# Intensity (physics)

In physics, intensity is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy.[1] In the SI system, it has units watts per square metre (W/m2). It is used most frequently with waves (e.g. sound or light), in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler.

The word "intensity" as used here is not synonymous with "strength", "amplitude", "magnitude", or "level", as it sometimes is in colloquial speech.

Intensity can be found by taking the energy density (energy per unit volume) at a point in space and multiplying it by the velocity at which the energy is moving. The resulting vector has the units of power divided by area (i.e., surface power density).

## Mathematical description

If a point source is radiating energy in all directions (producing a spherical wave), and no energy is absorbed or scattered by the medium, then the intensity decreases in proportion to the distance from the object squared. This is an example of the inverse-square law.

Applying the law of conservation of energy, if the net power emanating is constant,

${\displaystyle P=\int \mathbf {I} \,\cdot \mathrm {d} \mathbf {A} }$,

where P is the net power radiated, I is the intensity as a function of position, and dA is a differential element of a closed surface that contains the source.

If one integrates over a surface of uniform intensity I, for instance over a sphere centered around the point source, the equation becomes

${\displaystyle P=|I|\cdot A_{\mathrm {surf} }=|I|\cdot 4\pi r^{2}\,}$,

where I is the intensity at the surface of the sphere, and r is the radius of the sphere. (${\displaystyle A_{\mathrm {surf} }=4\pi r^{2}}$ is the expression for the surface area of a sphere).

Solving for I gives

${\displaystyle |I|={\frac {P}{A_{\mathrm {surf} }}}={\frac {P}{4\pi r^{2}}}}$.

If the medium is damped, then the intensity drops off more quickly than the above equation suggests.

Anything that can transmit energy can have an intensity associated with it. For a monochromatic propagating wave, such as a plane wave or a Gaussian beam, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave is given by:

${\displaystyle \left\langle U\right\rangle ={\frac {n^{2}\varepsilon _{0}}{2}}|E|^{2}}$,

and the local intensity is obtained by multiplying this expression by the wave velocity, c/n:

${\displaystyle I={\frac {\mathrm {c} n\varepsilon _{0}}{2}}|E|^{2}}$,

where n is the refractive index, c is the speed of light in vacuum and ${\displaystyle \varepsilon _{0}}$ is the vacuum permittivity.

For non-monochromatic waves, the intensity contributions of different spectral components can simply be added. The treatment above does not hold for arbitrary electromagnetic fields. For example, an evanescent wave may have a finite electrical amplitude while not transferring any power. The intensity should then be defined as the magnitude of the Poynting vector.[2]

## Alternative definitions of "intensity"

In photometry and radiometry intensity has a different meaning: it is the luminous or radiant power per unit solid angle. This can cause confusion in optics, where intensity can mean any of radiant intensity, luminous intensity or irradiance, depending on the background of the person using the term. Radiance is also sometimes called intensity, especially by astronomers and astrophysicists, and in heat transfer.

Table 1. SI photometry quantities
Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol[nb 2]
Luminous energy Qv [nb 3] lumen second lm⋅s TJ The lumen second is sometimes called the talbot.
Luminous flux, luminous power Φv [nb 3] lumen (= candela steradians) lm (= cd⋅sr) J Luminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr) J Luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 L−2J Luminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit.
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2) L−2J Luminous flux incident on a surface
Luminous exitance, luminous emittance Mv lux lx L−2J Luminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅s L−2TJ Time-integrated illuminance
Luminous energy density ωv lumen second per cubic metre lm⋅s⋅m−3 L−3TJ
Luminous efficacy η [nb 3] lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to radiant flux or power consumption, depending on context
Luminous efficiency, luminous coefficient V 1 Luminous efficacy normalized by the maximum possible efficacy
1. ^ Standards organizations recommend that photometric quantities be denoted with a suffix "v" (for "visual") to avoid confusion with radiometric or photon quantities. For example: USA Standard Letter Symbols for Illuminating Engineering USAS Z7.1-1967, Y10.18-1967
2. ^ The symbols in this column denote dimensions; "L", "T" and "J" are for length, time and luminous intensity respectively, not the symbols for the units litre, tesla and joule.
3. ^ a b c Alternative symbols sometimes seen: W for luminous energy, P or F for luminous flux, and ρ or K for luminous efficacy.
Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol
Radiant energy density we joule per cubic metre J/m3 ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe[nb 2] watt W = J/s ML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power".
Spectral flux Φe,ν[nb 3]
or
Φe,λ[nb 4]
watt per hertz
or
watt per metre
W/Hz
or
W/m
ML2T−2
or
MLT−3
Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Radiant intensity Ie,Ω[nb 5] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν[nb 3]
or
Ie,Ω,λ[nb 4]
or
W⋅sr−1⋅Hz−1
or
W⋅sr−1⋅m−1
ML2T−2
or
MLT−3
Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Radiance Le,Ω[nb 5] watt per steradian per square metre W⋅sr−1⋅m−2 MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
or
Le,Ω,λ[nb 4]
watt per steradian per square metre per hertz
or
watt per steradian per square metre, per metre
W⋅sr−1⋅m−2⋅Hz−1
or
W⋅sr−1⋅m−3
MT−2
or
ML−1T−3
Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Flux density
Ee[nb 2] watt per square metre W/m2 MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral flux density
Ee,ν[nb 3]
or
Ee,λ[nb 4]
watt per square metre per hertz
or
watt per square metre, per metre
W⋅m−2⋅Hz−1
or
W/m3
MT−2
or
ML−1T−3
Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Radiosity Je[nb 2] watt per square metre W/m2 MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
or
Je,λ[nb 4]
watt per square metre per hertz
or
watt per square metre, per metre
W⋅m−2⋅Hz−1
or
W/m3
MT−2
or
ML−1T−3
Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Radiant exitance Me[nb 2] watt per square metre W/m2 MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν[nb 3]
or
Me,λ[nb 4]
watt per square metre per hertz
or
watt per square metre, per metre
W⋅m−2⋅Hz−1
or
W/m3
MT−2
or
ML−1T−3
Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Radiant exposure He joule per square metre J/m2 MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν[nb 3]
or
He,λ[nb 4]
joule per square metre per hertz
or
joule per square metre, per metre
J⋅m−2⋅Hz−1
or
J/m3
MT−1
or
ML−1T−2
Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
Hemispherical emissivity ε 1 Radiant exitance of a surface, divided by that of a black body at the same temperature as that surface.
Spectral hemispherical emissivity εν
or
ελ
1 Spectral exitance of a surface, divided by that of a black body at the same temperature as that surface.
Directional emissivity εΩ 1 Radiance emitted by a surface, divided by that emitted by a black body at the same temperature as that surface.
Spectral directional emissivity εΩ,ν
or
εΩ,λ
1 Spectral radiance emitted by a surface, divided by that of a black body at the same temperature as that surface.
Hemispherical absorptance A 1 Radiant flux absorbed by a surface, divided by that received by that surface. This should not be confused with "absorbance".
Spectral hemispherical absorptance Aν
or
Aλ
1 Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance".
Directional absorptance AΩ 1 Radiance absorbed by a surface, divided by the radiance incident onto that surface. This should not be confused with "absorbance".
Spectral directional absorptance AΩ,ν
or
AΩ,λ
1 Spectral radiance absorbed by a surface, divided by the spectral radiance incident onto that surface. This should not be confused with "spectral absorbance".
Hemispherical reflectance R 1 Radiant flux reflected by a surface, divided by that received by that surface.
Spectral hemispherical reflectance Rν
or
Rλ
1 Spectral flux reflected by a surface, divided by that received by that surface.
Directional reflectance RΩ 1 Radiance reflected by a surface, divided by that received by that surface.
Spectral directional reflectance RΩ,ν
or
RΩ,λ
1 Spectral radiance reflected by a surface, divided by that received by that surface.
Hemispherical transmittance T 1 Radiant flux transmitted by a surface, divided by that received by that surface.
Spectral hemispherical transmittance Tν
or
Tλ
1 Spectral flux transmitted by a surface, divided by that received by that surface.
Directional transmittance TΩ 1 Radiance transmitted by a surface, divided by that received by that surface.
Spectral directional transmittance TΩ,ν
or
TΩ,λ
1 Spectral radiance transmitted by a surface, divided by that received by that surface.
Hemispherical attenuation coefficient μ reciprocal metre m−1 L−1 Radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral hemispherical attenuation coefficient μν
or
μλ
reciprocal metre m−1 L−1 Spectral radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Directional attenuation coefficient μΩ reciprocal metre m−1 L−1 Radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral directional attenuation coefficient μΩ,ν
or
μΩ,λ
reciprocal metre m−1 L−1 Spectral radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.
1. ^ Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
2. Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
3. Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek)—not to be confused with suffix "v" (for "visual") indicating a photometric quantity.
4. Spectral quantities given per unit wavelength are denoted with suffix "λ" (Greek).
5. ^ a b Directional quantities are denoted with suffix "Ω" (Greek).

## References

1. ^ "intensity". Merriam-Webster.com. Retrieved Feb 15, 2015.
2. ^ Paschotta, Rüdiger. "Optical Intensity". Encyclopedia of Laser Physics and Technology. RP Photonics.
Index of physics articles (I)

The index of physics articles is split into multiple pages due to its size.

Light intensity

Several measures of light are commonly known as intensity: