all of its speed without additional pedaling. The energy is not destroyed; it has only been converted to another form by friction. Alternatively, the cyclist could connect a dynamo to one of the wheels and generate some electrical energy on the descent. The bicycle would be traveling slower at the bottom of the hill than without the generator because some of the energy has been diverted into electrical energy. Another possibility would be for the cyclist to apply the brakes, in which case the kinetic energy would be dissipated through friction as heat.

Like any physical quantity that is a function of velocity, the kinetic energy of an object depends on the relationship between the object and the observer's frame of reference. Thus, the kinetic energy of an object is not invariant.

Spacecraft use chemical energy to launch and gain considerable kinetic energy to reach orbital velocity. In an entirely circular orbit, this kinetic energy remains constant because there is almost no friction in near-earth space. However, it becomes apparent at re-entry when some of the kinetic energy is converted to heat. If the orbit is elliptical or hyperbolic, then throughout the orbit kinetic and potential energy are exchanged; kinetic energy is greatest and potential energy lowest at closest approach to the earth or other massive body, while potential energy is greatest and kinetic energy the lowest at maximum distance. Without loss or gain, however, the sum of the kinetic and potential energy remains constant.

Kinetic energy can be passed from one object to another. In the game of billiards, the player imposes kinetic energy on the cue ball by striking it with the cue stick. If the cue ball collides with another ball, it slows down dramatically, and the ball it hit accelerates its speed as the kinetic energy is passed on to it. Collisions in billiards are effectively elastic collisions, in which kinetic energy is preserved. In inelastic collisions, kinetic energy is dissipated in various forms of energy, such as heat, sound, binding energy (breaking bound structures).

Flywheels have been developed as a method of energy storage. This illustrates that kinetic energy is also stored in rotational motion.

Several mathematical descriptions of kinetic energy exist that describe it in the appropriate physical situation. For objects and processes in common human experience, the formula ½mv² given by Newtonian (classical) mechanics is suitable. However, if the speed of the object is comparable to the speed of light, relativistic effects become significant and the relativistic formula is used. If the object is on the atomic or sub-atomic scale, quantum mechanical effects are significant, and a quantum mechanical model must be employed.

Newtonian kinetic energy

Kinetic energy of rigid bodies

In classical mechanics, the kinetic energy of a point object (an object so small that its mass can be assumed to exist at one point), or a non-rotating rigid body depends on the mass of the body as well as its speed. The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form:

where is the mass and is the speed (or the velocity) of the body. In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules.

For example, one would calculate the kinetic energy of an 80 kg mass (about 180 lbs) traveling at 18 metres per second (about 40 mph, or 65 km/h) as

When a person throws a ball, the person does work on it to give it speed as it leaves the hand. The moving ball can then hit something and push it, doing work on what it hits. The kinetic energy of a moving object is equal to the work required to bring it from rest to that speed, or the work the object can do while being brought to rest: net force × displacement = kinetic energy, i.e.,

Since the kinetic energy increases with the square of the speed, an object doubling its speed has four times as much kinetic energy. For example, a car traveling twice as fast as another requires four times as much distance to stop, assuming a constant braking force. As a consequence of this quadrupling, it takes four times the work to double the speed.

The kinetic energy of an object is related to its momentum by the equation:

where:

is momentum
is mass of the body

For the translational kinetic energy, that is the kinetic energy associated with rectilinear motion, of a rigid body with constant mass , whose center of mass is moving in a straight line with speed , as seen above is equal to

where:

is the mass of the body
is the speed of the center of mass of the body.

The kinetic energy of any entity depends on the reference frame in which it is measured. However the total energy of an isolated system, i.e. one in which energy can neither enter nor leave, does not change over time in the reference frame in which it is measured. Thus, the chemical energy converted to kinetic energy by a rocket engine is divided differently between the rocket ship and its exhaust stream depending upon the chosen reference frame. This is called the Oberth effect. But the total energy of the system, including kinetic energy, fuel chemical energy, heat, etc., is conserved over time, regardless of the choice of reference frame. Different observers moving with different reference frames would however disagree on the value of this conserved energy.

The kinetic energy of such systems depends on the choice of reference frame: the reference frame that gives the minimum value of that energy is the center of momentum frame, i.e. the reference frame in which the total momentum of the system is zero. This minimum kinetic energy contributes to the invariant mass of the system as a whole.

Derivation

The work done in accelerating a particle with mass m during the infinitesimal time interval dt is given by the dot product of force F and the infinitesimal displacement dx

where we have assumed the relationship p = m v and the validity of Newton's Second Law. (However, also see the special relativistic derivation below.)

Applying the product rule we see that:

Therefore, (assuming constant mass so that dm=0), we have,

Since this is a total differential (that is, it only depends on the final state, not how the particle got there), we can integrate it and call the result kinetic energy. Assuming the object was at rest at time 0, we integrate from time 0 to time t because the work done by the force to bring the object from rest to velocity v is equal to the work necessary to do the reverse:

This equation states that the kinetic energy (Ek) is equal to the integral of the dot product of the velocity (v) of a body and the infinitesimal change of the body's momentum (p). It is assumed that the body starts with no kinetic energy when it is at rest (motionless).

Rotating bodies

If a rigid body Q is rotating about any line through the center of mass then it has rotational kinetic energy () which is simply the sum of the kinetic energies of its moving parts, and is thus given by:

where:

  • ω is the body's angular velocity
  • r is the distance of any mass dm from that line
  • is the body's moment of inertia, equal to .

(In this equation the moment of inertia must be taken about an axis through the center of mass and the rotation measured by ω must be around that axis; more general equations exist for systems where the object is subject to wobble due to its eccentric shape).

Kinetic energy of systems

A system of bodies may have internal kinetic energy due to the relative motion of the bodies in the system. For example, in the Solar System the planets and planetoids are orbiting the Sun. In a tank of gas, the molecules are moving in all directions. The kinetic energy of the system is the sum of the kinetic energies of the bodies it contains.

A macroscopic body that is stationary (i.e. a reference frame has been chosen to correspond to the body's center of momentum) may have various kinds of internal energy at the molecular or atomic level, which may be regarded as kinetic energy, due to molecular translation, rotation, and vibration, electron translation and spin, and nuclear spin. These all contribute to the body's mass, as provided by the special theory of relativity. When discussing movements of a macroscopic body, the kinetic energy referred to is usually that of the macroscopic movement only. However all internal energies of all types contribute to body's mass, inertia, and total energy.

Fluid dynamics

In fluid dynamics, the kinetic energy per unit volume at each point in an incompressible fluid flow field is called the dynamic pressure at that point.[7]

Dividing by V, the unit of volume:

where is the dynamic pressure, and ρ is the density of the incompressible fluid.

Frame of reference

The speed, and thus the kinetic energy of a single object is frame-dependent (relative): it can take any non-negative value, by choosing a suitable inertial frame of reference. For example, a bullet passing an observer has kinetic energy in the reference frame of this observer. The same bullet is stationary to an observer moving with the same velocity as the bullet, and so has zero kinetic energy.[8] By contrast, the total kinetic energy of a system of objects cannot be reduced to zero by a suitable choice of the inertial reference frame, unless all the objects have the same velocity. In any other case, the total kinetic energy has a non-zero minimum, as no inertial reference frame can be chosen in which all the objects are stationary. This minimum kinetic energy contributes to the system's invariant mass, which is independent of the reference frame.

The total kinetic energy of a system depends on the inertial frame of reference: it is the sum of the total kinetic energy in a center of momentum frame and the kinetic energy the total mass would have if it were concentrated in the center of mass.

This may be simply shown: let be the relative velocity of the center of mass frame i in the frame k. Since ,

However, let the kinetic energy in the center of mass frame, would be simply the total momentum that is by definition zero in the center of mass frame, and let the total mass: . Substituting, we get:[9]

Thus the kinetic energy of a system is lowest to center of momentum reference frames, i.e., frames of reference in which the center of mass is stationary (either the center of mass frame or any other center of momentum frame). In any different frame of reference, there is additional kinetic energy corresponding to the total mass moving at the speed of the center of mass. The kinetic energy of the system in the center of momentum frame is a quantity that is invariant (all observers see it to be the same).

Rotation in systems

It sometimes is convenient to split the total kinetic energy of a body into the sum of the body's center-of-mass translational kinetic energy and the energy of rotation around the center of mass (rotational energy):

where:

Ek is the total kinetic energy
Et is the translational kinetic energy
Er is the rotational energy or angular kinetic energy in the rest frame

Thus the kinetic energy of a tennis ball in flight is the kinetic energy due to its rotation, plus the kinetic energy due to its translation.

Relativistic kinetic energy of rigid bodies

If a body's speed is a significant fraction of the speed of light, it is necessary to use relativistic mechanics to calculate its kinetic energy. In special relativity theory, the expression for linear momentum is modified.

With m being an object's rest mass, v and v its velocity and speed, and c the speed of light in vacuum, we use the expression for linear momentum , where .

Integrating by parts yields

Since ,

is a constant of integration for the indefinite integral. Simplifying the expression we obtain

is found by observing that when and , giving

resulting in the formula

This formula shows that the work expended accelerating an object from rest approaches infinity as the velocity approaches the speed of light. Thus it is impossible to accelerate an object across this boundary.

The mathematical by-product of this calculation is the mass-energy equivalence formula—the body at rest must have energy content

At a low speed (<<), the relativistic kinetic energy is approximated well by the classical kinetic energy. This is done by binomial approximation or by taking the first two terms of the Taylor expansion for the reciprocal square root:

So, the total energy can be partitioned into the rest mass energy plus the Newtonian kinetic energy at low speeds.

When objects move at a speed much slower than light (e.g. in everyday phenomena on Earth), the first two terms of the series predominate. The next term in the Taylor series approximation

is small for low speeds. For example, for a speed of 10 km/s (22,000 mph) the correction to the Newtonian kinetic energy is 0.0417 J/kg (on a Newtonian kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a Newtonian kinetic energy of 5 GJ/kg).

The relativistic relation between kinetic energy and momentum is given by

This can also be expanded as a Taylor series, the first term of which is the simple expression from Newtonian mechanics:[10]

This suggests that the formulae for energy and momentum are not special and axiomatic, but concepts emerging from the equivalence of mass and energy and the principles of relativity.

General relativity

Using the convention that

where the four-velocity of a particle is

and is the proper time of the particle, there is also an expression for the kinetic energy of the particle in general relativity.

If the particle has momentum

as it passes by an observer with four-velocity uobs, then the expression for total energy of the particle as observed (measured in a local inertial frame) is

and the kinetic energy can be expressed as the total energy minus the rest energy:

Consider the case of a metric that is diagonal and spatially isotropic (gtt,gss,gss,gss). Since

where vα is the ordinary velocity measured w.r.t. the coordinate system, we get

Solving for ut gives

Thus for a stationary observer (v= 0)

and thus the kinetic energy takes the form

Factoring out the rest energy gives:

This expression reduces to the special relativistic case for the flat-space metric where

In the Newtonian approximation to general relativity

where Φ is the Newtonian gravitational potential. This means clocks run slower and measuring rods are shorter near massive bodies.

Kinetic energy in quantum mechanics

In quantum mechanics, observables like kinetic energy are represented as operators. For one particle of mass m, the kinetic energy operator appears as a term in the Hamiltonian and is defined in terms of the more fundamental momentum operator . The kinetic energy operator in the non-relativistic case can be written as

Notice that this can be obtained by replacing by in the classical expression for kinetic energy in terms of momentum,

In the Schrödinger picture, takes the form where the derivative is taken with respect to position coordinates and hence

The expectation value of the electron kinetic energy, , for a system of N electrons described by the wavefunction is a sum of 1-electron operator expectation values:

where is the mass of the electron and is the Laplacian operator acting upon the coordinates of the ith electron and the summation runs over all electrons.

The density functional formalism of quantum mechanics requires knowledge of the electron density only, i.e., it formally does not require knowledge of the wavefunction. Given an electron density , the exact N-electron kinetic energy functional is unknown; however, for the specific case of a 1-electron system, the kinetic energy can be written as

where is known as the von Weizsäcker kinetic energy functional.

See also

Notes

  1. ^ Jain, Mahesh C. (2009). Textbook of Engineering Physics (Part I). p. 9. ISBN 978-81-203-3862-3., Chapter 1, p. 9
  2. ^ Brenner, Joseph (2008). Logic in Reality (illustrated ed.). Springer Science & Business Media. p. 93. ISBN 978-1-4020-8375-4. Extract of page 93
  3. ^ Judith P. Zinsser (2007). Emilie du Chatelet: Daring Genius of the Enlightenment. Penguin. ISBN 0-14-311268-6.
  4. ^ Crosbie Smith, M. Norton Wise. Energy and Empire: A Biographical Study of Lord Kelvin. Cambridge University Press. p. 866. ISBN 0-521-26173-2.
  5. ^ John Theodore Merz (1912). A History of European Thought in the Nineteenth Century. Blackwood. p. 139. ISBN 0-8446-2579-5.
  6. ^ "Khan Academy". Khan Academy. Retrieved 2016-10-09.
  7. ^ A.M. Kuethe and J.D. Schetzer (1959) Foundations of Aerodynamics, 2nd edition, p.53. John Wiley & Sons ISBN 0-471-50952-3
  8. ^ Sears, Francis Weston; Brehme, Robert W. (1968). Introduction to the theory of relativity. Addison-Wesley. p. 127., Snippet view of page 127
  9. ^ Physics notes - Kinetic energy in the CM frame Archived 2007-06-11 at the Wayback Machine. Duke.edu. Accessed 2007-11-24.
  10. ^ Fitzpatrick, Richard (20 July 2010). "Fine Structure of Hydrogen". Quantum Mechanics. Retrieved 20 August 2016.

References

  • Physics Classroom (2000). "Kinetic Energy". Retrieved 2015-07-19.
  • Oxford Dictionary 1998
  • School of Mathematics and Statistics, University of St Andrews (2000). "Biography of Gaspard-Gustave de Coriolis (1792-1843)". Retrieved 2006-03-03.
  • Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole. ISBN 0-534-40842-7.
  • Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.). W. H. Freeman. ISBN 0-7167-0809-4.
  • Tipler, Paul; Llewellyn, Ralph (2002). Modern Physics (4th ed.). W. H. Freeman. ISBN 0-7167-4345-0.

External links

Bouncy ball

A bouncy ball or rubber ball is a spherical toy ball, usually fairly small, made of elastic material which allows it to bounce against hard surfaces. When thrown against a hard surface, bouncy balls retain their momentum and much of their kinetic energy (or, if dropped, convert much of their potential energy to kinetic energy). They can thus rebound with an appreciable fraction of their original force.

Collision

A collision is the event in which two or more bodies exert forces on each other in about a relatively short time. Although the most common use of the word collision refers to incidents in which two or more objects collide with great force, the scientific use of the term implies nothing about the magnitude of the force.

Some examples of physical interactions that scientists would consider collisions are the following:

When an insect lands on a plant's leaf, its legs are said to collide with the leaf.

When a cat strides across a lawn, each contact that its paws make with the ground is considered a collision, as well as each brush of its fur against a blade of grass.

When a boxer throws a punch, their fist is said to collide with the opponent's body.

When an astronomical object merges with a black hole, they are considered to collide.Some colloquial uses of the word collision are the following:

A traffic collision involves at least one automobile.

A mid-air collision occurs between airplanes.

A ship collision accurately involves at least two moving maritime vessels hitting each other. (See allision below.)

Conservation of energy

In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all the forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite. Classically, conservation of energy was distinct from conservation of mass; however, special relativity showed that mass is related to energy and vice versa by E = mc2, and science now takes the view that mass–energy is conserved.

Conservation of energy can be rigorously proven by Noether's theorem as a consequence of continuous time translation symmetry; that is, from the fact that the laws of physics do not change over time.

A consequence of the law of conservation of energy is that a perpetual motion machine of the first kind cannot exist, that is to say, no system without an external energy supply can deliver an unlimited amount of energy to its surroundings. For systems which do not have time translation symmetry, it may not be possible to define conservation of energy. Examples include curved spacetimes in general relativity or time crystals in condensed matter physics.

Elastic collision

An elastic collision is an encounter between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise, or potential energy.

During the collision of small objects, kinetic energy is first converted to potential energy associated with a repulsive force between the particles (when the particles move against this force, i.e. the angle between the force and the relative velocity is obtuse), then this potential energy is converted back to kinetic energy (when the particles move with this force, i.e. the angle between the force and the relative velocity is acute).

Collisions of atoms are elastic, for example Rutherford backscattering.

The molecules—as distinct from atoms—of a gas or liquid rarely experience perfectly elastic collisions because kinetic energy is exchanged between the molecules’ translational motion and their internal degrees of freedom with each collision. At any instant, half the collisions are, to a varying extent, inelastic collisions (the pair possesses less kinetic energy in their translational motions after the collision than before), and half could be described as “super-elastic” (possessing more kinetic energy after the collision than before). Averaged across the entire sample, molecular collisions can be regarded as essentially elastic as long as Planck's law forbids black-body photons to carry away energy from the system.

In the case of macroscopic bodies, perfectly elastic collisions are an ideal never fully realized, but approximated by the interactions of objects such as billiard balls.

When considering energies, possible rotational energy before and/or after a collision may also play a role.

Electrical energy

Electrical energy is energy derived from electric potential energy or kinetic energy. When used loosely, "electrical energy" refers to energy that has been converted from electric potential energy. This energy is supplied by the combination of electric current and electric potential that is delivered by an electrical circuit (e.g., provided by an electric power utility). At the point that this electric potential energy has been converted to another type of energy, it ceases to be electric potential energy.

Thus, all electrical energy is potential energy before it is delivered to the end-use. Once converted from potential energy, electrical energy can always be called another type of energy (heat, light, motion, etc.).

Energy transformation

Energy transformation, also known as energy conversion, is the process of changing energy from one form to another. In physics, energy is a quantity that provides the capacity to perform work (lifting an object). In addition to being convertible, according to the law of conservation of energy, energy is transferable to a different location or object, but it cannot be created or destroyed.

Energy in many of its forms may be used in natural processes, or to provide some service to society such as heating, refrigeration, lighting or performing mechanical work to operate machines. For example, in order to heat a home, the furnace burns fuel, whose chemical potential energy is converted into thermal energy, which is then transferred to the home's air to raise its temperature.

In another example, an internal combustion engine burns gasoline to create pressure that pushes the pistons, thus performing work in order to accelerate your vehicle, ultimately converting the fuel's chemical energy to your vehicle's additional kinetic energy corresponding to its increase in speed.

Hamiltonian (quantum mechanics)

In quantum mechanics, a Hamiltonian is an operator corresponding to the sum of the kinetic energies plus the potential energies for all the particles in the system (this addition is the total energy of the system in most of the cases under analysis). It is usually denoted by H, also Ȟ or Ĥ. Its spectrum is the set of possible outcomes when one measures the total energy of a system. Because of its close relation to the time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

The Hamiltonian is named after William Rowan Hamilton, who created a revolutionary reformulation of Newtonian mechanics that is now called Hamiltonian mechanics which is important in quantum physics.

Inelastic collision

An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction.

In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energy of the atoms, causing a heating effect, and the bodies are deformed.

The molecules of a gas or liquid rarely experience perfectly elastic collisions because kinetic energy is exchanged between the molecules' translational motion and their internal degrees of freedom with each collision. At any one instant, half the collisions are – to a varying extent – inelastic (the pair possesses less kinetic energy after the collision than before), and half could be described as “super-elastic” (possessing more kinetic energy after the collision than before). Averaged across an entire sample, molecular collisions are elastic.Although inelastic collisions do not conserve kinetic energy, they do obey conservation of momentum. Simple ballistic pendulum problems obey the conservation of kinetic energy only when the block swings to its largest angle.

In nuclear physics, an inelastic collision is one in which the incoming particle causes the nucleus it strikes to become excited or to break up. Deep inelastic scattering is a method of probing the structure of subatomic particles in much the same way as Rutherford probed the inside of the atom (see Rutherford scattering). Such experiments were performed on protons in the late 1960s using high-energy electrons at the Stanford Linear Accelerator (SLAC). As in Rutherford scattering, deep inelastic scattering of electrons by proton targets revealed that most of the incident electrons interact very little and pass straight through, with only a small number bouncing back. This indicates that the charge in the proton is concentrated in small lumps, reminiscent of Rutherford's discovery that the positive charge in an atom is concentrated at the nucleus. However, in the case of the proton, the evidence suggested three distinct concentrations of charge (quarks) and not one.

Kinetic Energy Interceptor

The Kinetic Energy Interceptor (KEI) was a planned U.S. missile defense program whose goal was to design, develop, and deploy kinetic energy-based, mobile, ground and sea-launched missiles that could intercept and destroy enemy ballistic missiles during their boost, ascent and midcourse phases of flight. The KEI consisted of the Interceptor Component (kinetic projectile), the Mobile Launcher Component, and the Command, Control, Battle Management, and Communications (C2BMC) component.

On May 7, 2009, KEI program was canceled due primarily to financial reasons.

Kinetic energy penetrator

A kinetic energy penetrator (KEP, KE weapon, long-rod penetrator or LRP) is a type of ammunition designed to penetrate vehicle armour. Like a bullet, this ammunition does not contain explosives and uses kinetic energy to penetrate the target. Modern KEP munitions are typically of the armour-piercing fin-stabilized discarding sabot (APFSDS) type.

Kinetic energy recovery system

A kinetic energy recovery system (often known simply as KERS) is an automotive system for recovering a moving vehicle's kinetic energy under braking. The recovered energy is stored in a reservoir (for example a flywheel or high voltage batteries) for later use under acceleration. Examples include complex high end systems such as the Zytek, Flybrid, Torotrak and Xtrac used in Formula One racing and simple, easily manufactured and integrated differential based systems such as the Cambridge Passenger/Commercial Vehicle Kinetic Energy Recovery System (CPC-KERS).

Xtrac and Flybrid are both licensees of Torotrak's technologies, which employ a small and sophisticated ancillary gearbox incorporating a continuously variable transmission (CVT). The CPC-KERS is similar as it also forms part of the driveline assembly. However, the whole mechanism including the flywheel sits entirely in the vehicle's hub (looking like a drum brake). In the CPC-KERS, a differential replaces the CVT and transfers torque between the flywheel, drive wheel and road wheel.

Kinetic theory of gases

The kinetic theory of gases describes a gas as a large number of submicroscopic particles (atoms or molecules), all of which are in constant, rapid, random motion. The randomness arises from the particles' many collisions with each other and with the walls of the container.

Kinetic theory of gases explains the macroscopic properties of gases, such as pressure, temperature, viscosity, thermal conductivity, and volume, by considering their molecular composition and motion. The theory posits that gas pressure results from particles' collisions with the walls of a container at different velocities.

Kinetic molecular theory defines temperature in its own way, in contrast with the thermodynamic definition.Under an optical microscope, the molecules making up a liquid are too small to be visible. However, the jittery motion of pollen grains or dust particles in liquid are visible. Known as Brownian motion, the motion of the pollen or dust results from their collisions with the liquid's molecules.

Mechanical energy

In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. It is the energy associated with the motion and position of an object. The principle of conservation of mechanical energy states that in an isolated system that is only subject to conservative forces, the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed (not the velocity) of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and it’s conservation is a useful approximation. In elastic collisions, the mechanical energy is conserved, but in inelastic collisions some mechanical energy is converted into thermal energy. The equivalence between lost mechanical energy (dissipation) and an increase in temperature was discovered by James Prescott Joule.

Many devices are used to convert mechanical energy to or from other forms of energy, e.g. an electric motor converts electrical energy to mechanical energy, an electric generator converts mechanical energy into electrical energy and a heat engine converts heat energy to mechanical energy.

Negative energy

Negative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects.

In more speculative theories, negative energy is involved in wormholes which may allow for time travel and warp drives for faster-than-light space travel.

Oberth effect

In astronautics, a powered flyby, or Oberth maneuver, is a maneuver in which a spacecraft falls into a gravitational well, and then accelerates when its fall reaches maximum speed. The resulting maneuver is a more efficient way to gain kinetic energy than applying the same impulse outside of a gravitational well. The gain in efficiency is explained by the Oberth effect, wherein the use of an engine at higher speeds generates greater mechanical energy than use at lower speeds. In practical terms, this means that the most energy-efficient method for a spacecraft to burn its engine is at the lowest possible orbital periapsis, when its orbital velocity (and so, its kinetic energy) is greatest. In some cases, it is even worth spending fuel on slowing the spacecraft into a gravity well to take advantage of the efficiencies of the Oberth effect. The maneuver and effect are named after Hermann Oberth, the Austro-Hungarian-born German physicist and a founder of modern rocketry, who first described them in 1927.The Oberth effect is strongest at a point in orbit known as the periapsis, where the gravitational potential is lowest, and the speed is highest. This is because firing a rocket engine at high speed causes a greater change in kinetic energy than when fired at lower speed. Because the vehicle remains near periapsis only for a short time, for the Oberth maneuver to be most effective the vehicle must be able to generate as much impulse as possible in the shortest possible time. Thus, the Oberth maneuver is much more useful for high-thrust rocket engines like liquid-propellant rockets, and less useful for low-thrust reaction engines such as ion drives, which take a long time to gain speed. The Oberth effect also can be used to understand the behavior of multi-stage rockets: the upper stage can generate much more usable kinetic energy than the total chemical energy of the propellants it carries.The Oberth effect occurs because the propellant has more usable energy due to its kinetic energy in addition to its chemical potential energy. The vehicle is able to employ this kinetic energy to generate more mechanical power.

Regenerative brake

Regenerative braking is an energy recovery mechanism which slows a vehicle or object by converting its kinetic energy into a form which can be either used immediately or stored until needed. In this mechanism, the electric motor uses the vehicle's momentum to recover energy that would be otherwise lost to the brake discs as heat. This contrasts with conventional braking systems, where the excess kinetic energy is converted to unwanted and wasted heat by friction in the brakes, or with dynamic brakes, where energy is recovered by using electric motors as generators but is immediately dissipated as heat in resistors. In addition to improving the overall efficiency of the vehicle, regeneration can greatly extend the life of the braking system as its parts do not wear as quickly.

Rotational energy

Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. It is given by:

,

where

is rotational kinetic energy,
is angular velocity,
is moment of inertia around the axis of rotation.

The mechanical work required for applied during rotation is the torque times the rotation angle. The instantaneous power of an angularly accelerating body is the torque times the angular velocity. For free-floating (unattached) objects, the axis of rotation is commonly around its center of mass.

Note the close analogy between the formula for rotational energy and that for linear (or translational) kinetic energy:

.

In the rotating system, the moment of inertia takes the role of mass m, and the angular velocity that of linear velocity v. The rotational energy of a rolling cylinder varies from one half of the translational energy (if it is solid) to the same as the translational energy (if it is hollow).

An example is the calculation of the rotational kinetic energy of the Earth. With a period of about 23.93 hours, it has an angular velocity of 7.29×10−5 rad/s. Its moment of inertia is = 8.04×1037 kg·m2. Therefore, it has a rotational kinetic energy of 2.138×1029 J.

An example of using Earth's rotational energy is the launching of rockets. The European spaceport in French Guiana is about 5 degrees from the equator, so satellite launches from here to orbit eastward are sling-shot with nearly the full rotational speed of the earth at the equator (about 1,000 mph). Rocket launches easterly from Cape Canaveral obtain only about 400 mph added benefit, due to the lower relative rotational speed of the earth. This makes Guiana the more economic spaceport.

Part of the earth's rotational energy can also be tapped using tidal power.

Friction of the two global tidal waves slightly slows Earth's angular velocity ω. Due to the conservation of angular momentum, this transfers angular momentum to the Moon's orbital motion, increasing its distance from Earth and its orbital period (see tidal locking).

Turbulence

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent. Turbulence is caused by excessive kinetic energy in parts of a fluid flow, which overcomes the damping effect of the fluid's viscosity. For this reason turbulence is commonly realized in low viscosity fluids. In general terms, in turbulent flow, unsteady vortices appear of many sizes which interact with each other, consequently drag due to friction effects increases. This increases the energy needed to pump fluid through a pipe. Turbulence can be exploited, for example, by devices such as aerodynamic spoilers on aircraft that "spoil" the laminar flow to increase drag and reduce lift.

The onset of turbulence can be predicted by the dimensionless Reynolds number, the ratio of kinetic energy to viscous damping in a fluid flow. However, turbulence has long resisted detailed physical analysis, and the interactions within turbulence create a very complex phenomenon. Richard Feynman has described turbulence as the most important unsolved problem in classical physics.

Work (physics)

In physics, a force is said to do work if, when acting, there is a displacement of the point of application in the direction of the force. For example, when a ball is held above the ground and then dropped, the work done on the ball as it falls is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement). When the force is constant and the angle between the force and the displacement is θ, then the work done is given by W = Fs cos θ.

Work transfers energy from one place to another, or one form to another.

According to Jammer, the term work was introduced in 1826 by the French mathematician Gaspard-Gustave Coriolis as "weight lifted through a height", which is based on the use of early steam engines to lift buckets of water out of flooded ore mines. According to Rene Dugas, French engineer and historian, it is to Solomon of Caux "that we owe the term work in the sense that it is used in mechanics now".The SI unit of work is the joule (J).

Fundamental concepts
Types
Energy carriers
Primary energy
Energy system
components
Use and
supply
Misc.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.