In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10^{−36} seconds after the conjectured Big Bang singularity to sometime between 10^{−33} and 10^{−32} seconds after the singularity. Following the inflationary period, the universe continues to expand, but at a less rapid rate.^{[1]}
Inflation theory was first developed in 1979 by theoretical physicist Alan Guth at Cornell University. It was developed further in the early 1980s. It explains the origin of the largescale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe (see galaxy formation and evolution and structure formation).^{[2]} Many physicists also believe that inflation explains why the universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed.
The detailed particle physics mechanism responsible for inflation is unknown. The basic inflationary paradigm is accepted by most physicists, as a number of inflation model predictions have been confirmed by observation;^{[3]} however, a substantial minority of scientists dissent from this position.^{[4]}^{[5]}^{[6]} The hypothetical field thought to be responsible for inflation is called the inflaton.^{[7]}
In 2002, three of the original architects of the theory were recognized for their major contributions; physicists Alan Guth of M.I.T., Andrei Linde of Stanford, and Paul Steinhardt of Princeton shared the prestigious Dirac Prize "for development of the concept of inflation in cosmology".^{[8]} In 2012, Alan Guth and Andrei Linde were awarded the Breakthrough Prize in Fundamental Physics for their invention and development of inflationary cosmology.^{[9]}
Around 1930, Edwin Hubble discovered that light from remote galaxies was redshifted; the more remote, the more shifted. This was quickly interpreted as meaning galaxies were receding from earth. If earth is not in some special, privileged, central position in the universe, then it would mean all galaxies are moving apart, and the further away, the faster they are moving away. It is now understood that the universe is expanding, carrying the galaxies with it, and causing this observation. Many other observations agree, and also lead to the same conclusion. However, for many years it was not clear why or how the universe might be expanding, or what it might signify.
Based on a huge amount of experimental observation and theoretical work, it is now believed that the reason for the observation is that space itself is expanding, and that it expanded very rapidly within the first fraction of a second after the Big Bang. This kind of expansion is known as a "metric" expansion. In the terminology of mathematics and physics, a "metric" is a measure of distance that satisfies a specific list of properties, and the term implies that the sense of distance within the universe is itself changing, although at this time it is far too small an effect to see on less than an intergalactic scale.
The modern explanation for the metric expansion of space was proposed by physicist Alan Guth in 1979, while investigating the problem of why no magnetic monopoles are seen today. He found that if the universe contained a field in a positiveenergy false vacuum state, then according to general relativity it would generate an exponential expansion of space. It was very quickly realized that such an expansion would resolve many other longstanding problems. These problems arise from the observation that to look like it does today, the Universe would have to have started from very finely tuned, or "special" initial conditions at the Big Bang. Inflation theory largely resolves these problems as well, thus making a universe like ours much more likely in the context of Big Bang theory.
No physical field has yet been discovered that is responsible for this inflation. However such a field would be scalar and the first relativistic scalar field proven to exist, the Higgs field, was only discovered in 2012–2013 and is still being researched. So it is not seen as problematic that a field responsible for cosmic inflation and the metric expansion of space has not yet been discovered. The proposed field and its quanta (the subatomic particles related to it) have been named the inflaton. If this field did not exist, scientists would have to propose a different explanation for all the observations that strongly suggest a metric expansion of space has occurred, and is still occurring (much more slowly) today.
An expanding universe generally has a cosmological horizon, which, by analogy with the more familiar horizon caused by the curvature of Earth's surface, marks the boundary of the part of the Universe that an observer can see. Light (or other radiation) emitted by objects beyond the cosmological horizon in an Accelerating universe never reaches the observer, because the space in between the observer and the object is expanding too rapidly.
The observable universe is one causal patch of a much larger unobservable universe; other parts of the Universe cannot communicate with Earth yet. These parts of the Universe are outside our current cosmological horizon. In the standard hot big bang model, without inflation, the cosmological horizon moves out, bringing new regions into view. Yet as a local observer sees such a region for the first time, it looks no different from any other region of space the local observer has already seen: its background radiation is at nearly the same temperature as the background radiation of other regions, and its spacetime curvature is evolving lockstep with the others. This presents a mystery: how did these new regions know what temperature and curvature they were supposed to have? They couldn't have learned it by getting signals, because they were not previously in communication with our past light cone.^{[13]}^{[14]}
Inflation answers this question by postulating that all the regions come from an earlier era with a big vacuum energy, or cosmological constant. A space with a cosmological constant is qualitatively different: instead of moving outward, the cosmological horizon stays put. For any one observer, the distance to the cosmological horizon is constant. With exponentially expanding space, two nearby observers are separated very quickly; so much so, that the distance between them quickly exceeds the limits of communications. The spatial slices are expanding very fast to cover huge volumes. Things are constantly moving beyond the cosmological horizon, which is a fixed distance away, and everything becomes homogeneous.
As the inflationary field slowly relaxes to the vacuum, the cosmological constant goes to zero and space begins to expand normally. The new regions that come into view during the normal expansion phase are exactly the same regions that were pushed out of the horizon during inflation, and so they are at nearly the same temperature and curvature, because they come from the same originally small patch of space.
The theory of inflation thus explains why the temperatures and curvatures of different regions are so nearly equal. It also predicts that the total curvature of a spaceslice at constant global time is zero. This prediction implies that the total ordinary matter, dark matter and residual vacuum energy in the Universe have to add up to the critical density, and the evidence supports this. More strikingly, inflation allows physicists to calculate the minute differences in temperature of different regions from quantum fluctuations during the inflationary era, and many of these quantitative predictions have been confirmed.^{[15]}^{[16]}
In a space that expands exponentially (or nearly exponentially) with time, any pair of freefloating objects that are initially at rest will move apart from each other at an accelerating rate, at least as long as they are not bound together by any force. From the point of view of one such object, the spacetime is something like an insideout Schwarzschild black hole—each object is surrounded by a spherical event horizon. Once the other object has fallen through this horizon it can never return, and even light signals it sends will never reach the first object (at least so long as the space continues to expand exponentially).
In the approximation that the expansion is exactly exponential, the horizon is static and remains a fixed physical distance away. This patch of an inflating universe can be described by the following metric:^{[17]}^{[18]}
This exponentially expanding spacetime is called a de Sitter space, and to sustain it there must be a cosmological constant, a vacuum energy density that is constant in space and time and proportional to Λ in the above metric. For the case of exactly exponential expansion, the vacuum energy has a negative pressure p equal in magnitude to its energy density ρ; the equation of state is p=−ρ.
Inflation is typically not an exactly exponential expansion, but rather quasi or nearexponential. In such a universe the horizon will slowly grow with time as the vacuum energy density gradually decreases.
Because the accelerating expansion of space stretches out any initial variations in density or temperature to very large length scales, an essential feature of inflation is that it smooths out inhomogeneities, anisotropies and reduces the curvature of space. This pushes the Universe into a very simple state in which it is completely dominated by the inflaton field and the only significant inhomogeneities are tiny quantum fluctuations. Inflation also dilutes exotic heavy particles, such as the magnetic monopoles predicted by many extensions to the Standard Model of particle physics. If the Universe was only hot enough to form such particles before a period of inflation, they would not be observed in nature, as they would be so rare that it is quite likely that there are none in the observable universe. Together, these effects are called the inflationary "nohair theorem"^{[19]} by analogy with the no hair theorem for black holes.
The "nohair" theorem works essentially because the cosmological horizon is no different from a blackhole horizon, except for philosophical disagreements about what is on the other side. The interpretation of the nohair theorem is that the Universe (observable and unobservable) expands by an enormous factor during inflation. In an expanding universe, energy densities generally fall, or get diluted, as the volume of the Universe increases. For example, the density of ordinary "cold" matter (dust) goes down as the inverse of the volume: when linear dimensions double, the energy density goes down by a factor of eight; the radiation energy density goes down even more rapidly as the Universe expands since the wavelength of each photon is stretched (redshifted), in addition to the photons being dispersed by the expansion. When linear dimensions are doubled, the energy density in radiation falls by a factor of sixteen (see the solution of the energy density continuity equation for an ultrarelativistic fluid). During inflation, the energy density in the inflaton field is roughly constant. However, the energy density in everything else, including inhomogeneities, curvature, anisotropies, exotic particles, and standardmodel particles is falling, and through sufficient inflation these all become negligible. This leaves the Universe flat and symmetric, and (apart from the homogeneous inflaton field) mostly empty, at the moment inflation ends and reheating begins.^{[20]}
A key requirement is that inflation must continue long enough to produce the present observable universe from a single, small inflationary Hubble volume. This is necessary to ensure that the Universe appears flat, homogeneous and isotropic at the largest observable scales. This requirement is generally thought to be satisfied if the Universe expanded by a factor of at least 10^{26} during inflation.^{[21]}
Inflation is a period of supercooled expansion, when the temperature drops by a factor of 100,000 or so. (The exact drop is modeldependent, but in the first models it was typically from 10^{27} K down to 10^{22} K.^{[22]}) This relatively low temperature is maintained during the inflationary phase. When inflation ends the temperature returns to the preinflationary temperature; this is called reheating or thermalization because the large potential energy of the inflaton field decays into particles and fills the Universe with Standard Model particles, including electromagnetic radiation, starting the radiation dominated phase of the Universe. Because the nature of the inflation is not known, this process is still poorly understood, although it is believed to take place through a parametric resonance.^{[23]}^{[24]}
Inflation resolves several problems in Big Bang cosmology that were discovered in the 1970s.^{[25]} Inflation was first proposed by Alan Guth in 1979 while investigating the problem of why no magnetic monopoles are seen today; he found that a positiveenergy false vacuum would, according to general relativity, generate an exponential expansion of space. It was very quickly realised that such an expansion would resolve many other longstanding problems. These problems arise from the observation that to look like it does today, the Universe would have to have started from very finely tuned, or "special" initial conditions at the Big Bang. Inflation attempts to resolve these problems by providing a dynamical mechanism that drives the Universe to this special state, thus making a universe like ours much more likely in the context of the Big Bang theory.
The horizon problem is the problem of determining why the Universe appears statistically homogeneous and isotropic in accordance with the cosmological principle.^{[26]}^{[27]}^{[28]} For example, molecules in a canister of gas are distributed homogeneously and isotropically because they are in thermal equilibrium: gas throughout the canister has had enough time to interact to dissipate inhomogeneities and anisotropies. The situation is quite different in the big bang model without inflation, because gravitational expansion does not give the early universe enough time to equilibrate. In a big bang with only the matter and radiation known in the Standard Model, two widely separated regions of the observable universe cannot have equilibrated because they move apart from each other faster than the speed of light and thus have never come into causal contact. In the early Universe, it was not possible to send a light signal between the two regions. Because they have had no interaction, it is difficult to explain why they have the same temperature (are thermally equilibrated). Historically, proposed solutions included the Phoenix universe of Georges Lemaître,^{[29]} the related oscillatory universe of Richard Chase Tolman,^{[30]} and the Mixmaster universe of Charles Misner. Lemaître and Tolman proposed that a universe undergoing a number of cycles of contraction and expansion could come into thermal equilibrium. Their models failed, however, because of the buildup of entropy over several cycles. Misner made the (ultimately incorrect) conjecture that the Mixmaster mechanism, which made the Universe more chaotic, could lead to statistical homogeneity and isotropy.^{[27]}^{[31]}
The flatness problem is sometimes called one of the Dicke coincidences (along with the cosmological constant problem).^{[32]}^{[33]} It became known in the 1960s that the density of matter in the Universe was comparable to the critical density necessary for a flat universe (that is, a universe whose large scale geometry is the usual Euclidean geometry, rather than a nonEuclidean hyperbolic or spherical geometry).^{[34]}^{:61}
Therefore, regardless of the shape of the universe the contribution of spatial curvature to the expansion of the Universe could not be much greater than the contribution of matter. But as the Universe expands, the curvature redshifts away more slowly than matter and radiation. Extrapolated into the past, this presents a finetuning problem because the contribution of curvature to the Universe must be exponentially small (sixteen orders of magnitude less than the density of radiation at big bang nucleosynthesis, for example). This problem is exacerbated by recent observations of the cosmic microwave background that have demonstrated that the Universe is flat to within a few percent.^{[35]}
The magnetic monopole problem, sometimes called the exoticrelics problem, says that if the early universe were very hot, a large number of very heavy, stable magnetic monopoles would have been produced. This is a problem with Grand Unified Theories, which propose that at high temperatures (such as in the early universe) the electromagnetic force, strong, and weak nuclear forces are not actually fundamental forces but arise due to spontaneous symmetry breaking from a single gauge theory.^{[36]} These theories predict a number of heavy, stable particles that have not been observed in nature. The most notorious is the magnetic monopole, a kind of stable, heavy "charge" of magnetic field.^{[37]}^{[38]} Monopoles are predicted to be copiously produced following Grand Unified Theories at high temperature,^{[39]}^{[40]} and they should have persisted to the present day, to such an extent that they would become the primary constituent of the Universe.^{[41]}^{[42]} Not only is that not the case, but all searches for them have failed, placing stringent limits on the density of relic magnetic monopoles in the Universe.^{[43]} A period of inflation that occurs below the temperature where magnetic monopoles can be produced would offer a possible resolution of this problem: monopoles would be separated from each other as the Universe around them expands, potentially lowering their observed density by many orders of magnitude. Though, as cosmologist Martin Rees has written, "Skeptics about exotic physics might not be hugely impressed by a theoretical argument to explain the absence of particles that are themselves only hypothetical. Preventive medicine can readily seem 100 percent effective against a disease that doesn't exist!"^{[44]}
In the early days of General Relativity, Albert Einstein introduced the cosmological constant to allow a static solution, which was a threedimensional sphere with a uniform density of matter. Later, Willem de Sitter found a highly symmetric inflating universe, which described a universe with a cosmological constant that is otherwise empty.^{[45]} It was discovered that Einstein's universe is unstable, and that small fluctuations cause it to collapse or turn into a de Sitter universe.
In the early 1970s Zeldovich noticed the flatness and horizon problems of Big Bang cosmology; before his work, cosmology was presumed to be symmetrical on purely philosophical grounds. In the Soviet Union, this and other considerations led Belinski and Khalatnikov to analyze the chaotic BKL singularity in General Relativity. Misner's Mixmaster universe attempted to use this chaotic behavior to solve the cosmological problems, with limited success.
In the late 1970s, Sidney Coleman applied the instanton techniques developed by Alexander Polyakov and collaborators to study the fate of the false vacuum in quantum field theory. Like a metastable phase in statistical mechanics—water below the freezing temperature or above the boiling point—a quantum field would need to nucleate a large enough bubble of the new vacuum, the new phase, in order to make a transition. Coleman found the most likely decay pathway for vacuum decay and calculated the inverse lifetime per unit volume. He eventually noted that gravitational effects would be significant, but he did not calculate these effects and did not apply the results to cosmology.
In the Soviet Union, Alexei Starobinsky noted that quantum corrections to general relativity should be important for the early universe. These generically lead to curvaturesquared corrections to the Einstein–Hilbert action and a form of f(R) modified gravity. The solution to Einstein's equations in the presence of curvature squared terms, when the curvatures are large, leads to an effective cosmological constant. Therefore, he proposed that the early universe went through an inflationary de Sitter era.^{[46]} This resolved the cosmology problems and led to specific predictions for the corrections to the microwave background radiation, corrections that were then calculated in detail. Starobinsky used the action
which corresponds to the potential
in the Einstein frame. This results in the observables: ^{[47]}
In 1978, Zeldovich noted the monopole problem, which was an unambiguous quantitative version of the horizon problem, this time in a subfield of particle physics, which led to several speculative attempts to resolve it. In 1980 Alan Guth realized that false vacuum decay in the early universe would solve the problem, leading him to propose a scalardriven inflation. Starobinsky's and Guth's scenarios both predicted an initial de Sitter phase, differing only in mechanistic details.
Guth proposed inflation in January 1980 to explain the nonexistence of magnetic monopoles;^{[48]}^{[49]} it was Guth who coined the term "inflation".^{[50]} At the same time, Starobinsky argued that quantum corrections to gravity would replace the initial singularity of the Universe with an exponentially expanding de Sitter phase.^{[51]} In October 1980, Demosthenes Kazanas suggested that exponential expansion could eliminate the particle horizon and perhaps solve the horizon problem,^{[52]}^{[53]} while Sato suggested that an exponential expansion could eliminate domain walls (another kind of exotic relic).^{[54]} In 1981 Einhorn and Sato^{[55]} published a model similar to Guth's and showed that it would resolve the puzzle of the magnetic monopole abundance in Grand Unified Theories. Like Guth, they concluded that such a model not only required fine tuning of the cosmological constant, but also would likely lead to a much too granular universe, i.e., to large density variations resulting from bubble wall collisions.
Guth proposed that as the early universe cooled, it was trapped in a false vacuum with a high energy density, which is much like a cosmological constant. As the very early universe cooled it was trapped in a metastable state (it was supercooled), which it could only decay out of through the process of bubble nucleation via quantum tunneling. Bubbles of true vacuum spontaneously form in the sea of false vacuum and rapidly begin expanding at the speed of light. Guth recognized that this model was problematic because the model did not reheat properly: when the bubbles nucleated, they did not generate any radiation. Radiation could only be generated in collisions between bubble walls. But if inflation lasted long enough to solve the initial conditions problems, collisions between bubbles became exceedingly rare. In any one causal patch it is likely that only one bubble would nucleate.
... Kazanas (1980) called this phase of the early Universe "de Sitter's phase." The name "inflation" was given by Guth (1981). ... Guth himself did not refer to work of Kazanas until he published a book on the subject under the title "The inflationary universe: the quest for a new theory of cosmic origin" (1997), where he apologizes for not having referenced the work of Kazanas and of others, related to inflation.^{[56]}
The bubble collision problem was solved by Linde^{[57]} and independently by Andreas Albrecht and Paul Steinhardt^{[58]} in a model named new inflation or slowroll inflation (Guth's model then became known as old inflation). In this model, instead of tunneling out of a false vacuum state, inflation occurred by a scalar field rolling down a potential energy hill. When the field rolls very slowly compared to the expansion of the Universe, inflation occurs. However, when the hill becomes steeper, inflation ends and reheating can occur.
Eventually, it was shown that new inflation does not produce a perfectly symmetric universe, but that quantum fluctuations in the inflaton are created. These fluctuations form the primordial seeds for all structure created in the later universe.^{[59]} These fluctuations were first calculated by Viatcheslav Mukhanov and G. V. Chibisov in analyzing Starobinsky's similar model.^{[60]}^{[61]}^{[62]} In the context of inflation, they were worked out independently of the work of Mukhanov and Chibisov at the threeweek 1982 Nuffield Workshop on the Very Early Universe at Cambridge University.^{[63]} The fluctuations were calculated by four groups working separately over the course of the workshop: Stephen Hawking;^{[64]} Starobinsky;^{[65]} Guth and SoYoung Pi;^{[66]} and Bardeen, Steinhardt and Turner.^{[67]}
Inflation is a mechanism for realizing the cosmological principle, which is the basis of the standard model of physical cosmology: it accounts for the homogeneity and isotropy of the observable universe. In addition, it accounts for the observed flatness and absence of magnetic monopoles. Since Guth's early work, each of these observations has received further confirmation, most impressively by the detailed observations of the cosmic microwave background made by the Planck spacecraft.^{[68]} This analysis shows that the Universe is flat to within 0.5 percent, and that it is homogeneous and isotropic to one part in 100,000.
Inflation predicts that the structures visible in the Universe today formed through the gravitational collapse of perturbations that were formed as quantum mechanical fluctuations in the inflationary epoch. The detailed form of the spectrum of perturbations, called a nearlyscaleinvariant Gaussian random field is very specific and has only two free parameters. One is the amplitude of the spectrum and the spectral index, which measures the slight deviation from scale invariance predicted by inflation (perfect scale invariance corresponds to the idealized de Sitter universe).^{[69]} The other free parameter is the tensor to scalar ratio. The simplest inflation models, those without finetuning, predict a tensor to scalar ratio near 0.1.^{[70]}
Inflation predicts that the observed perturbations should be in thermal equilibrium with each other (these are called adiabatic or isentropic perturbations). This structure for the perturbations has been confirmed by the Planck spacecraft, WMAP spacecraft and other cosmic microwave background (CMB) experiments, and galaxy surveys, especially the ongoing Sloan Digital Sky Survey.^{[71]} These experiments have shown that the one part in 100,000 inhomogeneities observed have exactly the form predicted by theory. There is evidence for a slight deviation from scale invariance. The spectral index, n_{s} is one for a scaleinvariant Harrison–Zel'dovich spectrum. The simplest inflation models predict that n_{s} is between 0.92 and 0.98.^{[72]}^{[73]}^{[74]}^{[75]} This is the range that is possible without finetuning of the parameters related to energy.^{[74]} From Planck data it can be inferred that n_{s}=0.968 ± 0.006,^{[68]}^{[76]} and a tensor to scalar ratio that is less than 0.11. These are considered an important confirmation of the theory of inflation.^{[15]}
Various inflation theories have been proposed that make radically different predictions, but they generally have much more fine tuning than should be necessary.^{[72]}^{[73]} As a physical model, however, inflation is most valuable in that it robustly predicts the initial conditions of the Universe based on only two adjustable parameters: the spectral index (that can only change in a small range) and the amplitude of the perturbations. Except in contrived models, this is true regardless of how inflation is realized in particle physics.
Occasionally, effects are observed that appear to contradict the simplest models of inflation. The firstyear WMAP data suggested that the spectrum might not be nearly scaleinvariant, but might instead have a slight curvature.^{[77]} However, the thirdyear data revealed that the effect was a statistical anomaly.^{[15]} Another effect remarked upon since the first cosmic microwave background satellite, the Cosmic Background Explorer is that the amplitude of the quadrupole moment of the CMB is unexpectedly low and the other low multipoles appear to be preferentially aligned with the ecliptic plane. Some have claimed that this is a signature of nonGaussianity and thus contradicts the simplest models of inflation. Others have suggested that the effect may be due to other new physics, foreground contamination, or even publication bias.^{[78]}
An experimental program is underway to further test inflation with more precise CMB measurements. In particular, high precision measurements of the socalled "Bmodes" of the polarization of the background radiation could provide evidence of the gravitational radiation produced by inflation, and could also show whether the energy scale of inflation predicted by the simplest models (10^{15}–10^{16} GeV) is correct.^{[73]}^{[74]} In March 2014, it was announced that Bmode CMB polarization consistent with that predicted from inflation had been demonstrated by a South Pole experiment.^{[10]}^{[11]}^{[12]}^{[79]}^{[80]}^{[81]} However, on 19 June 2014, lowered confidence in confirming the findings was reported;^{[80]}^{[82]}^{[83]} on 19 September 2014, a further reduction in confidence was reported^{[84]}^{[85]} and, on 30 January 2015, even less confidence yet was reported.^{[86]}^{[87]}
Other potentially corroborating measurements are expected from the Planck spacecraft, although it is unclear if the signal will be visible, or if contamination from foreground sources will interfere.^{[88]} Other forthcoming measurements, such as those of 21 centimeter radiation (radiation emitted and absorbed from neutral hydrogen before the first stars formed), may measure the power spectrum with even greater resolution than the CMB and galaxy surveys, although it is not known if these measurements will be possible or if interference with radio sources on Earth and in the galaxy will be too great.^{[89]}
Unsolved problem in physics: Is the theory of cosmological inflation correct, and if so, what are the details of this epoch? What is the hypothetical inflaton field giving rise to inflation? (more unsolved problems in physics)

In Guth's early proposal, it was thought that the inflaton was the Higgs field, the field that explains the mass of the elementary particles.^{[49]} It is now believed by some that the inflaton cannot be the Higgs field^{[90]} although the recent discovery of the Higgs boson has increased the number of works considering the Higgs field as inflaton.^{[91]} One problem of this identification is the current tension with experimental data at the electroweak scale,^{[92]} which is currently under study at the Large Hadron Collider (LHC). Other models of inflation relied on the properties of Grand Unified Theories.^{[58]} Since the simplest models of grand unification have failed, it is now thought by many physicists that inflation will be included in a supersymmetric theory such as string theory or a supersymmetric grand unified theory. At present, while inflation is understood principally by its detailed predictions of the initial conditions for the hot early universe, the particle physics is largely ad hoc modelling. As such, although predictions of inflation have been consistent with the results of observational tests, many open questions remain.
One of the most severe challenges for inflation arises from the need for fine tuning. In new inflation, the slowroll conditions must be satisfied for inflation to occur. The slowroll conditions say that the inflaton potential must be flat (compared to the large vacuum energy) and that the inflaton particles must have a small mass.^{[93]} New inflation requires the Universe to have a scalar field with an especially flat potential and special initial conditions. However, explanations for these finetunings have been proposed. For example, classically scale invariant field theories, where scale invariance is broken by quantum effects, provide an explanation of the flatness of inflationary potentials, as long as the theory can be studied through perturbation theory.^{[94]}
Linde proposed a theory known as chaotic inflation in which he suggested that the conditions for inflation were actually satisfied quite generically. Inflation will occur in virtually any universe that begins in a chaotic, high energy state that has a scalar field with unbounded potential energy.^{[95]} However, in his model the inflaton field necessarily takes values larger than one Planck unit: for this reason, these are often called large field models and the competing new inflation models are called small field models. In this situation, the predictions of effective field theory are thought to be invalid, as renormalization should cause large corrections that could prevent inflation.^{[96]} This problem has not yet been resolved and some cosmologists argue that the small field models, in which inflation can occur at a much lower energy scale, are better models.^{[97]} While inflation depends on quantum field theory (and the semiclassical approximation to quantum gravity) in an important way, it has not been completely reconciled with these theories.
Brandenberger commented on finetuning in another situation.^{[98]} The amplitude of the primordial inhomogeneities produced in inflation is directly tied to the energy scale of inflation. This scale is suggested to be around 10^{16} GeV or 10^{−3} times the Planck energy. The natural scale is naïvely the Planck scale so this small value could be seen as another form of finetuning (called a hierarchy problem): the energy density given by the scalar potential is down by 10^{−12} compared to the Planck density. This is not usually considered to be a critical problem, however, because the scale of inflation corresponds naturally to the scale of gauge unification.
In many models, the inflationary phase of the Universe's expansion lasts forever in at least some regions of the Universe. This occurs because inflating regions expand very rapidly, reproducing themselves. Unless the rate of decay to the noninflating phase is sufficiently fast, new inflating regions are produced more rapidly than noninflating regions. In such models, most of the volume of the Universe is continuously inflating at any given time.
All models of eternal inflation produce an infinite, hypothetical multiverse, typically a fractal. The multiverse theory has created significant dissension in the scientific community about the viability of the inflationary model.
Paul Steinhardt, one of the original architects of the inflationary model, introduced the first example of eternal inflation in 1983.^{[99]} He showed that the inflation could proceed forever by producing bubbles of noninflating space filled with hot matter and radiation surrounded by empty space that continues to inflate. The bubbles could not grow fast enough to keep up with the inflation. Later that same year, Alexander Vilenkin showed that eternal inflation is generic.^{[100]}
Although new inflation is classically rolling down the potential, quantum fluctuations can sometimes lift it to previous levels. These regions in which the inflaton fluctuates upwards expand much faster than regions in which the inflaton has a lower potential energy, and tend to dominate in terms of physical volume. It has been shown that any inflationary theory with an unbounded potential is eternal. There are wellknown theorems that this steady state cannot continue forever into the past. Inflationary spacetime, which is similar to de Sitter space, is incomplete without a contracting region. However, unlike de Sitter space, fluctuations in a contracting inflationary space collapse to form a gravitational singularity, a point where densities become infinite. Therefore, it is necessary to have a theory for the Universe's initial conditions.
In eternal inflation, regions with inflation have an exponentially growing volume, while regions that are not inflating don't. This suggests that the volume of the inflating part of the Universe in the global picture is always unimaginably larger than the part that has stopped inflating, even though inflation eventually ends as seen by any single preinflationary observer. Scientists disagree about how to assign a probability distribution to this hypothetical anthropic landscape. If the probability of different regions is counted by volume, one should expect that inflation will never end or applying boundary conditions that a local observer exists to observe it, that inflation will end as late as possible.
Some physicists believe this paradox can be resolved by weighting observers by their preinflationary volume. Others believe that there is no resolution to the paradox and that the multiverse is a critical flaw in the inflationary paradigm. Paul Steinhardt, who first introduced the eternal inflationary model,^{[99]} later became one of its most vocal critics for this reason.^{[101]}^{[102]}^{[103]}
Some physicists have tried to avoid the initial conditions problem by proposing models for an eternally inflating universe with no origin.^{[104]}^{[105]}^{[106]}^{[107]} These models propose that while the Universe, on the largest scales, expands exponentially it was, is and always will be, spatially infinite and has existed, and will exist, forever.
Other proposals attempt to describe the ex nihilo creation of the Universe based on quantum cosmology and the following inflation. Vilenkin put forth one such scenario.^{[100]} Hartle and Hawking offered the noboundary proposal for the initial creation of the Universe in which inflation comes about naturally.^{[108]}^{[109]}^{[110]}^{[111]}
Guth described the inflationary universe as the "ultimate free lunch":^{[112]}^{[113]} new universes, similar to our own, are continually produced in a vast inflating background. Gravitational interactions, in this case, circumvent (but do not violate) the first law of thermodynamics (energy conservation) and the second law of thermodynamics (entropy and the arrow of time problem). However, while there is consensus that this solves the initial conditions problem, some have disputed this, as it is much more likely that the Universe came about by a quantum fluctuation. Don Page was an outspoken critic of inflation because of this anomaly.^{[114]} He stressed that the thermodynamic arrow of time necessitates low entropy initial conditions, which would be highly unlikely. According to them, rather than solving this problem, the inflation theory aggravates it – the reheating at the end of the inflation era increases entropy, making it necessary for the initial state of the Universe to be even more orderly than in other Big Bang theories with no inflation phase.
Hawking and Page later found ambiguous results when they attempted to compute the probability of inflation in the HartleHawking initial state.^{[115]} Other authors have argued that, since inflation is eternal, the probability doesn't matter as long as it is not precisely zero: once it starts, inflation perpetuates itself and quickly dominates the Universe.^{[4]}^{[116]}^{:223–225} However, Albrecht and Lorenzo Sorbo argued that the probability of an inflationary cosmos, consistent with today's observations, emerging by a random fluctuation from some preexistent state is much higher than that of a noninflationary cosmos. This is because the "seed" amount of nongravitational energy required for the inflationary cosmos is so much less than that for a noninflationary alternative, which outweighs any entropic considerations.^{[117]}
Another problem that has occasionally been mentioned is the transPlanckian problem or transPlanckian effects.^{[118]} Since the energy scale of inflation and the Planck scale are relatively close, some of the quantum fluctuations that have made up the structure in our universe were smaller than the Planck length before inflation. Therefore, there ought to be corrections from Planckscale physics, in particular the unknown quantum theory of gravity. Some disagreement remains about the magnitude of this effect: about whether it is just on the threshold of detectability or completely undetectable.^{[119]}
Another kind of inflation, called hybrid inflation, is an extension of new inflation. It introduces additional scalar fields, so that while one of the scalar fields is responsible for normal slow roll inflation, another triggers the end of inflation: when inflation has continued for sufficiently long, it becomes favorable to the second field to decay into a much lower energy state.^{[120]}
In hybrid inflation, one scalar field is responsible for most of the energy density (thus determining the rate of expansion), while another is responsible for the slow roll (thus determining the period of inflation and its termination). Thus fluctuations in the former inflaton would not affect inflation termination, while fluctuations in the latter would not affect the rate of expansion. Therefore, hybrid inflation is not eternal.^{[121]}^{[122]} When the second (slowrolling) inflaton reaches the bottom of its potential, it changes the location of the minimum of the first inflaton's potential, which leads to a fast roll of the inflaton down its potential, leading to termination of inflation.
Dark energy is broadly similar to inflation and is thought to be causing the expansion of the presentday universe to accelerate. However, the energy scale of dark energy is much lower, 10^{−12} GeV, roughly 27 orders of magnitude less than the scale of inflation.
The discovery of flux compactifications opened the way for reconciling inflation and string theory.^{[123]} Brane inflation suggests that inflation arises from the motion of Dbranes^{[124]} in the compactified geometry, usually towards a stack of antiDbranes. This theory, governed by the DiracBornInfeld action, is different from ordinary inflation. The dynamics are not completely understood. It appears that special conditions are necessary since inflation occurs in tunneling between two vacua in the string landscape. The process of tunneling between two vacua is a form of old inflation, but new inflation must then occur by some other mechanism.
When investigating the effects the theory of loop quantum gravity would have on cosmology, a loop quantum cosmology model has evolved that provides a possible mechanism for cosmological inflation. Loop quantum gravity assumes a quantized spacetime. If the energy density is larger than can be held by the quantized spacetime, it is thought to bounce back.^{[125]}
Other models explain some of the observations explained by inflation. However none of these "alternatives" has the same breadth of explanation and still require inflation for a more complete fit with observation. They should therefore be regarded as adjuncts to inflation, rather than as alternatives.
The big bounce hypothesis attempts to replace the cosmic singularity with a cosmic contraction and bounce, thereby explaining the initial conditions that led to the big bang.^{[126]} The flatness and horizon problems are naturally solved in the EinsteinCartanSciamaKibble theory of gravity, without needing an exotic form of matter or free parameters.^{[127]}^{[128]} This theory extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between torsion and Dirac spinors generates a spinspin interaction that is significant in fermionic matter at extremely high densities. Such an interaction averts the unphysical Big Bang singularity, replacing it with a cusplike bounce at a finite minimum scale factor, before which the Universe was contracting. The rapid expansion immediately after the Big Bounce explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic. As the density of the Universe decreases, the effects of torsion weaken and the Universe smoothly enters the radiationdominated era.
The ekpyrotic and cyclic models are also considered adjuncts to inflation. These models solve the horizon problem through an expanding epoch well before the Big Bang, and then generate the required spectrum of primordial density perturbations during a contracting phase leading to a Big Crunch. The Universe passes through the Big Crunch and emerges in a hot Big Bang phase. In this sense they are reminiscent of Richard Chace Tolman's oscillatory universe; in Tolman's model, however, the total age of the Universe is necessarily finite, while in these models this is not necessarily so. Whether the correct spectrum of density fluctuations can be produced, and whether the Universe can successfully navigate the Big Bang/Big Crunch transition, remains a topic of controversy and current research. Ekpyrotic models avoid the magnetic monopole problem as long as the temperature at the Big Crunch/Big Bang transition remains below the Grand Unified Scale, as this is the temperature required to produce magnetic monopoles in the first place. As things stand, there is no evidence of any 'slowing down' of the expansion, but this is not surprising as each cycle is expected to last on the order of a trillion years.
Another adjunct, the varying speed of light model was offered by JeanPierre Petit in 1988,^{[129]}^{[130]}^{[131]}^{[132]} John Moffat in 1992,^{[133]} and the twoman team of Andreas Albrecht and João Magueijo in 1998.^{[134]}^{[135]}^{[136]}^{[137]}^{[138]}^{[139]} Instead of superluminal expansion the speed of light was 60 orders of magnitude faster than its current value solving the horizon and homogeneity problems in the early universe.
String theory requires that, in addition to the three observable spatial dimensions, additional dimensions exist that are curled up or compactified (see also Kaluza–Klein theory). Extra dimensions appear as a frequent component of supergravity models and other approaches to quantum gravity. This raised the contingent question of why four spacetime dimensions became large and the rest became unobservably small. An attempt to address this question, called string gas cosmology, was proposed by Robert Brandenberger and Cumrun Vafa.^{[140]} This model focuses on the dynamics of the early universe considered as a hot gas of strings. Brandenberger and Vafa show that a dimension of spacetime can only expand if the strings that wind around it can efficiently annihilate each other. Each string is a onedimensional object, and the largest number of dimensions in which two strings will generically intersect (and, presumably, annihilate) is three. Therefore, the most likely number of noncompact (large) spatial dimensions is three. Current work on this model centers on whether it can succeed in stabilizing the size of the compactified dimensions and produce the correct spectrum of primordial density perturbations.^{[141]} Supporters admit that their model "does not solve the entropy and flatness problems of standard cosmology ..... and we can provide no explanation for why the current universe is so close to being spatially flat".^{[142]}
Since its introduction by Alan Guth in 1980, the inflationary paradigm has become widely accepted. Nevertheless, many physicists, mathematicians, and philosophers of science have voiced criticisms, claiming untestable predictions and a lack of serious empirical support.^{[4]} In 1999, John Earman and Jesús Mosterín published a thorough critical review of inflationary cosmology, concluding, "we do not think that there are, as yet, good grounds for admitting any of the models of inflation into the standard core of cosmology."^{[5]}
In order to work, and as pointed out by Roger Penrose from 1986 on, inflation requires extremely specific initial conditions of its own, so that the problem (or pseudoproblem) of initial conditions is not solved: "There is something fundamentally misconceived about trying to explain the uniformity of the early universe as resulting from a thermalization process. [...] For, if the thermalization is actually doing anything [...] then it represents a definite increasing of the entropy. Thus, the universe would have been even more special before the thermalization than after."^{[143]} The problem of specific or "finetuned" initial conditions would not have been solved; it would have gotten worse. At a conference in 2015, Penrose said that "inflation isn't falsifiable, it's falsified. [...] BICEP did a wonderful service by bringing all the Inflationists out of their shell, and giving them a black eye."^{[6]}
A recurrent criticism of inflation is that the invoked inflaton field does not correspond to any known physical field, and that its potential energy curve seems to be an ad hoc contrivance to accommodate almost any data obtainable. Paul Steinhardt, one of the founding fathers of inflationary cosmology, has recently become one of its sharpest critics. He calls 'bad inflation' a period of accelerated expansion whose outcome conflicts with observations, and 'good inflation' one compatible with them: "Not only is bad inflation more likely than good inflation, but no inflation is more likely than either [...] Roger Penrose considered all the possible configurations of the inflaton and gravitational fields. Some of these configurations lead to inflation [...] Other configurations lead to a uniform, flat universe directly – without inflation. Obtaining a flat universe is unlikely overall. Penrose's shocking conclusion, though, was that obtaining a flat universe without inflation is much more likely than with inflation – by a factor of 10 to the googol (10 to the 100) power!"^{[4]}^{[116]} Together with Anna Ijjas and Abraham Loeb, he wrote articles claiming that the inflationary paradigm is in trouble in view of the data from the Planck satellite.^{[144]}^{[145]} Counterarguments were presented by Alan Guth, David Kaiser, and Yasunori Nomura^{[146]} and by Andrei Linde,^{[147]} saying that "cosmic inflation is on a stronger footing than ever before".^{[146]}
In fact temperature anisotropies observed by the COBE satellite in 1992 exhibit nearly scaleinvariant spectra as predicted by the inflationary paradigm. Recent observations of WMAP also show strong evidence for inflation.
WMAP... confirms the basic tenets of the inflationary paradigm...
Not only is inflation very effective at driving down the number density of magnetic monopoles, it is also effective at driving down the number density of every other type of particle, including photons.^{:202–207}
The virtue of socalled Higgs inflation models is that they might explain inflation within the current Standard Model of particle physics, which successfully describes how most known particles and forces behave. Interest in the Higgs is running hot this summer because CERN, the lab in Geneva, Switzerland, that runs the LHC, has said it will announce highly anticipated findings regarding the particle in early July.
In the standard big bang inflationary model, the cosmic singularity problem is left unresolved and the cosmology is geodesically incomplete. Consequently, the origin of space and time and the peculiar, exponentially finetuned initial conditions required to begin inflation are not explained. In a recent series of papers, we have shown how to construct the complete set of homogeneous classical cosmological solutions of the standard model coupled to gravity, in which the cosmic singularity is replaced by a bounce: the smooth transition from contraction and big crunch to big bang and expansion.
BICEP (Background Imaging of Cosmic Extragalactic Polarization) and the Keck Array are a series of cosmic microwave background (CMB) experiments. They aim to measure the polarization of the CMB; in particular, measuring the Bmode of the CMB. The experiments have had five generations of instrumentation, consisting of BICEP1, BICEP2, the Keck Array, BICEP3, and the BICEP array. The Keck Array started observations in 2012 and BICEP3 has been operational since May 2016, with the BICEP Array being installed in 2017/18.
Cosmological interpretation of quantum mechanicsThe cosmological interpretation of quantum mechanics, proposed by Anthony Aguirre and Max Tegmark, is an interpretation of quantum mechanics that applies in the context of eternal inflation, which arguably predicts an infinite threedimensional space with infinitely many planets and infinitely many copies of any quantum system. According to this interpretation, the wavefunction for a quantum system describes not some imaginary ensemble of possibilities for what the system might be doing, but rather the actual spatial collection of identical copies of the system that exist in our infinite space. Its collapse can be avoided. Moreover, the quantum uncertainty that you experience simply reflects your inability to selflocate in space, i.e., to know which of your infinitely many copies throughout space is the one having your subjective perceptions.The cosmological interpretation is based on the mathematical theorem that when the same quantum experiment is performed in infinitely many places at once, the result is a quantum superposition of indistinguishable states for all of space, and in each of these states, the fraction of all places where a given outcome occurs equals that given by the Born rule. In this sense, quantum probabilities emerge from classical probabilities.
Cosmologist Alexander Vilenkin has expressed support for this interpretation:
"I think this is an important advance. They showed that the mathematics really works out. It kind of clears up the foundations of quantum mechanics."
CurvatonThe curvaton is a hypothetical elementary particle which mediates a scalar field in early universe cosmology. It can generate fluctuations during inflation, but does not itself drive inflation, instead it generates curvature perturbations at late times after the inflaton field has decayed and the decay products have redshifted away, when the curvaton is the dominant component of the energy density. It is used to generate a flat spectrum of CMB perturbations in models of inflation where the potential is otherwise too steep or in alternatives to inflation like the preBig Bang scenario.
The model was proposed almost simultaneously in 2001 by three independent groups: Kari Enqvist and Martin S. Sloth, David Wands and David H. Lyth, Takeo Moroi and Tomo Takahashi.
De Sitter universeA de Sitter universe is a cosmological solution to the Einstein field equations of general relativity, named after Willem de Sitter. It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are dominated by the cosmological constant, thought to correspond to dark energy in our universe or the inflaton field in the early universe. According to the models of inflation and current observations of the accelerating universe, the concordance models of physical cosmology are converging on a consistent model where our universe was best described as a de Sitter universe at about a time seconds after the fiducial Big Bang singularity, and far into the future.
Density contrastThe Density Contrast is a parameter used in galaxy formation to indicate where there are local enhancements in matter density.
It is believed that after inflation, although the universe was mostly uniform, some regions were slightly denser than others with contrast densities on the order of 1 trillionth. As the horizon distance expanded, the enclosed causally connected (i.e. gravitationally connected) masses increased until they reached the Jeans mass and began to collapse, which allowed galaxies, galaxy clusters, superclusters, and filaments to form.
In science, efolding is the time interval in which an exponentially growing quantity increases by a factor of e; it is the basee analog of doubling time. This term is often used in many areas of science, such as in atmospheric chemistry, medicine and theoretical physics, especially when cosmic inflation is investigated. Physicists and chemists often talk about the efolding time scale that is determined by the proper time in which the length of a patch of space or spacetime increases by the factor e mentioned above.
In finance the logarithmic return or continuously compounded return, also known as force of interest, is the reciprocal of the efolding time.
The term efolding time is also sometimes used similarly in the case of exponential decay, to refer to the timescale for a quantity to decrease to 1/e of its previous value.
The process of evolving to equilibrium is often characterized by a time scale called the efolding time, τ. This time is used for processes which evolve exponentially toward a final state (equilibrium). In other words if we examine an observable, X, associated with a system, (temperature or density for example) then after a time, τ, the initial difference between the initial value of the observable and the equilibrium value, ΔX_{i}, will have decreased to ΔX_{i}/e where the number e ~ 2.71828.
Eternal inflation
Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory.
According to eternal inflation, the inflationary phase of the universe's expansion lasts forever throughout most of the universe. Because the regions expand exponentially rapidly, most of the volume of the universe at any given time is inflating. Eternal inflation, therefore, produces a hypothetically infinite multiverse, in which only an insignificant fractal volume ends inflation.
Paul Steinhardt, one of the original architects of the inflationary model, introduced the first example of eternal inflation in 1983, and Alexander Vilenkin showed that it is generic.Alan Guth's 2007 paper, "Eternal inflation and its implications", states that under reasonable assumptions "Although inflation is generically eternal into the future, it is not eternal into the past." Guth detailed what was known about the subject at the time, and demonstrated that eternal inflation was still considered the likely outcome of inflation, more than 20 years after eternal inflation was first introduced by Steinhardt.
False vacuumIn quantum field theory, a false vacuum is a hypothetical vacuum that is somewhat, but not entirely, stable. It may last for a very long time in that state, and might eventually move to a more stable state. The most common suggestion of how such a change might happen is called bubble nucleation  if a small region of the universe by chance reached a more stable vacuum, this 'bubble' would spread.
A false vacuum may only exist at a local minimum of energy and is therefore not stable, in contrast to a true vacuum, which exists at a global minimum and is stable. A false vacuum may be very longlived, or metastable.
Graceful exit problem (cosmology)The graceful exit problem in cosmology was the need to explain how the universe slowed from its initial inflation to its later rate of expansion.
Cosmological Inflation was a brief period (in Big Bang model) of the primordial universe, during which the universe expanded at an accelerating rate. After inflation, which was dominated by either radiation or matter, the universe expanded at a decelerating rate. Thus inflation could not continue indefinitely. To overcome this problem, every proposed model of inflation must provide a condition of smooth exit to a normal FriedmanRobertsonWalker universe, so that the universe becomes similar to the present one.Even the case of ‘old inflation’, in Alan Guth's first paper proposing inflation, has some serious issues (some problems about reheating) to end and thus suffered the graceful exit problem. In 1982 the collaboration of Paul Steinhardt and Andreas Albrecht along with the independent effort of Andrei Linde, solved this problem.
Horizon problemThe horizon problem (also known as the homogeneity problem) is a cosmological finetuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regions of space in the absence of a mechanism that sets the same initial conditions everywhere. It was first pointed out by Wolfgang Rindler in 1956.The most commonly accepted solution is cosmic inflation. An explanation in terms of variable speed of light has also been proposed.
Inflationary epochIn physical cosmology the inflationary epoch was the period in the evolution of the early universe when, according to inflation theory, the universe underwent an extremely rapid exponential expansion. This rapid expansion increased the linear dimensions of the early universe by a factor of at least 1026 (and possibly a much larger factor), and so increased its volume by a factor of at least 1078. Expansion by a factor of 1026 is equivalent to expanding an object 1 nanometer (10−9 m, about half the width of a molecule of DNA) in length to one approximately 10.6 light years (about 62 trillion miles) long.
The expansion is thought to have been triggered by the phase transition that marked the end of the preceding grand unification epoch at approximately 10−36 seconds after the Big Bang. One of the theoretical products of this phase transition was a scalar field called the inflaton field. As this field settled into its lowest energy state throughout the universe, it generated a repulsive force that led to a rapid expansion of space. This expansion explains various properties of the current universe that are difficult to account for without such an inflationary epoch.
It is not known exactly when the inflationary epoch ended, but it is thought to have been between 10−33 and 10−32 seconds after the Big Bang. The rapid expansion of space meant that elementary particles remaining from the grand unification epoch were now distributed very thinly across the universe. However, the huge potential energy of the inflaton field was released at the end of the inflationary epoch, repopulating the universe with a dense, hot mixture of quarks, antiquarks and gluons as it entered the electroweak epoch.
On 17 March 2014, astrophysicists of the BICEP2 collaboration announced the detection of inflationary gravitational waves in the Bmode power spectrum, providing the first clear experimental evidence for cosmological inflation and the Big Bang. However, on 19 June 2014, lowered confidence in confirming the cosmic inflation findings was reported.A preprint released by the Planck team in September 2014, eventually accepted in 2016, provided the most accurate measurement yet of dust, concluding that the signal from dust is the same strength as that reported from BICEP2. On January 30, 2015, a joint analysis of BICEP2 and Planck data was published and the European Space Agency announced that the signal can be entirely attributed to dust in the Milky Way. In 2015, the BICEP2, Keck Array and Planck data was combined within a joint analysis; a March 2015 publication in Physical Review Letters set a limit on the tensortoscalar ratio of r < 0.12.
InflatonThe inflaton field is a hypothetical scalar field that is theorized to drive cosmic inflation in the very early universe.
The field, originally theorized by Alan Guth, provides a mechanism by which a period of rapid expansion from 10−35 to 10−34 seconds after the initial expansion can be generated, forming a universe consistent with observed spatial isotropy and homogeneity.
Marc KamionkowskiMarc Kamionkowski (born 1965) is an American theoretical physicist and currently the William R. Kenan, Jr. Professor of Physics and Astronomy at Johns Hopkins University. His research interests include particle physics, dark matter, inflation, the cosmic microwave background and gravitational waves.
Pocket universeA pocket universe is a concept in inflationary theory, proposed by Alan Guth. It defines a realm like the one that contains the observable universe as only one of many inflationary zones.Astrophysicist JeanLuc Lehners, of the Princeton Center for Theoretical Science, has argued that an inflationary universe does produce pockets. As he wrote in 2012, "Eternal inflation produces pocket universes with all physically allowed vacuum and histories. Some of these pocket universes might contain a phase of slowroll inflation, some might undergo cycles of cosmological evolution, and some might look like the Galilean genesis or other 'emergent' universe scenarios. Which one of these types of universe we are most likely to inhabit depends on the measure we choose in order to regulate the infinities inherent in eternal inflation."But, Lehners continues, "the current leading measure proposals—namely, the global lightcone cutoff and its local counterpart, the causal diamond measure—as well as closely related proposals, all predict that we should live in a pocket universe that starts out with a small Hubble rate, thus favoring emergent and cyclic models." Lehners adds, deadpan, "Pocket universes which undergo cycles are further preferred, because they produce habitable conditions repeatedly inside each pocket."
Primordial fluctuationsPrimordial fluctuations are density variations in the early universe which are considered the seeds of all structure in the universe. Currently, the most widely accepted explanation for their origin is in the context of cosmic inflation. According to the inflationary paradigm, the exponential growth of the scale factor during inflation caused quantum fluctuations of the inflaton field to be stretched to macroscopic scales, and, upon leaving the horizon, to "freeze in".
At the later stages of radiation and matterdomination, these fluctuations reentered the horizon, and thus set the initial conditions for structure formation.
The statistical properties of the primordial fluctuations can be inferred from observations of anisotropies in the cosmic microwave background and from measurements of the distribution of matter, e.g., galaxy redshift surveys. Since the fluctuations are believed to arise from inflation, such measurements can also set constraints on parameters within inflationary theory.
Quantum fluctuation
In quantum physics, a quantum fluctuation (or vacuum state fluctuation or vacuum fluctuation) is the temporary change in the amount of energy in a point in space, as explained in Werner Heisenberg's uncertainty principle.
This allows the creation of particleantiparticle pairs of virtual particles. The effects of these particles are measurable, for example, in the effective charge of the electron, different from its "naked" charge.
Quantum fluctuations may have been very important in the origin of the structure of the universe: according to the model of expansive inflation the ones that existed when inflation began were amplified and formed the seed of all current observed structure. Vacuum energy may also be responsible for the current accelerating expansion of the universe (cosmological constant).
According to one formulation of the uncertainty principle, energy and time can be related by the relation
In the modern view, energy is always conserved, but because the particle number operator does not commute with a field's Hamiltonian or energy operator, the field's lowestenergy or ground state, often called the vacuum state, is not, as one might expect from that name, a state with no particles, but rather a quantum superposition of particle number eigenstates with 0, 1, 2...etc. particles.
Topological defectA topological soliton occurs when two adjoining structures or spaces are in some way "out of phase" with each other in ways that make a seamless transition between them impossible. One of the simplest and most commonplace examples of a topological soliton occurs in oldfashioned coiled telephone handset cords, which are usually coiled clockwise. Years of picking up the handset can end up coiling parts of the cord in the opposite counterclockwise direction, and when this happens there will be a distinctive larger loop that separates the two directions of coiling. This odd looking transition loop, which is neither clockwise or counterclockwise, is an excellent example of a topological soliton. No matter how complex the context, anything that qualifies as a topological soliton must at some level exhibit this same simple issue of reconciliation seen in the twisted phone cord example.
Topological solitons arise with ease when creating the crystalline semiconductors used in modern electronics, and in that context their effects are almost always deleterious. For this reason such crystal transitions are called topological defects. However, this mostly solidstate terminology distracts from the rich and intriguing mathematical properties of such boundary regions. Thus for most nonsolidstate contexts the more positive and mathematically rich phrase "topological soliton" is preferable.
A more detailed discussion of topological solitons and related topics is provided below.
In mathematics and physics, a topological soliton or a topological defect is a solution of a system of partial differential equations or of a quantum field theory homotopically distinct from the vacuum solution.
TransPlanckian problemIn black hole physics and inflationary cosmology, the transPlanckian problem refers to the appearance of quantities beyond the Planck scale, which raise doubts on the physical validity of some results in these two areas, since one expects the physical laws to suffer radical modifications beyond the Planck scale.In black hole physics, the original derivation of Hawking radiation involved field modes that, near the black hole horizon, have arbitrarily high frequencies—in particular, higher than the inverse Planck time, although these do not appear in the final results. A number of different alternative derivations have been proposed in order to overcome this problem.
The transPlanckian problem can be conveniently considered in the framework of sonic black holes, condensed matter systems which can be described in a similar way as real black holes. In these systems, the analogue of the Planck scale is the interatomic scale, where the continuum description loses its validity. One can study whether in these systems the analogous process to Hawking radiation still occurs despite the shortscale cutoff represented by the interatomic distance.
The transPlanckian problem also appears in inflationary cosmology. The cosmological scales that we nowadays observe correspond to length scales smaller than the Planck length at the onset of inflation.
Warm inflationIn physical cosmology, warm inflation is one of two dynamical realizations of cosmological inflation. The other is the standard scenario, sometimes called cold inflation.In warm inflation radiation production occurs concurrently with inflationary expansion. This is consistent with the conditions necessary for inflation as given by the Friedmann equations of general relativity, which simply require that the vacuum energy density dominates the energy content of the universe at time of inflation, and so does not prohibit some radiation to be present. As such the most general picture of inflation would include a radiation energy density component. The presence of radiation during inflation implies the inflationary phase could smoothly end into a radiationdominated era without a distinctively separate reheating phase, thus providing a solution to the graceful exit problem of inflation.
This page is based on a Wikipedia article written by authors
(here).
Text is available under the CC BYSA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.