Insecticides are substances used to kill insects.[1] They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity.[2] Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

Insecticides can be classified into two major groups: systemic insecticides, which have residual or long term activity; and contact insecticides, which have no residual activity.

Furthermore, one can distinguish three types of insecticide. 1. Natural insecticides, such as nicotine, pyrethrum and neem extracts, made by plants as defenses against insects. 2. Inorganic insecticides, which are metals. 3. Organic insecticides, which are organic chemical compounds, mostly working by contact.

The mode of action describes how the pesticide kills or inactivates a pest. It provides another way of classifying insecticides. Mode of action is important in understanding whether an insecticide will be toxic to unrelated species, such as fish, birds and mammals.

Insecticides may be repellent or non-repellent. Social insects such as ants cannot detect non-repellents and readily crawl through them. As they return to the nest they take insecticide with them and transfer it to their nestmates. Over time, this eliminates all of the ants including the queen. This is slower than some other methods, but usually completely eradicates the ant colony.[3]

Insecticides are distinct from non-insecticidal repellents, which repel but do not kill.

FLIT Spray Can 1
FLIT manual spray pump for insecticides from 1928
Kente l
Farmer spraying an insecticide on a cashewnut tree in Tanzania

Type of activity

Systemic insecticides become incorporated and distributed systemically throughout the whole plant. When insects feed on the plant, they ingest the insecticide. Systemic insecticides produced by transgenic plants are called plant-incorporated protectants (PIPs). For instance, a gene that codes for a specific Bacillus thuringiensis biocidal protein was introduced into corn (maize) and other species. The plant manufactures the protein, which kills the insect when consumed.[4]

Contact insecticides are toxic to insects upon direct contact. These can be inorganic insecticides, which are metals and include the commonly used sulfur, and the less commonly used arsenates, copper and fluorine compounds. Contact insecticides can also be organic insecticides, i.e. organic chemical compounds, synthetically produced, and comprising the largest numbers of pesticides used today. Or they can be natural compounds like pyrethrum, neem oil etc. Contact insecticides usually have no residual activity.

Efficacy can be related to the quality of pesticide application, with small droplets, such as aerosols often improving performance.[5]

Biological pesticides

Many organic compounds are produced by plants for the purpose of defending the host plant from predation. A trivial case is tree rosin, which is a natural insecticide. Specifically, the production of oleoresin by conifer species is a component of the defense response against insect attack and fungal pathogen infection.[6] Many fragrances, e.g. oil of wintergreen, are in fact antifeedants.

Four extracts of plants are in commercial use: pyrethrum, rotenone, neem oil, and various essential oils[7]

Other biological approaches

Plant-incorporated protectants

Transgenic crops that act as insecticides began in 1996 with a genetically modified potato that produced the Cry protein, derived from the bacterium Bacillus thuringiensis, which is toxic to beetle larvae such as the Colorado potato beetle. The technique has been expanded to include the use of RNA interference RNAi that fatally silences crucial insect genes. RNAi likely evolved as a defense against viruses. Midgut cells in many larvae take up the molecules and help spread the signal. The technology can target only insects that have the silenced sequence, as was demonstrated when a particular RNAi affected only one of four fruit fly species. The technique is expected to replace many other insecticides, which are losing effectiveness due to the spread of pesticide resistance.[8]


Many plants exude substances to repel insects. Premier examples are substances activated by the enzyme myrosinase. This enzyme converts glucosinolates to various compounds that are toxic to herbivorous insects. One product of this enzyme is allyl isothiocyanate, the pungent ingredient in horseradish sauces.

Myrosinase general mechanism
Biosynthesis of antifeedants by the action of myrosinase.

The myrosinase is released only upon crushing the flesh of horseradish. Since allyl isothiocyanate is harmful to the plant as well as the insect, it is stored in the harmless form of the glucosinolate, separate from the myrosinase enzyme.[9]


Bacillus thuringiensis is a bacterial disease that affects Lepidopterans and some other insects. Toxins produced by strains of this bacterium are used as a larvicide against caterpillars, beetles, and mosquitoes. Toxins from Saccharopolyspora spinosa are isolated from fermentations and sold as Spinosad. Because these toxins have little effect on other organisms, they are considered more environmentally friendly than synthetic pesticides. The toxin from B. thuringiensis (Bt toxin) has been incorporated directly into plants through the use of genetic engineering. Other biological insecticides include products based on entomopathogenic fungi (e.g., Beauveria bassiana, Metarhizium anisopliae), nematodes (e.g., Steinernema feltiae) and viruses (e.g., Cydia pomonella granulovirus).

Synthetic insecticide and natural insecticides

A major emphasis of organic chemistry is the development of chemical tools to enhance agricultural productivity. Insecticides represent a major area of emphasis. Many of the major insecticides are inspired by biological analogues. Many others are completely alien to nature.


The best known organochloride, DDT, was created by Swiss scientist Paul Müller. For this discovery, he was awarded the 1948 Nobel Prize for Physiology or Medicine.[10] DDT was introduced in 1944. It functions by opening sodium channels in the insect's nerve cells.[11] The contemporaneous rise of the chemical industry facilitated large-scale production of DDT and related chlorinated hydrocarbons.

Organophosphates and carbamates

Organophosphates are another large class of contact insecticides. These also target the insect's nervous system. Organophosphates interfere with the enzymes acetylcholinesterase and other cholinesterases, disrupting nerve impulses and killing or disabling the insect. Organophosphate insecticides and chemical warfare nerve agents (such as sarin, tabun, soman, and VX) work in the same way. Organophosphates have a cumulative toxic effect to wildlife, so multiple exposures to the chemicals amplifies the toxicity.[12] In the US, organophosphate use declined with the rise of substitutes.[13]

Carbamate insecticides have similar mechanisms to organophosphates, but have a much shorter duration of action and are somewhat less toxic.


Pyrethroid pesticides mimic the insecticidal activity of the natural compound pyrethrum, the biopesticide found in pyrethrins. These compounds are nonpersistent sodium channel modulators and are less toxic than organophosphates and carbamates. Compounds in this group are often applied against household pests.[14]


Neonicotinoids are synthetic analogues of the natural insecticide nicotine (with much lower acute mammalian toxicity and greater field persistence). These chemicals are acetylcholine receptor agonists. They are broad-spectrum systemic insecticides, with rapid action (minutes-hours). They are applied as sprays, drenches, seed and soil treatments. Treated insects exhibit leg tremors, rapid wing motion, stylet withdrawal (aphids), disoriented movement, paralysis and death.[15] Imidacloprid may be the most common. It has recently come under scrutiny for allegedly pernicious effects on honeybees[16] and its potential to increase the susceptibility of rice to planthopper attacks.[17]


Ryanoids are synthetic analogues with the same mode of action as ryanodine, a naturally occurring insecticide extracted from Ryania speciosa (Flacourtiaceae). They bind to calcium channels in cardiac and skeletal muscle, blocking nerve transmission. The first insecticide from this class to be registered was Rynaxypyr, generic name chlorantraniliprole.[18]

Insect growth regulators

Insect growth regulator (IGR) is a term coined to include insect hormone mimics and an earlier class of chemicals, the benzoylphenyl ureas, which inhibit chitin (exoskeleton) biosynthesis in insects[19] Diflubenzuron is a member of the latter class, used primarily to control caterpillars that are pests. The most successful insecticides in this class are the juvenoids (juvenile hormone analogues). Of these, methoprene is most widely used. It has no observable acute toxicity in rats and is approved by World Health Organization (WHO) for use in drinking water cisterns to combat malaria. Most of its uses are to combat insects where the adult is the pest, including mosquitoes, several fly species, and fleas. Two very similar products, hydroprene and kinoprene, are used for controlling species such as cockroaches and white flies. Methoprene was registered with the EPA in 1975. Virtually no reports of resistance have been filed. A more recent type of IGR is the ecdysone agonist tebufenozide (MIMIC), which is used in forestry and other applications for control of caterpillars, which are far more sensitive to its hormonal effects than other insect orders.

Environmental harm

Effects on nontarget species

Some insecticides kill or harm other creatures in addition to those they are intended to kill. For example, birds may be poisoned when they eat food that was recently sprayed with insecticides or when they mistake an insecticide granule on the ground for food and eat it.[12] Sprayed insecticide may drift from the area to which it is applied and into wildlife areas, especially when it is sprayed aerially.[12]


The development of DDT was motivated by desire to replace more dangerous or less effective alternatives. DDT was introduced to replace lead and arsenic-based compounds, which were in widespread use in the early 1940s.[20]

DDT was brought to public attention by Rachel Carson's book Silent Spring. One side-effect of DDT is to reduce the thickness of shells on the eggs of predatory birds. The shells sometimes become too thin to be viable, reducing bird populations. This occurs with DDT and related compounds due to the process of bioaccumulation, wherein the chemical, due to its stability and fat solubility, accumulates in organisms' fatty tissues. Also, DDT may biomagnify, which causes progressively higher concentrations in the body fat of animals farther up the food chain. The near-worldwide ban on agricultural use of DDT and related chemicals has allowed some of these birds, such as the peregrine falcon, to recover in recent years. A number of organochlorine pesticides have been banned from most uses worldwide. Globally they are controlled via the Stockholm Convention on persistent organic pollutants. These include: aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, mirex and toxaphene.

Pollinator decline

Insecticides can kill bees and may be a cause of pollinator decline, the loss of bees that pollinate plants, and colony collapse disorder (CCD),[21] in which worker bees from a beehive or Western honey bee colony abruptly disappear. Loss of pollinators means a reduction in crop yields.[21] Sublethal doses of insecticides (i.e. imidacloprid and other neonicotinoids) affect bee foraging behavior.[22] However, research into the causes of CCD was inconclusive as of June 2007.[23]

Bird decline

Besides the effects of direct consumption of insecticides, populations of insectivorous birds decline due to the collapse of their prey populations. Spraying of especially wheat and corn in Europe is believed to have caused an 80 per cent decline in flying insects, which in turn has reduced local bird populations by a third to two thirds.[24]


Instead of using chemical insecticides to avoid crop damage caused by insects, there are many alternative options available now that can protect farmers from major economic losses.[25] Some of them are:

  1. Breeding crops resistant, or at least less susceptible, to pest attacks.[26]
  2. Releasing predators, parasitoids, or pathogens to control pest populations as a form of biological control.[27]
  3. Chemical control like releasing pheromones into the field to confuse the insects into not being able to find mates and reproduce.[28]
  4. Integrated Pest Management- using multiple techniques in tandem to achieve optimal results.[29]
  5. Push-pull technique- intercropping with a "push" crop that repels the pest, and planting a "pull" crop on the boundary that attracts and traps it.[30]








Insect growth regulators

Derived from plants or microbes



See also


  1. ^ IUPAC (2006). "Glossary of Terms Relating to Pesticides" (PDF). IUPAC. p. 2123. Retrieved January 28, 2014.
  2. ^ van Emden, H.F.; Peakall, David B. (30 June 1996). Beyond Silent Spring. Springer. ISBN 978-0-412-72800-6.
  3. ^ "Non-Repellent insecticides". Do-it-yourself Pest Control. Retrieved 20 April 2017.
  4. ^ "United States Environmental Protection Agency - US EPA".
  5. ^ "". Retrieved 2011-01-05.
  6. ^ Trapp, S.; Croteau, R. (2001). "Defensive Biosynthesis of Resin in Conifers". Annual Review of Plant Physiology and Plant Molecular Biology. 52 (1): 689–724. doi:10.1146/annurev.arplant.52.1.689. PMID 11337413.
  7. ^ Murray B. Isman "Botanical Insecticides, Deterrents, And Repellents In Modern Agriculture And An Increasingly Regulated World" Annual Review Of Entomology Volume 51, pp. 45-66. doi:10.1146/annurev.ento.51.110104.151146
  8. ^ Kupferschmidt, K. (2013). "A Lethal Dose of RNA". Science. 341 (6147): 732–3. Bibcode:2013Sci...341..732K. doi:10.1126/science.341.6147.732. PMID 23950525.
  9. ^ Cole Rosemary A (1976). "Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae". Phytochemistry. 15 (5): 759–762. doi:10.1016/S0031-9422(00)94437-6.
  10. ^ Karl Grandin, ed. (1948). "Paul Müller Biography". Les Prix Nobel. The Nobel Foundation. Retrieved 2008-07-24.
  11. ^ Vijverberg; et al. (1982). "Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves". Nature. 295 (5850): 601–603. Bibcode:1982Natur.295..601V. doi:10.1038/295601a0.
  12. ^ a b c Palmer, WE, Bromley, PT, and Brandenburg, RL. Wildlife & pesticides - Peanuts. North Carolina Cooperative Extension Service. Retrieved on 14 October 2007.
  13. ^ "Infographic: Pesticide Planet". Science. 341 (6147): 730–731. 2013. Bibcode:2013Sci...341..730.. doi:10.1126/science.341.6147.730. PMID 23950524.
  14. ^ Class, Thomas J.; Kintrup, J. (1991). "Pyrethroids as household insecticides: analysis, indoor exposure and persistence". Fresenius' Journal of Analytical Chemistry. 340 (7): 446–453. doi:10.1007/BF00322420.
  15. ^ Fishel, Frederick M. (9 March 2016). "Pesticide Toxicity Profile: Neonicotinoid Pesticides".
  16. ^ Insecticides taking toll on honeybees Archived 2012-03-18 at the Wayback Machine
  17. ^ Yao, Cheng; Shi, Zhao-Peng; Jiang, Li-Ben; Ge, Lin-Quan; Wu, Jin-Cai; Jahn, Gary C. (20 January 2012). "Possible connection between imidacloprid-induced changes in rice gene transcription profiles and susceptibility to the brown plant hopper Nilaparvata lugens Stål (Hemiptera: Delphacidae)". Pesticide Biochemistry and Physiology. 102 (3): 213–219. doi:10.1016/j.pestbp.2012.01.003. ISSN 0048-3575. PMC 3334832. PMID 22544984. Archived from the original on 24 May 2013.
  18. ^ "Pesticide Fact Sheet- chlorantraniliprole" (PDF). Retrieved 2011-09-14.
  19. ^ Krysan, James; Dunley, John. "Insect Growth Regulators". Retrieved 20 April 2017.
  20. ^ Metcalf, Robert L. (2002). "Insect Control". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.a14_263. ISBN 978-3527306732.
  21. ^ a b Wells M (March 11, 2007). "Vanishing bees threaten US crops". BBC News. Retrieved 19 September 2007.
  22. ^ Colin, M. E.; Bonmatin, J. M.; Moineau, I.; et al. (2004). "A method to quantify and analyze the foraging activity of honey bees: Relevance to the sublethal effects induced by systemic insecticides". Archives of Environmental Contamination and Toxicology. 47 (3): 387–395. doi:10.1007/s00244-004-3052-y. PMID 15386133.
  23. ^ Oldroyd, B.P. (2007). "What's Killing American Honey Bees?". PLoS Biology. 5 (6): e168. doi:10.1371/journal.pbio.0050168. PMC 1892840. PMID 17564497.
  24. ^ "Catastrophic collapse in farmland bird populations across France". BirdGuides. 21 March 2018. Retrieved 27 March 2018.
  25. ^ Aidley, David (Summer 1976). "Alternatives to insecticides". Science Progress. 63 (250): 293–303. JSTOR 43420363. PMID 1064167.
  26. ^ Russell, GE (1978). Plant Breeding for Pest and Disease Resistance. Elsevier. ISBN 978-0-408-10613-9.
  27. ^ "Biological Control and Natural Enemies of Invertebrates Management Guidelines--UC IPM". Retrieved 2018-12-12.
  28. ^ "Mating Disruption". Retrieved 2018-12-12.
  29. ^ "Defining IPM | New York State Integrated Pest Management". Retrieved 2018-12-12.
  30. ^ Cook, Samantha M.; Khan, Zeyaur R.; Pickett, John A. (2007). "The use of push-pull strategies in integrated pest management". Annual Review of Entomology. 52: 375–400. doi:10.1146/annurev.ento.52.110405.091407. ISSN 0066-4170. PMID 16968206.
  31. ^ a b c d "Cinnamon Oil Kills Mosquitoes". Retrieved 5 August 2008.
  32. ^ "Cornelia Dick-Pfaff: Wohlriechender Mückentod, 19.07.2004".
  33. ^ "Oregano Oil Works As Well As Synthetic Insecticides To Tackle Common Beetle Pest". Retrieved 23 May 2008.
  34. ^ "Almond farmers seek healthy bees". BBC News. 2006-03-08. Retrieved 2010-01-05.

Further reading

  • McWilliams, James E., "‘The Horizon Opened Up Very Greatly’: Leland O. Howard and the Transition to Chemical Insecticides in the United States, 1894–1927," Agricultural History, 82 (Fall 2008), 468–95.

External links


Biopesticides, a contraction of 'biological pesticides', include several types of pest management intervention: through predatory, parasitic, or chemical relationships. The term has been associated historically with [biological control] – and by implication – the manipulation of living organisms. Regulatory positions can be influenced by public perceptions, thus:

in the EU, biopesticides have been defined as "a form of pesticide based on micro-organisms or natural products".

the US EPA states that they "include naturally occurring substances that control pests (biochemical pesticides), microorganisms that control pests (microbial pesticides), and pesticidal substances produced by plants containing added genetic material (plant-incorporated protectants) or PIPs".They are obtained from organisms including plants, bacteria and other microbes, fungi, nematodes, etc. They are often important components of integrated pest management (IPM) programmes, and have received much practical attention as substitutes to synthetic chemical plant protection products (PPPs).


A carbamate is an organic compound derived from carbamic acid (NH2COOH). A carbamate group, carbamate ester (e.g., ethyl carbamate), and carbamic acids are functional groups that are inter-related structurally and often are interconverted chemically. Carbamate esters are also called urethanes.


Chlorfenapyr is a pesticide, and specifically a pro-insecticide (meaning it is metabolized into an active insecticide after entering the host), derived from a class of microbially produced compounds known as halogenated pyrroles. The United States Environmental Protection Agency initially denied registration in 2000 for use on cotton primarily because of concerns that the insecticide was toxic to birds and because effective alternatives were available. However, it was registered by EPA in January, 2001 for use on non-food crops in greenhouses. In 2005, EPA established a tolerance for residues of chlorfenapyr in or on all food commodities. Chlorfenapyr works by disrupting the production of adenosine triphosphate, specifically, "Oxidative removal of the N-ethoxymethyl group of chlorfenapyr by mixed function oxidases forms the compound CL 303268. CL 303268 uncouples oxidative phosphorylation at the mitochondria, resulting in disruption of production of ATP, cellular death, and ultimately organism mortality."

Chlorfenapyr is also used as a wool insect-proofing agent, and was introduced as an alternative to synthetic pyrethroids due to a lower toxicity to mammalian and aquatic life.In April 2016, in Pakistan, 31 people died when their food was spiked with chlorfenapyr.


Cyhalothrin is an organic compound that is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and insecticidal properties of the naturally occurring insecticide pyrethrin which comes from the flowers of chrysanthemums. Pyrethroids such as cyhalothrin are often preferred as an active ingredient in insecticides because they remain effective for longer periods of time than pyrethrin. It is a colorless solid, although samples can appear beige, with a mild odor. It has a low water solubility and is nonvolatile. It is used to control insects in cotton crops.

Diatomaceous earth

Diatomaceous earth ( ) – also known as D.E., diatomite, or kieselgur/kieselguhr – is a naturally occurring, soft, siliceous sedimentary rock that is easily crumbled into a fine white to off-white powder. It has a particle size ranging from less than 3 μm to more than 1 mm, but typically 10 to 200 μm. Depending on the granularity, this powder can have an abrasive feel, similar to pumice powder, and has a low density as a result of its high porosity. The typical chemical composition of oven-dried diatomaceous earth is 80–90% silica, with 2–4% alumina (attributed mostly to clay minerals) and 0.5–2% iron oxide.Diatomaceous earth consists of fossilized remains of diatoms, a type of hard-shelled protist. It is used as a filtration aid, mild abrasive in products including metal polishes and toothpaste, mechanical insecticide, absorbent for liquids, matting agent for coatings, reinforcing filler in plastics and rubber, anti-block in plastic films, porous support for chemical catalysts, cat litter, activator in blood clotting studies, a stabilizing component of dynamite, a thermal insulator, and a soil for potted plants and trees like bonsai.


Dieldrin is an organochloride originally produced in 1948 by J. Hyman & Co, Denver, as an insecticide. Dieldrin is closely related to aldrin, which reacts further to form dieldrin. Aldrin is not toxic to insects; it is oxidized in the insect to form dieldrin which is the active compound. Both dieldrin and aldrin are named after the Diels-Alder reaction which is used to form aldrin from a mixture of norbornadiene and hexachlorocyclopentadiene.

Originally developed in the 1940s as an alternative to DDT, dieldrin proved to be a highly effective insecticide and was very widely used during the 1950s to early 1970s. Endrin is a stereoisomer of dieldrin.

However, it is an extremely persistent organic pollutant; it does not easily break down. Furthermore, it tends to biomagnify as it is passed along the food chain. Long-term exposure has proven toxic to a very wide range of animals including humans, far greater than to the original insect targets. For this reason, it is now banned in most of the world.

It has been linked to health problems such as Parkinson's, breast cancer, and immune, reproductive, and nervous system damage. It is also an endocrine disruptor, acting as an estrogen and antiandrogen, and can adversely affect testicular descent in the fetus if a pregnant woman is exposed to it.


FLIT is the brand name for an insecticide.

The original product, invented by chemist Dr. Franklin C. Nelson and launched in 1923 and mainly intended for killing flies and mosquitoes, was mineral oil based and manufactured by the Standard Oil Company of New Jersey before the company, now part of ExxonMobil, renamed itself first Esso and later Exxon. The Esso formulation contained 5% DDT in the late 1940s and early 1950s, before the negative environmental impact of DDT was widely understood. Later marketed as "FLIT MLO," it has since been discontinued. A hand-operated device called a Flit gun was commonly used to perform the spraying.

The Flit brand name has been reused for another insecticide product, with the primary active ingredient of permethrin, marketed by Clarke Mosquito Control. The current product is most often used to control adult mosquitoes. Spraying it into the air kills adult mosquitoes that are present and then by settling onto surfaces it kills mosquitoes that may later land.

Federal Insecticide, Fungicide, and Rodenticide Act

The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) is a United States federal law that set up the basic U.S. system of pesticide regulation to protect applicators, consumers, and the environment. It is administered and regulated by the United States Environmental Protection Agency (EPA) and the appropriate environmental agencies of the respective states. FIFRA has undergone several important amendments since its inception. A significant revision in 1972 by the Federal Environmental Pesticide Control Act (FEPCA) and several others have expanded EPA's present authority to oversee the sales and use of pesticides with emphasis on the preservation of human health and protection of the environment by "(1) strengthening the registration process by shifting the burden of proof to the chemical manufacturer, (2) enforcing compliance against banned and unregistered products, and (3) promulgating the regulatory framework missing from the original law".


Imidacloprid is a systemic insecticide that acts as an insect neurotoxin and belongs to a class of chemicals called the neonicotinoids which act on the central nervous system of insects. The chemical works by interfering with the transmission of stimuli in the insect nervous system. Specifically, it causes a blockage of the nicotinergic neuronal pathway. By blocking nicotinic acetylcholine receptors, imidacloprid prevents acetylcholine from transmitting impulses between nerves, resulting in the insect's paralysis and eventual death. It is effective on contact and via stomach action. Because imidacloprid binds much more strongly to insect neuron receptors than to mammal neuron receptors, this insecticide is more toxic to insects than to mammals.As of 1999, imidacloprid was the most widely used insecticide in the world.

Although it is now off patent, the primary manufacturer of this chemical is Bayer CropScience (part of Bayer AG). It is sold under many names for many uses; it can be applied by soil injection, tree injection, application to the skin of the plant, broadcast foliar, ground application as a granular or liquid formulation, or as a pesticide-coated seed treatment. Imidacloprid is widely used for pest control in agriculture. Other uses include application to foundations to prevent termite damage, pest control for gardens and turf, treatment of domestic pets to control fleas, protection of trees from boring insects, and in preservative treatment of some types of lumber products.


Incesticide is a compilation album by the American rock band Nirvana. It consists of their 1990 non-album single "Sliver", B-sides, demos, outtakes, covers, and radio broadcast recordings.

The album was released on December 14, 1992, in Europe, and December 15, 1992, in the United States. It eventually reached number 39 on the Billboard 200.


Indoxacarb is an oxadiazine pesticide developed by DuPont that acts against lepidopteran larvae. It is marketed under the names Indoxacarb Technical Insecticide, Steward Insecticide and Avaunt Insecticide. It is also used as the active ingredient in Syngenta line of commercial pesticides: Advion and Arilon.Its main mode of action is via blocking of neuronal sodium channels. It is fairly lipophilic with a Kow of 4.65. This pesticide should be used with caution since some insects such as the oriental tobacco budworm (Helicoverpa assulta) become resistant when exposed.


Isoxathion is a molecular chemical with the molecular formula C13H16NO4PS. It is an insecticide, specifically an isoxazole organothiophosphate insecticide.

Mosquito net

A mosquito net is a type of meshed curtain that is circumferentially draped over a bed or a sleeping area, to offer the sleeper barrier protection against bites and stings from mosquitos, flies, and other pest insects, and thus against the diseases they may carry. Examples of such preventable insect-borne diseases include malaria, dengue fever, yellow fever, zika virus and various forms of encephalitis, including the West Nile virus.To be effective the mesh of a mosquito net must be fine enough to exclude such insects without obscuring visibility or ventilation to unacceptable levels. It is possible to increase the effectiveness of a mosquito net greatly by pretreating it with an appropriate insecticide or insect repellent. Research has shown mosquito nets to be an extremely effective method of malaria prevention, averting approximately 663 million cases of malaria over the period 2000–2015.

Organophosphorus compound

Organophosphorus compounds are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to man, including sarin and VX nerve agents.Organophosphorus chemistry is the corresponding science of the properties and reactivity of organophosphorus compounds. Phosphorus, like nitrogen, is in group 15 of the periodic table, and thus phosphorus compounds and nitrogen compounds have many similar properties. The definition of organophosphorus compounds is variable, which can lead to confusion. In industrial and environmental chemistry, an organophosphorus compound need contain only an organic substituent, but need not have a direct phosphorus-carbon (P-C) bond. Thus a large proportion of pesticides (e.g., malathion), are often included in this class of compounds.

Phosphorus can adopt a variety of oxidation states, and it is general to classify organophosphorus compounds based on their being derivatives of phosphorus(V) vs phosphorus(III), which are the predominant classes of compounds. In a descriptive but only intermittently used nomenclature, phosphorus compounds are identified by their coordination number σ and their valency λ. In this system, a phosphine is a σ3λ3 compound.


Permethrin, sold under the brand name Nix among others, is a medication and insecticide. As a medication, it is used to treat scabies and lice. It is applied to the skin as a cream or lotion. As an insecticide, it can be sprayed on clothing or mosquito nets to kill the insects that touch them.Side effects include rash and irritation at the area of use. Use during pregnancy appears to be safe. It is approved for use on and around people over the age of two months. Permethrin is in the pyrethroid family of medications. It works by disrupting the function of the neurons of lice and scabies mites.Permethrin was discovered in 1973. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. The wholesale cost in the developing world is about US$0.02 to US$0.06 per gram. In the United States, a course of treatment costs US$25 to US$50, and it is available over the counter.

Pesticide resistance

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring.Cases of resistance have been reported in all classes of pests (i.e. crop diseases, weeds, rodents, etc.), with 'crises' in insect control occurring early-on after the introduction of pesticide use in the 20th century. The Insecticide Resistance Action Committee (IRAC) definition of insecticide resistance is 'a heritable change in the sensitivity of a pest population that is reflected in the repeated failure of a product to achieve the expected level of control when used according to the label recommendation for that pest species'.Pesticide resistance is increasing. Farmers in the US lost 7% of their crops to pests in the 1940s; over the 1980s and 1990s, the loss was 13%, even though more pesticides were being used. Over 500 species of pests have evolved a resistance to a pesticide. Other sources estimate the number to be around 1,000 species since 1945.Although the evolution of pesticide resistance is usually discussed as a result of pesticide use, it is important to keep in mind that pest populations can also adapt to non-chemical methods of control. For example, the northern corn rootworm (Diabrotica barberi) became adapted to a corn-soybean crop rotation by spending the year when field is planted to soybeans in a diapause.As of 2014, few new weed killers are near commercialization, and none with a novel, resistance-free mode of action.


The pyrethrins are a class of organic compounds normally derived from Chrysanthemum cinerariifolium that have potent insecticidal activity by targeting the nervous systems of insects. Pyrethrin naturally occurs in chrysanthemum flowers and is often considered an organic insecticide when it is not combined with piperonyl butoxide or other synthetic adjuvants. Their insecticidal and insect-repellent properties have been known and used for thousands of years.

Pyrethrins are gradually replacing organophosphates and organochlorides as the pesticides of choice as the latter compounds have been shown to have significant and persistent toxic effects to humans. Because they are biodegradable pyrethrins are widely preferred to pyrethroids, which are synthetic analogues of pyrethrin that accumulate in the environment. Pyrethrins are considered to be low-toxicity pesticides from a human health standpoint.

Raid (insecticide)

Raid is the brand name of a line of insecticide products produced by S. C. Johnson & Son, first launched in 1956.

The initial active ingredient was the first synthetic pyrethroid, allethrin. Raid derivatives aimed at particular invertebrate species can contain other active agents such as the more toxic cyfluthrin, another synthetic pyrethroid.

Currently Raid Ant & Roach Killer contains pyrethroids, piperonyl butoxide, and permethrin; other products contain tetramethrin, cypermethrin and imiprothrin as active ingredients. Raid Flying Insect Killer, a spray, uses prallethrin and D-phenothrin.


Tetramethrin is a potent synthetic insecticide in the pyrethroid family. It is a white crystalline solid with a melting point of 65-80 °C. The commercial product is a mixture of stereoisomers.

It is commonly used as an insecticide, and affects the insect's nervous system. It is found in many household insecticide products.

Pest control: Insecticides
Inorganic compounds
Insect growth regulators
Other chemicals
Pesticide types
Related topics
By country
Insect orders


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.