Isoelectronicity is the phenomenon of two or more chemical species (atoms, molecules, radicals, ions etc.) differing in the atoms of which they are formed but having the same number of valence electrons and the same structure (that is, the same number of atoms with the same connectivity).[1] The species concerned are termed isoelectronic.

This definition is sometimes termed valence isoelectronicity, in contrast with various alternatives. At one extreme these require identity of the total electron count and with it the entire electron configuration.[2] More usually, alternatives are broader, and may extend to allowing different numbers of atoms in the species being compared.[3]

The importance of the concept lies in identifying significantly related species, as pairs or series. Isoelectronic species can be expected to show useful consistency and predictability in their properties. (Slight differences of, for example, structural formula, such as a double versus single bond, commonly have major effects.)

Electron-density calculations have been performed on many common substances, resulting in reaction predictions. Identifying a new, rare or odd compound as isoelectronic with one already characterised offers clues to possible properties and reactions.


The N atom and the O+
radical ion are isoelectronic because each has five electrons in the outer electronic shell. Similarly, the cations K+
, Ca2+
, and Sc3+
and the anions Cl
, S2−
, and P3−
are all isoelectronic with the Ar atom. In such monatomic cases, there is a clear trend in the sizes of such species, with atomic radius decreasing as charge increases.

, N
, C2−
, and NO+
are isoelectronic because each has two nuclei and 10 valence electrons, with each atom considered to have 5 of them (a lone-pair and a triple-bond). Isoelectronicity does not relate to formal charge on the atoms in a structure: these all have the same configuration even though carbon monoxide has formal charges that are balanced (:C≡O:+) whereas dinitrogen has each atom neutral (:N≡N:) and nitrosonium has an overall net charge.

CO2, FCN, N2O, NO2+, N3, NCO, and CN22− are all isoelectronic, and each has multiple resonance forms: one with two double bonds and 2 lone pairs on each of the outer atoms, and one with one single bond and one triple bond.

Isoelectronicity leads to the concept of hydrogen-like atoms, ions with one electron which are thus isoelectronic with hydrogen.

The uncharged H
=C=O (ethenone) and H
-C≡N (cyanamide) molecules and the zwitterionic H
(diazomethane) molecule are isoelectronic.


(acetone) and CH
(dimethyldiazene) are not isoelectronic. They do have the same number of nuclei and the same number of valence electrons, but the atoms' connectivity is different: the first one has both methyl (CH
) groups attached to carbonyl's (CO's) carbon atom, forming a branched trigonal planar shape: H3C-C(=O)-CH3; the second molecule's structure has a consecutive attachment of the main atoms: H3C-N=N-CH3 and its methyl groups are not connected to the same nitrogen atom.

The amino acids tellurocysteine, selenocysteine, cysteine and serine are also considered (at least valence) isoelectronic.

See also


  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "isoelectronic". doi:10.1351/goldbook.I03276
  2. ^ Isoelectronic Configurations
  3. ^ A A Aradi & T P Fehlner, 'Isoelectronic Organometallic Molecules', in F.G.A. Stone & Robert West (eds) Advances in Organometallic Chemistry Vol.30 (1990), Chapter 5 (at p.190) google books link
Glossary of chemistry terms

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it has an extensive vocabulary and a significant amount of jargon.

Note: All periodic table references refer to the IUPAC Style of the Periodic Table.


Isoelectric may refer to:

Isoelectric point, the pH at which a particular molecule carries no net electrical charge

Isoelectric focusing, a technique for separating different molecules by differences in their isoelectric point

Isoelectric line representing the absence of electrical activity on an electrocardiogram


Phosphenium ions, not to be confused with phosphonium or phosphirenium, are divalent cations of phosphorus of the form [PR2]+. Phosphenium ions have long been proposed as reaction intermediates, but the first examples of cyclic phosphenium compounds weren't prepared until 1972 by Suzanne Fleming and coworkers. The first acyclic phosphenium compounds were synthesized by Robert Parry and coworkers a few years later in 1976.


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.