Kentish plover

The Kentish plover (Charadrius alexandrinus) is a small cosmopolitan shorebird (40-44 g) of the family Charadriidae that breeds on the shores of saline lakes, lagoons, and coasts, populating sand dunes, marshes, semi-arid desert, and tundra.[2][3] Both male and female birds have pale plumages with a white underside, grey/brown back, dark legs and a dark bill, however additionally the male birds also exhibit very dark incomplete breast bands, and dark markings either side of their head, therefore the Kentish plover is regarded as sexually dimorphic [4]

Until 2009, the Kentish plover species was universally thought to include the North American snowy plover species, however a novel genetic research paper suggested that they were in fact separate species.[5] In July 2011, the International Ornithological Congress (IOC), and the American Ornithologists' Union (AOU) pronounced the Snowy Plover as a separate species Charadrius nivosus.

Charadrius alexandrinus has a large geographical distribution, ranging from latitudes of 10º to 55º, occupying North Africa, both mainland, such as Senegal, and island, such as the Cape Verde archipelago, Central Asia, for example alkaline lakes in China, and Europe, including small populations in Spain and Austria. Some populations are migratory and often winter in Africa, whereas other populations, such as various island populations, do not migrate.[6][7]

Kentish plovers are ground-nesting birds, often with a preference for low, open, moist nesting sites away from thick vegetation and human activity. They use a number of materials to build their nests, mainly consisting of shells, pebbles, grass and leaves in a small scrape in the ground.[8][9] Like most plovers, the Kentish plovers are predominantly insectivores, feeding on a large range of arthropods and invertebrates depending on the environment, by using a run and stop method.[10][11]

Kentish plover
Charadrius alexandrinus - Kentish Plover 05-2
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Order: Charadriiformes
Family: Charadriidae
Genus: Charadrius
C. alexandrinus
Binomial name
Charadrius alexandrinus
  • C. a. alexandrinus
  • C. a. dealbatus or nihonensis
  • C. a. seebohmi
CharadriusAlexandrinusIUCNver2018 2
Range of Ch. alexandrinus     Breeding      Resident      Non-breeding      Vagrant (seasonality uncertain)
  • Charadrius cantianus Latham, 1801 (syn. of C. a. alexandrinus)
  • Charadrius elegans Reichenow, 1904 (syn. of C. a. alexandrinus)


Kentish Plover adult
A female adult Kentish Plover

The Kentish plover is a small shorebird weighing around 40g as an adult. Both male and female birds have black bills and dark legs, however adults have dimorphic plumage. During the breeding season, males have a black horizontal head bar, two incomplete dark breast-bands on each side of their breast, black ear coverts and a rufous nape and crown (although there is some variation between breeding populations), whereas the females are paler in these areas, without the dark markings.[12][13] In the early breeding season, it is easy to distinguish between males and females since the ornaments are very pronounced, but as the breeding season progresses, the differences between the two sexes decrease. Moreover, males have longer tarsi and longer flank feathers than females.[13][14] Longer flank feathers are thought to be an advantage for incubation and brood care, as the quality of feathers is associated with heat insulation.[15] There are multiple significant predictors of plumage ornamentation in Kentish plovers. Firstly, the interaction between the advancement of the breeding season and rainfall seem to affect ornamentation. Male ornaments become more elaborated over the course of a breeding season in regions with high rainfall, whereas in regions with low rainfall, male ornaments become lighter. Secondly, the interaction between the breeding system and the sex can predict the degree of plumage ornamentation. In polygamous populations, the sexual ornaments are more pronounced, generating a stronger sexual dimorphism than in monogamous populations. The difference is especially witnessed in males, whereby the ornaments are darker and smaller in polygamous populations compared to monogamous populations, where males have lighter and larger ornaments. This is thought to be the result of a trade-off between the size and intensity of the ornaments.[12][16]

Male KP
A Male Kentish Plover

Distribution, Movement, and Habitats


Kentish plovers have an extremely wide geographical distribution and their habitats vary not just spatially but environmentally too. They are known to reside and breed in multiple types of habitat, from desert with ground temperatures reaching 50 °C to tundra. The distribution of this species’ breeding areas covers Europe, Asia and Africa,[6][17]). In Europe, populations are typically found in the west, however there was once a breeding population in Hungary, however Kentish plovers no longer breed there. In Africa, populations are found on the southern coast of Senegal and along the Northern coast of the Mediterranean, and the Red Sea coast. The breeding area continues along the Arabian Peninsula, Saudi Arabia, Qatar, and Bahrain in the Middle East. Small populations can be found on islands too, such as the Cape Verde archipelago, the Canary Islands, and the Azores. Some populations do not migrate, such as the Maio (Cape Verde) population, however other populations can migrate reasonable distances, for example, plovers that spend winter in North Africa have been known to migrate to Turkey and Greece in the spring. Some birds breeding in western Europe are not known to travel very far, just within Europe, however some do travel, mainly to Western Africa.[18]

Habitats and Movement

The breeding habitats are most commonly alkali lake shores, wetlands, salt marshes, and coastland, which is fitting with the results of a study that investigated what makes an environment suitable for a breeding habitat for the Kentish plover. By analysing 4 variables of all known nests, the study found that plovers prefer to nest in areas of low elevation, low vegetation, high moisture and places far away from human activity and settlements,.[8][17]

KP nest
Kentish Plover nest

There have been observations of parents moving their chicks from poor food areas to better food areas, with chicks subsequently growing stronger in the high food areas. This suggests that parents strategically move their chicks and change habitats. Moving young has benefits: protection from predators, obtaining more food, avoiding competition for food and space, avoiding potential infanticide due to competition, and avoiding territory defences from others. However, this is a trade-off as there are also costs to moving young: moving expends a lot of energy, especially in young, therefore chick growth may be stunted as energy is used on movement rather than growth, the chance of mortality due to starvation or predation increases whilst moving through open areas and the area of high food may have a lot of predators in it already. Overall, chick growth and brood survival benefit from moving to a higher food area, therefore increasing reproductive success of parents, hence why the parents move their chicks. The study also found that the larger and heavier females were more likely to move chicks, perhaps because they could defend their chicks from neighbouring parents [19]

Behaviour and Ecology


Hatching Kentish Plover
A Kentish Plover chick hatching in Maio, Cape Verde, 2016

The Kentish plover has an especially flexible breeding system, including both monogamous and polygamous behaviours within populations. It is known that breeding pairs return to breed with each other the following year, however mate changes have also been observed both between and within breeding seasons.[20][21]

Along with mate changes, EPF's (extra pair fertilisations) are also witnessed in some populations, by females copulating with extra-pair males (EPP- extra pair paternity), or males copulating with extra pair females, who then lay their eggs in the male's nest (QP- quasi-parasitism). A theory as to why such EPC's occur is that this mechanism evolved to avoid the deleterious effects of inbreeding. This is supported by a study by Blomqvist et al.,[22] showing that EPC's are more common when a breeding pair are more closely related to each other. Another theory is that females may seek out EPC's with high quality males to get the ‘good genes’ for their sons, following the ‘sexy sons’ hypothesis. The breeding season of Kentish plovers lasts on average between 2 and 5 months and varies in the time of year dependent on the particular population. Breeding pairs can replace failed clutches more than once per breeding season, with the same or a different mate, and both males and females can parent more than one brood, due to mate change and EPC's as mentioned above.[2] The courtship displays also vary between populations of plovers, especially between socially monogamous and polygamous populations, for example in polygamous populations the time spent courting is significantly higher for both males and females than in monogamous populations. Courtship displays include active gestures such as flat running, building nest scrapes (small shallow cavities in the ground that are later built into nests), and fighting/running to defend a breeding territory (mainly by males) [23]


Kentish plovers inhabit sandy areas or salt-marshes in close proximity to water. Inland populations can be found near alkaline or saline lakes, ponds or reservoirs. The populations inhabiting the coastal regions can be found in semi-desert habitats i.e. on barren beaches, near lagoons and sand extractions on beaches or dunes.

Salina do porto ingles
Salina do Porto Ingles, the habitat of Kentish Plovers in Maio, Cape Verde

Kentish plovers are territorial shorebirds; the male usually has a territory and attracts females with courtship displays. The parents are actively defending their nest territories from predators by chasing, fighting or posturing them. When approached by predators in close proximity to the nest, the Kentish plovers quickly run away from the nest and start doing distraction displays to focus the predator's attention on themselves and lure them away from the nest. These displays include calling or crawling on the ground flapping their wings. Males tend to be more aggressive than females. When a plover's territory has been invaded, it invades a neighboring family's territory. This is when fights between males frequently occur because the plovers see their broods threatened. During such fights, it occurs that chicks get injured or even killed.[24] When approached by a predator, chicks usually try to find a spot where they can hide, crouch down and stay motionless to remain unseen. When they are older, they try to run away with their parents.

Nesting and Incubation

Kentish Plover nest
A Kentish Plover nest, with a standard grey card

Kentish plovers either nest solitarily or in a loose semicolonial manner. They are ground-nesting birds that lay their eggs in small shallow scrapes prepared by the male during courtship on the bare ground. Selection of the breeding ground is essential for the survival of nests and broods; nests are placed near the water on bare earth or in sparse vegetation; often on slightly elevated sites in order to have a good view of the surroundings to spot predators from a distance or near small bushes, plants or grass clusters,[25] where the eggs are partly sheltered from predators. Nests are filled with nest material i.e. pebble stones, small parts of shells, fish bones, small twigs, grass and other debris.[9] The modal clutch size comprises three eggs, although some nests are already completed with one or two eggs. In fresh or incomplete nests, the eggs tend to be fully exposed, but as the incubation period progresses, the amount of nest material increases and the eggs become practically completely covered.[2] During the incubation period, the Kentish plover recesses for variable periods of time mainly to forage or to perform other activities essential for self-maintenance. To compensate for the resulting lack of presence and increased predation risk, they use nest materials to cover and hence camouflage the eggs and keep them insulated.[26] Kentish plovers regulate the amount of nest material actively. This was shown experimentally in a study by increasing or decreasing the amount of nest material artificially. Within 24hrs, the plovers had restored the amount of nest material back to original.[9] This is of advantage because nest materials help a good insulation of eggs, therefore preventing egg temperature fluctuations [27]) (hence avoiding embryo hypothermia) and reducing the energetic costs of incubation for the parents.[27] By regulating the amount of nest material, the Kentish plovers balances the advantages i.e. insulation and anti-predator defence and the disadvantages of nest material i.e. overheating.[9] Incubation is the process by which the eggs are kept at optimal temperature i.e. between 37 °C and 38 °C for the embryonic development of birds with most of the heat deriving from the incubating bird.[28] Kentish plover eggs are incubated for 20–25 days by both sexes; females mostly incubate during the day whilst males incubate during the night.[29] Female Kentish plovers usually lose mass during the day, which is unexpected since they get relieved by the males for a variable amount of time. The loss would be much higher if the females were to incubate alone. This loss is a cost of incubation due to the depletion of fat stores and the evaporation of water.[30]

Parental Care

Kentish Plover Chick
A Kentish Plover Chick

Parental care is variable within birds and the Kentish plover has a slightly different mechanism to other shorebirds. As discussed above, both parents incubate the eggs, however both parents do not always stick around once the eggs have hatched. It is not unusual for one parent to leave the chicks after a variable amount of time; this is referred to as brood desertion. Brood desertion is the ‘termination of care, by either one or both parents, before the offspring are capable of surviving independently’ [31] and usually occurs after one week of the brood being accompanied by both parents. Brood desertion has been observed in both males and females, however females desert the brood significantly more frequently than males.[21] Studies have shown that both the male and female Kentish plover can provide adequate care for their brood on their own, so it is not the differences in the ability of the parents that determines which parent deserts the brood and which stays to care for the chicks. However, studies have also shown that after desertion females have a larger chance of breeding success than males, potentially due to many Kentish plover populations maintaining a male-biased OSR (operational sex ratio - the ratio of males actively breeding to females). Therefore, is it hypothesized that the amount of reproductive success gained by desertion is what actually determines who deserts the brood,.[32][13] In short, males and females can care for their brood equally, however females gain more by deserting their brood than males, resulting in a higher amount of female desertion over male. The non-deserting parent can continue to brood their chicks up to 80% of the time for over 20 days after hatching, as precocial young are vulnerable and exposed to external temperatures.


The alarm call, referred to as kittup call, is often heard both on the ground and in the air and can occur on its own, or paired with a tweet, heard as too-eet. The threat note is described as a "twanging, metallic, dwee-dwee-dweedweedwee sound".[33]


Kentish plovers either forage individually or in loose flocks of 20-30 individuals (outside the breeding season), and occasionally can incorporate into larger flocks of up to 260 individuals of multiple species.[34][35] Their main source of food consists of miniature aquatic and terrestrial invertebrates such as insects and their larvae (e.g. beetles, grasshoppers or flies), molluscs, crustaceans, spiders and marine worms.[34] They are obligate visual foragers and often feed at the shoreline of lakes, lagoons or ponds in invertebrate-rich moist-soil areas.[36] They forage by looking, stopping or running and then pecking to catch the prey, but also probe the sand to search for prey, or catch flies by holding their mouths open Kentish plover (Charadrius alexandrinus).[37] The Kentish plover's capability of identifying cues for prey is influenced by light, wind and rain.[38] At night, their ability of finding prey might be restricted, but plovers have been shown to have a good nocturnal vision due to their large eyes and enhanced retinal visual sensitivity,.[39][40]

Status and Conservation


The Kentish plover is classified as Least Concern on the Red List Category because it has a very large population range. It is not near the threshold for ‘Vulnerable’ under the population size (<10,000 mature individuals with a constant decline reaching >10% within the next 10 years or three generations), since the global population is estimated being very large with 100,000 - 499,999 mature individuals. A closer estimate, needing further verification, is that the population size lies between 290,000 and 460,000 individuals. Moreover, the Kentish plover does not reach the threshold for being ‘Vulnerable’ on a level of range size (the area of occurrence being <20,000km2 in combination with a decline of population size, habitat area/quality or range size) because it is distributed over an area of 70,800,000 km2. Finally, although there is a decline in global population size, it does not reach the threshold for ‘Vulnerable’ in terms of population trend meaning >30% decline over 10 years or three generations.[41]

Hatching kp on nest
A Kentish Plover chick hatching, along with its sibling and an egg


The global population size of the Kentish plover is continuously declining although for some populations the trends are unknown.[42] The European population being estimated at 21,500-34,800 pairs, forming around 15% of the global range, is thought to decrease by less than 25% in 15 years/three generations.[41]


A major threat to this species is habitat loss and disturbance. Human activity such as tourists walking through protected areas, pollution, unsustainable harvesting and urbanisation can destroy nesting sites. Plover populations can also be affected by rural human activity, for example fishermen walking through protected plover breeding sites, bringing large numbers of dogs with them- a known predator of plover eggs. Natural predators are also a problem, as many of these predators appear to thrive unnaturally well in the presence of plover breeding grounds, such as the brown-necked raven (Corvus ruficollis) in Maio, Cape Verde, the White-tailed Mongoose (Ichneumia albicauda) in Saudi Arabia, and the Grey Monitors (Varanus griseus) in Al-Wathba Wetland Reserve. It is thought that the high amount of prey available to these predators attracts them into the breeding grounds- an effect named the 'honey pot',[43][41][44] Global warming and climate change also plays a role in the decline of areas available for plovers to breed and reside in. It is known that the Kentish plover prefers to build its nests on low-elevated land close to water, and a study untaken in Saudi Arabia discovered that 11% of nests in the study site were in fact below sea level, therefore rising sea levels are predicted to have disastrous consequences for these low-sitting nests,.[8][45]


The Kentish plover is currently on the Annex I of the EU Birds Directive and Annex II of the Bern Convention.[41] Conservation actions proposed to protect the species include the conservation of their natural habitat by creating or elaborating protected areas at breeding sites. This is essential to stop pollution, land reclamation and urbanisation. Human interaction should be controlled and kept at a minimum.


  1. ^ BirdLife International (2012). "Charadrius alexandrinus". IUCN Red List of Threatened Species. Version 2013.2. International Union for Conservation of Nature. Retrieved 26 November 2013.
  2. ^ a b c Székely, T., A. Argüelles-Ticó, A. Kosztolányi and C. Küpper. 2011. Practical guide for investigating breeding ecology of Kentish plover Charadrius alexandrinus, Unpublished Report, University of Bath
  3. ^ del Hoyo, J., Collar, N.J., Christie, D.A., Elliott, A. and Fishpool, L.D.C. 2014. HBW and BirdLife International Illustrated Checklist of the Birds of the World, Lynx Edicions BirdLife International, Barcelona, Spain and Cambridge, UK
  4. ^ Message, S. and Taylor, D.W. 2005. Field guide to the waders of Europe, Asia and North America. London: Christopher Helm Publishers.
  5. ^ Küpper, Clemens; Augustin, Jakob; Kosztolányi, András; Burke, Terry; Figuerola, Jordi; Székely, Tamás (2009). "Kentish versus snowy plover: phenotypic and genetic analyses of Charadrius alexandrinus reveal divergence of Eurasian and American subspecies" (PDF). Auk. 126 (4): 839–852. doi:10.1525/auk.2009.08174.
  6. ^ a b Meininger, P., Székely, T., and Scott, D. 2009. Kentish Plover Charadrius alexandrinus. In: Delaney, S., Scott, D. A., Dodman, T., Stroud, D. A. An atlas of wader populations in Africa and Eurasia. Wetlands International, pp 229-235
  7. ^ Kosztolányi, A., Javed, S., Küpper, C., Cuthill, I., Al Shamsi, A. and Székely, T. 2009. Breeding ecology of Kentish Plover Charadrius alexandrinus in an extremely hot environment, Bird Study, 56:2, 244-252
  8. ^ a b c AlRashidi, M., Long, P.R., O’Connell, M., Shobrak, M. & Székely, T. 2011. Use of remote sensing to identify suitable breeding habitat for the Kentish plover and estimate population size along the western coast of Saudi Arabia. Wader Study Group Bull. 118(1): 32–39
  9. ^ a b c d Szentirmai, I. and Székely, T. 2002. Do kentish plovers regulate the amount of their nest material? An experimental test, Behaviour, 139(6), pp. 847–859
  10. ^ Kentish Plover (Charadrius alexandrinus) European birds online guide (no date) Available at: (Accessed: 16 January 2017)
  11. ^ Székely, T., Karsai, I. and Kovazs, S. 1993. Availability of Kentish Plover (Charadrius alexandrinus) prey on a Central Hungarian grassland. Ornis Hung. 3:41-48
  12. ^ a b Argüelles-Ticó, A., Küpper, C., Kelsh, R.N., Kosztolányi, A., Székely, T. and van Dijk, R.E. 2015. Geographic variation in breeding system and environment predicts melanin-based plumage ornamentation of male and female Kentish plovers, Behavioral Ecology and Sociobiology. 70(1), pp. 49–60
  13. ^ a b c Szekely, T. 1999. Brood desertion in Kentish plover: Sex differences in remating opportunities, Behavioral Ecology, 10(2), pp. 185–190
  14. ^ Kis, J. and Székely, T. 2003. Sexually dimorphic breast-feathers in the Kentish plover Charadrius alexandrinus. Acta Zoologica Academiae Scientiarum Hungaricae, 49, 103-110
  15. ^ Wolf, B. O. and Walsberg, G. E. 2000. The role of plumage in heat transfer processes of birds. American Zoologist, 40, 575-584
  16. ^ Hill, G.E. 1993. Geographic variation in the carotenoid plumage pigmentation of male house finches (Carpodacus mexicanus). Biol J Linn Soc 49:63–86
  17. ^ a b Vincze, O., Székely, T., Küpper, C., AlRashidi, M., Amat, J.A. et al. 2013. Local Environment but Not Genetic Differentiation Influences Biparental Care in Ten Plover Populations. PLoS ONE 8(4
  18. ^ Meininger, P., Székely, T., and Scott, D. 2009. Kentish Plover Charadrius alexandrinus. In: Delaney, S., Scott, D. A., Dodman, T., Stroud, D. A. An atlas of wader populations in Africa and Eurasia. Wetlands International, pp 229-235.
  19. ^ Kosztolányi, A., Székely, T. and Cuthill, I.C. 2007. The function of habitat change during brood-rearing in the precocial Kentish plover Charadrius alexandrinus, acta ethologica, 10(2), pp. 73–79
  20. ^ Fraga, R.M. and Amat, J.A. 1996. Breeding biology of a Kentish Plover (Charadrius alexandrinus) population in an inland saline lake. Available at:
  21. ^ a b Székely, T. and Lessells, C. M. 1993. Mate change by Kentish Plovers Charadrius alexandrinus. Ornis Scand.2 4: 317-322
  22. ^ Blomqvist, D., Andersson, M., Küpper, C., Cuthill, I.C., Kis, J., Lanctot, R.B., Sandercock, B.K., Székely, T., Wallander, J. and Kempenaers, B. 2002. Genetic similarity between mates and extra-pair parentage in three species of shorebirds, Nature. 419(6907), pp. 613–615
  23. ^ Carmona-Isunza, M.C., Küpper, C., Serrano-Meneses, M.A. and Székely, T. 2015. Courtship behavior differs between monogamous and polygamous plovers, Behavioral Ecology and Sociobiology. 69(12), pp. 2035–2042
  24. ^ Kosztolányi & Székely, pers. obs.
  25. ^ Snow, D.W. and Perrins, C.M. 1998. The Birds of the Western Palearctic, Volume 1: Non-Passerines. Oxford University Press, Oxford
  26. ^ Amat, J.A., Masero, J.A. and Monsa, R. 2012. Dual function of egg-covering in the Kentish plover Charadrius alexandrinus, Behaviour. 149(8), pp. 881–895. doi: 10.1163/1568539x-00003008
  27. ^ a b Reid, J.M., Cresswell, W., Holt, S., Mellanby, R.J., Whitéeld, D.P. and Ruxton, G.D. 2002. Nest scrape design and clutch heat loss in pectoral sandpipers (Calidris melanotos). Functional Ecology, 16(3), 305-312
  28. ^ Deeming, D.C. 2002. Importance and evolution of incubation in avian reproduction. In: Avian incubation: behaviour, environment, and evolution. Deeming, D.C., ed. Oxford University Press, Oxford, p. 1-7
  29. ^ Kosztolányi, A. and Székely, T. 2002. Using a transponder system to monitor incubation routines of snowy plovers. J. Field Ornithol. (in press)
  30. ^ Szentirmai, I., Kosztolányi, A. and Székely, T. 2001. Daily changes in body mass of incubating Kentish Plovers. Ornis Hung. 11: 27-32
  31. ^ Fujioka, M. 1989. Mate and nestling desertion in colonial little egrets. Auk 106:292-302
  32. ^ Cuthill, I., Székely, T., McNamara, J. and Houston, A. 2002. Why do birds get divorced? NERC News Spring: 6-7
  33. ^ Simmons, K. E. L. 1955. The significance of voice in the behaviour of the Little Ringed and Kentish plovers. Brit. Birds 48: 106-114
  34. ^ a b del Hoyo, J., Elliott, A., and Sargatal, J. 1996. Handbook of the Birds of the World, vol. 3: Hoatzin to Auks. Lynx Edicions Barcelona, Spain
  35. ^ Urban, E.K., Fry, C.H. and Keith, S. 1986. The Birds of Africa, Volume II. Academic Press, London
  36. ^ Anderson, J.T., Smith, L.M. 2000. Invertebrate response to moist-soil man- agement of playa wetlands. Ecol Appl 10:550–558
  37. ^ European birds online guide (no date) Available at: (Accessed: 16 January 2017)
  38. ^ McNeil, R., Drapeau, P. and Goss-Custard, J.D. 1992. The occurrence and adaptive significance of nocturnal habits in waterfowl. Biol Rev 67:381–419
  39. ^ Rojas de Azuaje, L.M., Tai, S. and McNei, l. R. 1993. Comparison of rod/cone ratio in three species of shorebirds having different nocturnal foraging strategies. Auk. 110:141–145
  40. ^ Thomas, R.J., Székely, T., Powel,l R.F. and Cuthill, I.C. 2006. Eye size, foraging methods and the timing of foraging in shorebirds. Funct Ecol 20:157–165
  41. ^ a b c d BirdLife International. 2017. Species factsheet: Charadrius alexandrinus. Downloaded from
  42. ^ Wetlands International. 2006. Waterbird Population Estimates – Fourth Edition. Wetlands International, Wageningen, The Netherlands
  43. ^ AlRashidi, M., Kosztolányi, A., Shobrak, M. and Székely, T. 2011. Breeding ecology of the Kentish Plover, Charadrius alexandrinus, in the Farasan islands, Saudi Arabia, Zoology in the Middle East. 53(1), pp. 15–24
  44. ^ Rice, R., Engel, N. 2016. Breeding ecology of Kentish Plover Charadrius alexandrinus in Maio, Cape Verde. Unpublished Fieldwork Report, University of Bath
  45. ^ AlRashidi, M., Shobrak, M., Al-Eissa, M.S. and Székely, T. 2012. Integrating spatial data and shorebird nesting locations to predict the potential future impact of global warming on coastal habitats: A case study on Farasan islands, Saudi Arabia, Saudi Journal of Biological Sciences. 19(3), pp. 311–315

External links

Armash Important Bird Area

The Armash Important Bird Area (also known as Armash Fishponds) is an area of wetland near the town of Armash, in Armenia, in the foothills of Mount Ararat, and on the border with Turkey, and near the borders with Iran and Nakhchivan (an exclave of Azerbaijan). It is designated as an "Emerald Site" wildlife refuge since 2016. The 4,639 ha. site includes 1,514 ha. of ponds used for farming carp, fed by artesian wells and an irrigation canal from the Araks River.234 bird species have been recorded on the site, with 93 of them breeding. It is the only place in Armenia where White-headed Duck, White-tailed Lapwing, and Kentish Plover have been recorded as breeding. Other notable species present include Marbled Teal, Common Pochard, Ferruginous Duck, Northern Lapwing, Black-tailed Godwit, Turtle Dove, and Pallid Harrier, all of which are globally threatened, as well as Savi's Warbler,, Glossy Ibis, Purple Heron, Squacco Heron, White-winged Tern, Blue-cheeked Bee-eater, Hoopoe, Lesser Short-toed Lark, and European Roller.It is one of eighteen Important Bird Areas in Armenia.


Charadrius is a genus of plovers, a group of wading birds. The genus name Charadrius is a Late Latin word for a yellowish bird mentioned in the fourth-century Vulgate. The name derives from Ancient Greek kharadrios, a bird found in river valleys (from kharadra, "ravine"). Some believed that seeing it cured jaundice.They are found throughout the world.

Many Charadrius species are characterised by breast bands or collars. These can be (in the adult) complete bands (ringed, semipalmated, little ringed, long-billed), double or triple bands (killdeer, three-banded, Forbes', two-banded, double-banded) or partial collars (Kentish, piping, snowy, Malaysian, Javan, red-capped, puna).

They have relatively short bills and feed mainly on insects, worms or other invertebrates, depending on habitat, which are obtained by a run-and-pause technique, rather than the steady probing of some other wader groups. They hunt by sight, rather than by feel as do longer-billed waders like snipe.

Species of the genus Aegialites (or Aegialitis) are now subsumed within Charadrius.

Cheddar Reservoir

Cheddar Reservoir is an artificial reservoir in Somerset, England, operated by Bristol Water. Dating from the 1930s it has a capacity of 135 million gallons (614,000 cubic metres). The reservoir is supplied with water taken from the Cheddar Yeo river in Cheddar Gorge. The inlet grate for the 54 inches (1.4 m) water pipe that is used to transport the water can be seen immediately upstream from the sensory garden in Cheddar Gorge. It lies to the west of the village of Cheddar and south east of the town of Axbridge. Because of this it is sometimes known as Axbridge Reservoir. It is roughly circular in shape, and surrounded by large earth banks which are grazed by sheep.

Ilhéu de Curral Velho and adjacent coast Important Bird Area

The Ilhéu de Curral Velho and adjacent coast Important Bird Area lies in the southeastern part of the island of Boa Vista in the Cape Verde archipelago off the coast of north-west Africa in the Atlantic Ocean. It is a 986 ha site consisting of the Ilhéu de Curral Velho, as well as the area opposite it on Boa Vista centred on the deserted village of Curral Velho. It was designated as a Ramsar wetland of international importance on July 18, 2005.

The 0.77 ha (1.9-acre) Ilhéu de Curral Velho is an unvegetated, heavily eroded, calcareous rock, 15 metres (49 ft) in height, lying some 500 m (1,600 ft) off the southernmost point of Boavista. The island and a 41 ha marine area around it are a protected nature reserve (Reserva Natural Integral Ilhéu de Curral Velho).The area on the main island consists of sand-dunes, a lagoon and an oasis with a vegetation dominated by palm trees, acacias and Tamarix senegalensis. It has a typical arid-zone flora and fauna. The sandy beaches are important nesting sites for threatened Hawksbill and Loggerhead sea turtles. Lizards found in the area include Chioninia stangeri and Hemidactylus bouvieri. The islet is a nesting area for the brown booby, magnificent frigatebird and Cape Verde shearwater. Birds breeding on the adjacent mainland coast include Iago sparrow, common kestrel, common quail, cream-colored courser, Kentish plover and many other species.

Kahoku, Ishikawa

Kahoku (かほく市, Kahoku-shi) is a city located in Ishikawa Prefecture, Japan. As of 31 January 2018, the city had an estimated population of 35,188 in 12787 households, and a population density of 550 persons per km². The total area of the city was 64.44 square kilometres (24.88 sq mi).


Kentish may be used as a name:

Kentish Council is a local government area in Tasmania, Australia

Kentish Town is an area of north west London, EnglandKentish may also be an adjective for things relating to the western part of the English county of Kent or the former Kingdom of Kent:

Kentish dialect, the dialect of Modern English spoken in Kent

Kentish dialect (Old English), a dialect of Old English

Kentish Man or Maid

Old Kentish Carol, a traditional Christmas carol from Kent


Kujūkuri (九十九里町, Kujūkuri-machi) is a town located in Chiba Prefecture, Japan. As of April 2012, the town had an estimated population of 17,466, and a population density of 736 persons per km2. The total area is 23.72 km2.

Kujūkuri owes its name to its beach, Kujūkuri Beach, which is Japan's second longest. The word "Kujūkuri" roughly translates to mean "ninety-nine ri", with "kujūku" meaning "ninety-nine" and "ri" being an old unit of measurement equating to approximately 600 meters.

Lake Erçek

Lake Erçek (Turkish: Erçek Gölü; Armenian: Արճակ լիճ) is an endorheic salt lake in Van Province in eastern Turkey, about 30 kilometres (19 mi) east of Lake Van. The lake sits at an elevation of about 1,803 metres (5,915 ft), and has an area of 106.2 square kilometres (41.0 sq mi) and a mean depth of 18.45 metres (60.5 ft). The northern and western shores are steep and rocky, whereas the southern and eastern shores slope gently with mudflats and coastal plains.

Lake Tuzla

Lake Tuzla (Turkish: Tuzla Gölü) is a lake in Karataş ilçe (district) of Adana Province. It is to the west of Akyatan Lagoon and to the east of Seyhan River. The mid point of the lake is at 36°42′N 35°02′E It is a typical lagoon separated from the Mediterranean sea by a narrow strip. There are channels through the strip and the lake is used as a fish pond. Annual fish production is about 40 tonnes. The salinity of the lake fluctuates depending on the season.

Lake Çöl

Lake Çöl (Turkish: Çöl Gölü, literally "Desert lake") is a hard water lake in Turkey.

List of birds of the Maldives

The following is a list of birds recorded in the Maldives. The small size and isolation of this Indian Ocean republic means that its avifauna is extremely restricted. Most of the species are characteristic of Eurasian migratory birds, only a few being typically associated with the Indian sub-continent.

Due to poorness of native avifauna, some people (especially resort owners) deliberately release non-native birds.

Some of them, like red lory and budgerigar are established in wild, but are not included in official checklists.

This can't pose threat to native ecosystems because Maldives have no endemic birds and all native land birds are common in India and Bangladesh also.


Plovers ( or ) are a widely distributed group of wading birds belonging to the subfamily Charadriinae.

Red-capped plover

The red-capped plover (Charadrius ruficapillus), also known as the red-capped dotterel, is a small plover.

It breeds in Australia. The species is closely related to (and sometimes considered conspecific with) the Kentish plover, Javan plover and white-fronted plover.


Rottumerplaat (Dutch pronunciation: [ˌrɔtɵmərˈplaːt]) is one of the three islands that make up Rottum in the West Frisian Islands. The island is located in the North Sea off the Dutch coast. It is situated between the islands of Schiermonnikoog and Rottumeroog.

Access to the island is prohibited since Rottumerplaat is a resting and forage area for numerous bird species. Rijkswaterstaat, Staatsbosbeheer and the Ministry of Agriculture, Nature and Food Quality are responsible for the administration of the island. Twice a year marine debris is cleaned from the island.

Sediment deposition has caused the island to become significantly larger in recent years.

Rottumerplaat is the northernmost point of the Netherlands.

Salinas of the English Port

Salinas of the English Port (Portuguese: Salinas do Porto Inglês) is a saline wetland in the southwestern part of the island of Maio, Cape Verde, northwest of the city Porto Inglês. It is a 5.34 km2 (2.06 sq mi) protected area (Paisagem Protegida das Salinas do Porto Inglês) and a Ramsar site. It encompasses ecological, landscape, historical and cultural values. The site is frequented by species of birds of conservation interest, some of them protected by national laws and international conventions, and some endemic to the archipelago.

Snowy plover

The snowy plover (Charadrius nivosus) is a small wader in the plover bird family. It breeds in Ecuador, Peru, Chile, the southern and western United States and the Caribbean. Long considered to be a subspecies of the Kentish plover, it is now known to be a distinct species.

White-faced plover

The white-faced plover (Charadrius alexandrinus dealbatus) is a subspecies of the Kentish plover (Charadrius alexandrinus), found in Thailand, Malaysia and Singapore. Initially described by British ornithologist Robert Swinhoe, the bird resembles the Kentish plover with which it has been much confused.

White-fronted plover

The white-fronted plover or white-fronted sandplover (Charadrius marginatus) is a small (45-50 g) shorebird of the family Charadriidae that inhabits sandy beaches, dunes, mudflats and the shores of rivers and lakes in sub-saharan Africa and Madagascar. It nests in small shallow scrapes in the ground and lays clutches of 1-3 eggs. The species is monogamous and long-lived, with a life expectancy of approximately 11 years. The vast majority of pairs that mate together stay together during the following years of breeding and retain the same territory. The white-fronted plover has a similar appearance to the Kentish plover, with a white fore crown and dark bands connecting the eyes to the bill.


Willen is a district of Milton Keynes, England and is also one of the ancient villages of Buckinghamshire to have been included in the designated area of the New City in

1967. At the 2011 Census the population of the district was included in the civil parish of Campbell Park. The original village is now a small but important part of the larger district that contains it and to which it gives its name.


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.