Infection

Infection is the invasion of an organism's body tissues by disease-causing agents, their multiplication, and the reaction of host tissues to the infectious agents and the toxins they produce.[1][2] Infectious disease, also known as transmissible disease or communicable disease, is illness resulting from an infection.

Infections are caused by infectious agents (pathogens) including:

Hosts can fight infections using their immune system. Mammalian hosts react to infections with an innate response, often involving inflammation, followed by an adaptive response.[3]

Specific medications used to treat infections include antibiotics, antivirals, antifungals, antiprotozoals, and antihelminthics. Infectious diseases resulted in 9.2 million deaths in 2013 (about 17% of all deaths).[4] The branch of medicine that focuses on infections is referred to as infectious disease.[5]

Infectious disease
Malaria
False-colored electron micrograph showing a malaria sporozoite migrating through the midgut epithelium of a rat
SpecialtyInfectious disease

Classification

Subclinical versus clinical (latent versus apparent)

Symptomatic infections are apparent and clinical, whereas an infection that is active but does not produce noticeable symptoms may be called inapparent, silent, subclinical, or occult. An infection that is inactive or dormant is called a latent infection.[6] An example of a latent bacterial infection is latent tuberculosis. Some viral infections can also be latent, examples of latent viral infections are any of those from the Herpesviridae family.

The word infection can denote any presence of a particular pathogen at all (no matter how little) but also is often used in a sense implying a clinically apparent infection (in other words, a case of infectious disease).[7] This fact occasionally creates some ambiguity or prompts some usage discussion. To get around the usage annoyance, it is common for health professionals to speak of colonization (rather than infection) when they mean that some of the pathogens are present but that no clinically apparent infection (no disease) is present.

A short-term infection is an acute infection. A long-term infection is a chronic infection. Infections can be further classified by causative agent (bacterial, viral, fungal, parasitic), and by the presence or absence of systemic symptoms (sepsis).

Primary versus opportunistic

Among the many varieties of microorganisms, relatively few cause disease in otherwise healthy individuals.[8] Infectious disease results from the interplay between those few pathogens and the defenses of the hosts they infect. The appearance and severity of disease resulting from any pathogen, depends upon the ability of that pathogen to damage the host as well as the ability of the host to resist the pathogen. However a host's immune system can also cause damage to the host itself in an attempt to control the infection. Clinicians therefore classify infectious microorganisms or microbes according to the status of host defenses - either as primary pathogens or as opportunistic pathogens:

Primary pathogens
Primary pathogens cause disease as a result of their presence or activity within the normal, healthy host, and their intrinsic virulence (the severity of the disease they cause) is, in part, a necessary consequence of their need to reproduce and spread. Many of the most common primary pathogens of humans only infect humans, however many serious diseases are caused by organisms acquired from the environment or that infect non-human hosts.
Opportunistic pathogens
Opportunistic pathogens can cause an infectious disease in a host with depressed resistance (immunodeficiency) or if they have unusual access to the inside of the body (for example, via trauma). Opportunistic infection may be caused by microbes ordinarily in contact with the host, such as pathogenic bacteria or fungi in the gastrointestinal or the upper respiratory tract, and they may also result from (otherwise innocuous) microbes acquired from other hosts (as in Clostridium difficile colitis) or from the environment as a result of traumatic introduction (as in surgical wound infections or compound fractures). An opportunistic disease requires impairment of host defenses, which may occur as a result of genetic defects (such as Chronic granulomatous disease), exposure to antimicrobial drugs or immunosuppressive chemicals (as might occur following poisoning or cancer chemotherapy), exposure to ionizing radiation, or as a result of an infectious disease with immunosuppressive activity (such as with measles, malaria or HIV disease). Primary pathogens may also cause more severe disease in a host with depressed resistance than would normally occur in an immunosufficient host.[9]
Primary infection versus secondary infection
A primary infection is infection that is, or can practically be viewed as, the root cause of the current health problem. In contrast, a secondary infection is a sequela or complication of a root cause. For example, pulmonary tuberculosis is often a primary infection, but an infection that happened only because a burn or penetrating trauma (the root cause) allowed unusual access to deep tissues is a secondary infection. Primary pathogens often cause primary infection and also often cause secondary infection. Usually opportunistic infections are viewed as secondary infections (because immunodeficiency or injury was the predisposing factor).

Infectious or not

One way of proving that a given disease is "infectious", is to satisfy Koch's postulates (first proposed by Robert Koch), which demands that the infectious agent be identified only in patients and not in healthy controls, and that patients who contract the agent also develop the disease. These postulates were first used in the discovery that Mycobacteria species cause tuberculosis. Koch's postulates cannot be applied ethically for many human diseases because they require experimental infection of a healthy individual with a pathogen produced as a pure culture. Often, even clearly infectious diseases do not meet the infectious criteria. For example, Treponema pallidum, the causative spirochete of syphilis, cannot be cultured in vitro – however the organism can be cultured in rabbit testes. It is less clear that a pure culture comes from an animal source serving as host than it is when derived from microbes derived from plate culture. Epidemiology is another important tool used to study disease in a population. For infectious diseases it helps to determine if a disease outbreak is sporadic (occasional occurrence), endemic (regular cases often occurring in a region), epidemic (an unusually high number of cases in a region), or pandemic (a global epidemic).

Contagiousness

Infectious diseases are sometimes called contagious disease when they are easily transmitted by contact with an ill person or their secretions (e.g., influenza). Thus, a contagious disease is a subset of infectious disease that is especially infective or easily transmitted. Other types of infectious, transmissible, or communicable diseases with more specialized routes of infection, such as vector transmission or sexual transmission, are usually not regarded as "contagious", and often do not require medical isolation (sometimes loosely called quarantine) of victims. However, this specialized connotation of the word "contagious" and "contagious disease" (easy transmissibility) is not always respected in popular use. Infectious diseases are commonly transmitted from person to person through direct contact. The types of contact are through person to person and droplet spread. Indirect contact such as airborne transmission, contaminated objects, food and drinking water, animal person contact, animal reservoirs, insect bites, and environmental reservoirs are another way infectious diseases are transmitted,[10]

By anatomic location

Infections can be classified by the anatomic location or organ system infected, including:

In addition, locations of inflammation where infection is the most common cause include pneumonia, meningitis and salpingitis.

Signs and symptoms

The symptoms of an infection depends on the type of disease. Some signs of infection affect the whole body generally, such as fatigue, loss of appetite, weight loss, fevers, night sweats, chills, aches and pains. Others are specific to individual body parts, such as skin rashes, coughing, or a runny nose.

In certain cases, infectious diseases may be asymptomatic for much or even all of their course in a given host. In the latter case, the disease may only be defined as a "disease" (which by definition means an illness) in hosts who secondarily become ill after contact with an asymptomatic carrier. An infection is not synonymous with an infectious disease, as some infections do not cause illness in a host.[9]

Bacterial or viral

Bacterial and viral infections can both cause the same kinds of symptoms. It can be difficult to distinguish which is the cause of a specific infection.[11] It's important to distinguish, because viral infections cannot be cured by antibiotics.[12]

Comparison of viral and bacterial infection
Characteristic Viral infection Bacterial infection
Typical symptoms In general, viral infections are systemic. This means they involve many different parts of the body or more than one body system at the same time; i.e. a runny nose, sinus congestion, cough, body aches etc. They can be local at times as in viral conjunctivitis or "pink eye" and herpes. Only a few viral infections are painful, like herpes. The pain of viral infections is often described as itchy or burning.[11] The classic symptoms of a bacterial infection are localized redness, heat, swelling and pain. One of the hallmarks of a bacterial infection is local pain, pain that is in a specific part of the body. For example, if a cut occurs and is infected with bacteria, pain occurs at the site of the infection. Bacterial throat pain is often characterized by more pain on one side of the throat. An ear infection is more likely to be diagnosed as bacterial if the pain occurs in only one ear.[11] A cut that produces pus and milky-colored liquid is most likely infected.[13]
Cause Pathogenic viruses Pathogenic bacteria

Pathophysiology

There is a general chain of events that applies to infections.[14] The chain of events involves several steps—which include the infectious agent, reservoir, entering a susceptible host, exit and transmission to new hosts. Each of the links must be present in a chronological order for an infection to develop. Understanding these steps helps health care workers target the infection and prevent it from occurring in the first place.[15]

Colonization

Dit del peu gros infectat
Infection of an ingrown toenail; there is pus (yellow) and resultant inflammation (redness and swelling around the nail).

Infection begins when an organism successfully enters the body, grows and multiplies. This is referred to as colonization. Most humans are not easily infected. Those who are weak, sick, malnourished, have cancer or are diabetic have increased susceptibility to chronic or persistent infections. Individuals who have a suppressed immune system are particularly susceptible to opportunistic infections. Entrance to the host at host-pathogen interface, generally occurs through the mucosa in orifices like the oral cavity, nose, eyes, genitalia, anus, or the microbe can enter through open wounds. While a few organisms can grow at the initial site of entry, many migrate and cause systemic infection in different organs. Some pathogens grow within the host cells (intracellular) whereas others grow freely in bodily fluids.

Wound colonization refers to nonreplicating microorganisms within the wound, while in infected wounds, replicating organisms exist and tissue is injured. All multicellular organisms are colonized to some degree by extrinsic organisms, and the vast majority of these exist in either a mutualistic or commensal relationship with the host. An example of the former is the anaerobic bacteria species, which colonizes the mammalian colon, and an example of the latter are the various species of staphylococcus that exist on human skin. Neither of these colonizations are considered infections. The difference between an infection and a colonization is often only a matter of circumstance. Non-pathogenic organisms can become pathogenic given specific conditions, and even the most virulent organism requires certain circumstances to cause a compromising infection. Some colonizing bacteria, such as Corynebacteria sp. and viridans streptococci, prevent the adhesion and colonization of pathogenic bacteria and thus have a symbiotic relationship with the host, preventing infection and speeding wound healing.

Pathogenic Infection
[16][17][18] This image depicts the steps of pathogenic infection.

The variables involved in the outcome of a host becoming inoculated by a pathogen and the ultimate outcome include:

  • the route of entry of the pathogen and the access to host regions that it gains
  • the intrinsic virulence of the particular organism
  • the quantity or load of the initial inoculant
  • the immune status of the host being colonized

As an example, several staphylococcal species remain harmless on the skin, but, when present in a normally sterile space, such as in the capsule of a joint or the peritoneum, multiply without resistance and cause harm.

An interesting fact that gas chromatography–mass spectrometry, 16S ribosomal RNA analysis, omics, and other advanced technologies have made more apparent to humans in recent decades is that microbial colonization is very common even in environments that humans think of as being nearly sterile. Because it is normal to have bacterial colonization, it is difficult to know which chronic wounds can be classified as infected and how much risk of progression exists. Despite the huge number of wounds seen in clinical practice, there are limited quality data for evaluated symptoms and signs. A review of chronic wounds in the Journal of the American Medical Association's "Rational Clinical Examination Series" quantified the importance of increased pain as an indicator of infection.[19] The review showed that the most useful finding is an increase in the level of pain [likelihood ratio (LR) range, 11–20] makes infection much more likely, but the absence of pain (negative likelihood ratio range, 0.64–0.88) does not rule out infection (summary LR 0.64–0.88).

Disease

Disease can arise if the host's protective immune mechanisms are compromised and the organism inflicts damage on the host. Microorganisms can cause tissue damage by releasing a variety of toxins or destructive enzymes. For example, Clostridium tetani releases a toxin that paralyzes muscles, and staphylococcus releases toxins that produce shock and sepsis. Not all infectious agents cause disease in all hosts. For example, less than 5% of individuals infected with polio develop disease.[20] On the other hand, some infectious agents are highly virulent. The prion causing mad cow disease and Creutzfeldt–Jakob disease invariably kills all animals and people that are infected.

Persistent infections occur because the body is unable to clear the organism after the initial infection. Persistent infections are characterized by the continual presence of the infectious organism, often as latent infection with occasional recurrent relapses of active infection. There are some viruses that can maintain a persistent infection by infecting different cells of the body. Some viruses once acquired never leave the body. A typical example is the herpes virus, which tends to hide in nerves and become reactivated when specific circumstances arise.

Persistent infections cause millions of deaths globally each year.[21] Chronic infections by parasites account for a high morbidity and mortality in many underdeveloped countries.

Transmission

CulexNil
A southern house mosquito (Culex quinquefasciatus) is a vector that transmits the pathogens that cause West Nile fever and avian malaria among others.

For infecting organisms to survive and repeat the infection cycle in other hosts, they (or their progeny) must leave an existing reservoir and cause infection elsewhere. Infection transmission can take place via many potential routes:

  • Droplet contact, also known as the respiratory route, and the resultant infection can be termed airborne disease. If an infected person coughs or sneezes on another person the microorganisms, suspended in warm, moist droplets, may enter the body through the nose, mouth or eye surfaces.
  • Fecal-oral transmission, wherein foodstuffs or water become contaminated (by people not washing their hands before preparing food, or untreated sewage being released into a drinking water supply) and the people who eat and drink them become infected. Common fecal-oral transmitted pathogens include Vibrio cholerae, Giardia species, rotaviruses, Entameba histolytica, Escherichia coli, and tape worms.[22] Most of these pathogens cause gastroenteritis.
  • Sexual transmission, with the resulting disease being called sexually transmitted disease
  • Oral transmission, Diseases that are transmitted primarily by oral means may be caught through direct oral contact such as kissing, or by indirect contact such as by sharing a drinking glass or a cigarette.
  • Transmission by direct contact, Some diseases that are transmissible by direct contact include athlete's foot, impetigo and warts
  • Vehicle transmission, transmission by an inanimate reservoir (food, water, soil).[23]
  • Vertical transmission, directly from the mother to an embryo, fetus or baby during pregnancy or childbirth. It can occur when the mother gets an infection as an intercurrent disease in pregnancy.
  • Iatrogenic transmission, due to medical procedures such as injection or transplantation of infected material.
  • Vector-borne transmission, transmitted by a vector, which is an organism that does not cause disease itself but that transmits infection by conveying pathogens from one host to another.[24]

The relationship between virulence versus transmissibility is complex; if a disease is rapidly fatal, the host may die before the microbe can be passed along to another host.

Diagnosis

Diagnosis of infectious disease sometimes involves identifying an infectious agent either directly or indirectly. In practice most minor infectious diseases such as warts, cutaneous abscesses, respiratory system infections and diarrheal diseases are diagnosed by their clinical presentation and treated without knowledge of the specific causative agent. Conclusions about the cause of the disease are based upon the likelihood that a patient came in contact with a particular agent, the presence of a microbe in a community, and other epidemiological considerations. Given sufficient effort, all known infectious agents can be specifically identified. The benefits of identification, however, are often greatly outweighed by the cost, as often there is no specific treatment, the cause is obvious, or the outcome of an infection is benign.

Diagnosis of infectious disease is nearly always initiated by medical history and physical examination. More detailed identification techniques involve the culture of infectious agents isolated from a patient. Culture allows identification of infectious organisms by examining their microscopic features, by detecting the presence of substances produced by pathogens, and by directly identifying an organism by its genotype. Other techniques (such as X-rays, CAT scans, PET scans or NMR) are used to produce images of internal abnormalities resulting from the growth of an infectious agent. The images are useful in detection of, for example, a bone abscess or a spongiform encephalopathy produced by a prion.

Symptomatic diagnostics

The diagnosis is aided by the presenting symptoms in any individual with an infectious disease, yet it usually needs additional diagnostic techniques to confirm the suspicion. Some signs are specifically characteristic and indicative of a disease and are called pathognomonic signs; but these are rare. Not all infections are symptomatic.[25]

In children the presence of cyanosis, rapid breathing, poor peripheral perfusion, or a petechial rash increases the risk of a serious infection by greater than 5 fold.[26] Other important indicators include parental concern, clinical instinct, and temperature greater than 40 °C.[26]

Microbial culture

K pneumoniae M morganii providencia styphimuriuma
Four nutrient agar plates growing colonies of common Gram negative bacteria.

Microbiological culture is a principal tool used to diagnose infectious disease. In a microbial culture, a growth medium is provided for a specific agent. A sample taken from potentially diseased tissue or fluid is then tested for the presence of an infectious agent able to grow within that medium. Most pathogenic bacteria are easily grown on nutrient agar, a form of solid medium that supplies carbohydrates and proteins necessary for growth of a bacterium, along with copious amounts of water. A single bacterium will grow into a visible mound on the surface of the plate called a colony, which may be separated from other colonies or melded together into a "lawn". The size, color, shape and form of a colony is characteristic of the bacterial species, its specific genetic makeup (its strain), and the environment that supports its growth. Other ingredients are often added to the plate to aid in identification. Plates may contain substances that permit the growth of some bacteria and not others, or that change color in response to certain bacteria and not others. Bacteriological plates such as these are commonly used in the clinical identification of infectious bacterium. Microbial culture may also be used in the identification of viruses: the medium in this case being cells grown in culture that the virus can infect, and then alter or kill. In the case of viral identification, a region of dead cells results from viral growth, and is called a "plaque". Eukaryotic parasites may also be grown in culture as a means of identifying a particular agent.

In the absence of suitable plate culture techniques, some microbes require culture within live animals. Bacteria such as Mycobacterium leprae and Treponema pallidum can be grown in animals, although serological and microscopic techniques make the use of live animals unnecessary. Viruses are also usually identified using alternatives to growth in culture or animals. Some viruses may be grown in embryonated eggs. Another useful identification method is Xenodiagnosis, or the use of a vector to support the growth of an infectious agent. Chagas disease is the most significant example, because it is difficult to directly demonstrate the presence of the causative agent, Trypanosoma cruzi in a patient, which therefore makes it difficult to definitively make a diagnosis. In this case, xenodiagnosis involves the use of the vector of the Chagas agent T. cruzi, an uninfected triatomine bug, which takes a blood meal from a person suspected of having been infected. The bug is later inspected for growth of T. cruzi within its gut.

Microscopy

Another principal tool in the diagnosis of infectious disease is microscopy. Virtually all of the culture techniques discussed above rely, at some point, on microscopic examination for definitive identification of the infectious agent. Microscopy may be carried out with simple instruments, such as the compound light microscope, or with instruments as complex as an electron microscope. Samples obtained from patients may be viewed directly under the light microscope, and can often rapidly lead to identification. Microscopy is often also used in conjunction with biochemical staining techniques, and can be made exquisitely specific when used in combination with antibody based techniques. For example, the use of antibodies made artificially fluorescent (fluorescently labeled antibodies) can be directed to bind to and identify a specific antigens present on a pathogen. A fluorescence microscope is then used to detect fluorescently labeled antibodies bound to internalized antigens within clinical samples or cultured cells. This technique is especially useful in the diagnosis of viral diseases, where the light microscope is incapable of identifying a virus directly.

Other microscopic procedures may also aid in identifying infectious agents. Almost all cells readily stain with a number of basic dyes due to the electrostatic attraction between negatively charged cellular molecules and the positive charge on the dye. A cell is normally transparent under a microscope, and using a stain increases the contrast of a cell with its background. Staining a cell with a dye such as Giemsa stain or crystal violet allows a microscopist to describe its size, shape, internal and external components and its associations with other cells. The response of bacteria to different staining procedures is used in the taxonomic classification of microbes as well. Two methods, the Gram stain and the acid-fast stain, are the standard approaches used to classify bacteria and to diagnosis of disease. The Gram stain identifies the bacterial groups Firmicutes and Actinobacteria, both of which contain many significant human pathogens. The acid-fast staining procedure identifies the Actinobacterial genera Mycobacterium and Nocardia.

Biochemical tests

Biochemical tests used in the identification of infectious agents include the detection of metabolic or enzymatic products characteristic of a particular infectious agent. Since bacteria ferment carbohydrates in patterns characteristic of their genus and species, the detection of fermentation products is commonly used in bacterial identification. Acids, alcohols and gases are usually detected in these tests when bacteria are grown in selective liquid or solid media.

The isolation of enzymes from infected tissue can also provide the basis of a biochemical diagnosis of an infectious disease. For example, humans can make neither RNA replicases nor reverse transcriptase, and the presence of these enzymes are characteristic of specific types of viral infections. The ability of the viral protein hemagglutinin to bind red blood cells together into a detectable matrix may also be characterized as a biochemical test for viral infection, although strictly speaking hemagglutinin is not an enzyme and has no metabolic function.

Serological methods are highly sensitive, specific and often extremely rapid tests used to identify microorganisms. These tests are based upon the ability of an antibody to bind specifically to an antigen. The antigen, usually a protein or carbohydrate made by an infectious agent, is bound by the antibody. This binding then sets off a chain of events that can be visibly obvious in various ways, dependent upon the test. For example, "Strep throat" is often diagnosed within minutes, and is based on the appearance of antigens made by the causative agent, S. pyogenes, that is retrieved from a patient's throat with a cotton swab. Serological tests, if available, are usually the preferred route of identification, however the tests are costly to develop and the reagents used in the test often require refrigeration. Some serological methods are extremely costly, although when commonly used, such as with the "strep test", they can be inexpensive.[9]

Complex serological techniques have been developed into what are known as Immunoassays. Immunoassays can use the basic antibody – antigen binding as the basis to produce an electro-magnetic or particle radiation signal, which can be detected by some form of instrumentation. Signal of unknowns can be compared to that of standards allowing quantitation of the target antigen. To aid in the diagnosis of infectious diseases, immunoassays can detect or measure antigens from either infectious agents or proteins generated by an infected organism in response to a foreign agent. For example, immunoassay A may detect the presence of a surface protein from a virus particle. Immunoassay B on the other hand may detect or measure antibodies produced by an organism's immune system that are made to neutralize and allow the destruction of the virus.

Instrumentation can be used to read extremely small signals created by secondary reactions linked to the antibody – antigen binding. Instrumentation can control sampling, reagent use, reaction times, signal detection, calculation of results, and data management to yield a cost effective automated process for diagnosis of infectious disease.

PCR-based diagnostics

Technologies based upon the polymerase chain reaction (PCR) method will become nearly ubiquitous gold standards of diagnostics of the near future, for several reasons. First, the catalog of infectious agents has grown to the point that virtually all of the significant infectious agents of the human population have been identified. Second, an infectious agent must grow within the human body to cause disease; essentially it must amplify its own nucleic acids in order to cause a disease. This amplification of nucleic acid in infected tissue offers an opportunity to detect the infectious agent by using PCR. Third, the essential tools for directing PCR, primers, are derived from the genomes of infectious agents, and with time those genomes will be known, if they are not already.

Thus, the technological ability to detect any infectious agent rapidly and specifically are currently available. The only remaining blockades to the use of PCR as a standard tool of diagnosis are in its cost and application, neither of which is insurmountable. The diagnosis of a few diseases will not benefit from the development of PCR methods, such as some of the clostridial diseases (tetanus and botulism). These diseases are fundamentally biological poisonings by relatively small numbers of infectious bacteria that produce extremely potent neurotoxins. A significant proliferation of the infectious agent does not occur, this limits the ability of PCR to detect the presence of any bacteria.

Metagenomic sequencing

Given the wide range of bacteria, viruses, and other pathogens that cause debilitating and life-threatening illness, the ability to quickly identify the cause of infection is important yet often challenging. For example, more than half of cases of encephalitis, a severe illness affecting the brain, remain undiagnosed, despite extensive testing using state-of-the-art clinical laboratory methods. Metagenomics is currently being researched for clinical use, and shows promise as a sensitive and rapid way to diagnose infection using a single all-encompassing test. This test is similar to current PCR tests; however, amplification of genetic material is unbiased rather than using primers for a specific infectious agent. This amplification step is followed by next-generation sequencing and alignment comparisons using large databases of thousands of organismic and viral genomes.

Metagenomic sequencing could prove especially useful for diagnosis when the patient is immunocompromised. An ever-wider array of infectious agents can cause serious harm to individuals with immunosuppression, so clinical screening must often be broader. Additionally, the expression of symptoms is often atypical, making clinical diagnosis based on presentation more difficult. Thirdly, diagnostic methods that rely on the detection of antibodies are more likely to fail. A broad, sensitive test for pathogens that detects the presence of infectious material rather than antibodies is therefore highly desirable.

Indication of tests

There is usually an indication for a specific identification of an infectious agent only when such identification can aid in the treatment or prevention of the disease, or to advance knowledge of the course of an illness prior to the development of effective therapeutic or preventative measures. For example, in the early 1980s, prior to the appearance of AZT for the treatment of AIDS, the course of the disease was closely followed by monitoring the composition of patient blood samples, even though the outcome would not offer the patient any further treatment options. In part, these studies on the appearance of HIV in specific communities permitted the advancement of hypotheses as to the route of transmission of the virus. By understanding how the disease was transmitted, resources could be targeted to the communities at greatest risk in campaigns aimed at reducing the number of new infections. The specific serological diagnostic identification, and later genotypic or molecular identification, of HIV also enabled the development of hypotheses as to the temporal and geographical origins of the virus, as well as a myriad of other hypothesis.[9] The development of molecular diagnostic tools have enabled physicians and researchers to monitor the efficacy of treatment with anti-retroviral drugs. Molecular diagnostics are now commonly used to identify HIV in healthy people long before the onset of illness and have been used to demonstrate the existence of people who are genetically resistant to HIV infection. Thus, while there still is no cure for AIDS, there is great therapeutic and predictive benefit to identifying the virus and monitoring the virus levels within the blood of infected individuals, both for the patient and for the community at large.

Prevention

OCD handwash
Washing one's hands, a form of hygiene, is an effective way to prevent the spread of infectious disease.[27]

Techniques like hand washing, wearing gowns, and wearing face masks can help prevent infections from being passed from one person to another. Aseptic technique was introduced in medicine and surgery in the late 19th century and greatly reduced the incidence of infections caused by surgery. Frequent hand washing remains the most important defense against the spread of unwanted organisms.[28] There are other forms of prevention such as avoiding the use of illicit drugs, using a condom, wearing gloves, and having a healthy lifestyle with a balanced diet and regular exercise. Cooking foods well and avoiding foods that have been left outside for a long time is also important.

Antimicrobial substances used to prevent transmission of infections include:

  • antiseptics, which are applied to living tissue/skin
  • disinfectants, which destroy microorganisms found on non-living objects.
  • antibiotics, called prophylactic when given as prevention rather as treatment of infection. However, long term use of antibiotics leads to resistance of bacteria. While humans do not become immune to antibiotics, the bacteria does. Thus, avoiding using antibiotics longer than necessary helps preventing bacteria from forming mutations that aide in antibiotic resistance.

One of the ways to prevent or slow down the transmission of infectious diseases is to recognize the different characteristics of various diseases.[29] Some critical disease characteristics that should be evaluated include virulence, distance traveled by victims, and level of contagiousness. The human strains of Ebola virus, for example, incapacitate their victims extremely quickly and kill them soon after. As a result, the victims of this disease do not have the opportunity to travel very far from the initial infection zone.[30] Also, this virus must spread through skin lesions or permeable membranes such as the eye. Thus, the initial stage of Ebola is not very contagious since its victims experience only internal hemorrhaging. As a result of the above features, the spread of Ebola is very rapid and usually stays within a relatively confined geographical area. In contrast, the Human Immunodeficiency Virus (HIV) kills its victims very slowly by attacking their immune system.[9] As a result, many of its victims transmit the virus to other individuals before even realizing that they are carrying the disease. Also, the relatively low virulence allows its victims to travel long distances, increasing the likelihood of an epidemic.

Another effective way to decrease the transmission rate of infectious diseases is to recognize the effects of small-world networks.[29] In epidemics, there are often extensive interactions within hubs or groups of infected individuals and other interactions within discrete hubs of susceptible individuals. Despite the low interaction between discrete hubs, the disease can jump to and spread in a susceptible hub via a single or few interactions with an infected hub. Thus, infection rates in small-world networks can be reduced somewhat if interactions between individuals within infected hubs are eliminated (Figure 1). However, infection rates can be drastically reduced if the main focus is on the prevention of transmission jumps between hubs. The use of needle exchange programs in areas with a high density of drug users with HIV is an example of the successful implementation of this treatment method. [6] Another example is the use of ring culling or vaccination of potentially susceptible livestock in adjacent farms to prevent the spread of the foot-and-mouth virus in 2001.[31]

A general method to prevent transmission of vector-borne pathogens is pest control.

Immunity

Mallon-Mary 01
Mary Mallon (a.k.a. Typhoid Mary) was an asymptomatic carrier of typhoid fever. Over the course of her career as a cook, she infected 53 people, three of whom died.

Infection with most pathogens does not result in death of the host and the offending organism is ultimately cleared after the symptoms of the disease have waned.[8] This process requires immune mechanisms to kill or inactivate the inoculum of the pathogen. Specific acquired immunity against infectious diseases may be mediated by antibodies and/or T lymphocytes. Immunity mediated by these two factors may be manifested by:

  • a direct effect upon a pathogen, such as antibody-initiated complement-dependent bacteriolysis, opsonoization, phagocytosis and killing, as occurs for some bacteria,
  • neutralization of viruses so that these organisms cannot enter cells,
  • or by T lymphocytes, which will kill a cell parasitized by a microorganism.

The immune system response to a microorganism often causes symptoms such as a high fever and inflammation, and has the potential to be more devastating than direct damage caused by a microbe.[9]

Resistance to infection (immunity) may be acquired following a disease, by asymptomatic carriage of the pathogen, by harboring an organism with a similar structure (crossreacting), or by vaccination. Knowledge of the protective antigens and specific acquired host immune factors is more complete for primary pathogens than for opportunistic pathogens. There is also the phenomenon of herd immunity which offers a measure of protection to those otherwise vulnerable people when a large enough proportion of the population has acquired immunity from certain infections.

Immune resistance to an infectious disease requires a critical level of either antigen-specific antibodies and/or T cells when the host encounters the pathogen. Some individuals develop natural serum antibodies to the surface polysaccharides of some agents although they have had little or no contact with the agent, these natural antibodies confer specific protection to adults and are passively transmitted to newborns.

Host genetic factors

The organism that is the target of an infecting action of a specific infectious agent is called the host. The host harbouring an agent that is in a mature or sexually active stage phase is called the definitive host. The intermediate host comes in contact during the larvae stage. A host can be anything living and can attain to asexual and sexual reproduction.[32] The clearance of the pathogens, either treatment-induced or spontaneous, it can be influenced by the genetic variants carried by the individual patients. For instance, for genotype 1 hepatitis C treated with Pegylated interferon-alpha-2a or Pegylated interferon-alpha-2b (brand names Pegasys or PEG-Intron) combined with ribavirin, it has been shown that genetic polymorphisms near the human IL28B gene, encoding interferon lambda 3, are associated with significant differences in the treatment-induced clearance of the virus. This finding, originally reported in Nature,[33] showed that genotype 1 hepatitis C patients carrying certain genetic variant alleles near the IL28B gene are more possibly to achieve sustained virological response after the treatment than others. Later report from Nature[34] demonstrated that the same genetic variants are also associated with the natural clearance of the genotype 1 hepatitis C virus.

Treatments

When infection attacks the body, anti-infective drugs can suppress the infection. Several broad types of anti-infective drugs exist, depending on the type of organism targeted; they include antibacterial (antibiotic; including antitubercular), antiviral, antifungal and antiparasitic (including antiprotozoal and antihelminthic) agents. Depending on the severity and the type of infection, the antibiotic may be given by mouth or by injection, or may be applied topically. Severe infections of the brain are usually treated with intravenous antibiotics. Sometimes, multiple antibiotics are used in case there is resistance to one antibiotic. Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin, cephalosporins, aminoglycosides, macrolides, quinolones and tetracyclines.

Not all infections require treatment, and for many self-limiting infections the treatment may cause more side-effects than benefits. Antimicrobial stewardship is the concept that healthcare providers should treat an infection with an antimicrobial that specifically works well for the target pathogen for the shortest amount of time and to only treat when there is a known or highly suspected pathogen that will respond to the medication.[35]

Epidemiology

Infectious and parasitic diseases world map-Deaths per million persons-WHO2012
Deaths due to infectious and parasitic diseases per million persons in 2012
  28-81
  82-114
  115-171
  172-212
  213-283
  284-516
  517-1,193
  1,194-2,476
  2,477-3,954
  3,955-6812
Infectious and parasitic diseases world map - DALY - WHO2004
Disability-adjusted life year for infectious and parasitic diseases per 100,000 inhabitants in 2004.[36]
  no data
  ≤250
  250–500
  500–1000
  1000–2000
  2000–3000
  3000–4000
  4000–5000
  5000–6250
  6250–12,500
  12,500–25,000
  25,000–50,000
  ≥50,000

In 2010, about 10 million people died of infectious diseases.[37]

The World Health Organization collects information on global deaths by International Classification of Disease (ICD) code categories. The following table lists the top infectious disease by number of deaths in 2002. 1993 data is included for comparison.

Worldwide mortality due to infectious diseases[38][39]
Rank Cause of death Deaths 2002
(in millions)
Percentage of
all deaths
Deaths 1993
(in millions)
1993 Rank
N/A All infectious diseases 14.7 25.9% 16.4 32.2%
1 Lower respiratory infections[40] 3.9 6.9% 4.1 1
2 HIV/AIDS 2.8 4.9% 0.7 7
3 Diarrheal diseases[41] 1.8 3.2% 3.0 2
4 Tuberculosis (TB) 1.6 2.7% 2.7 3
5 Malaria 1.3 2.2% 2.0 4
6 Measles 0.6 1.1% 1.1 5
7 Pertussis 0.29 0.5% 0.36 7
8 Tetanus 0.21 0.4% 0.15 12
9 Meningitis 0.17 0.3% 0.25 8
10 Syphilis 0.16 0.3% 0.19 11
11 Hepatitis B 0.10 0.2% 0.93 6
12-17 Tropical diseases (6)[42] 0.13 0.2% 0.53 9, 10, 16–18
Note: Other causes of death include maternal and perinatal conditions (5.2%), nutritional deficiencies (0.9%),
noncommunicable conditions (58.8%), and injuries (9.1%).

The top three single agent/disease killers are HIV/AIDS, TB and malaria. While the number of deaths due to nearly every disease have decreased, deaths due to HIV/AIDS have increased fourfold. Childhood diseases include pertussis, poliomyelitis, diphtheria, measles and tetanus. Children also make up a large percentage of lower respiratory and diarrheal deaths. In 2012, approximately 3.1 million people have died due to lower respiratory infections, making it the number 4 leading cause of death in the world.[43]

Historic pandemics

Marseille-peste-Serre
Great Plague of Marseille in 1720 killed 100,000 people in the city and the surrounding provinces

A pandemic (or global epidemic) is a disease that affects people over an extensive geographical area.

  • Plague of Justinian, from 541 to 542, killed between 50% and 60% of Europe's population.[44]
  • The Black Death of 1347 to 1352 killed 25 million in Europe over 5 years. The plague reduced the old world population from an estimated 450 million to between 350 and 375 million in the 14th century.
  • The introduction of smallpox, measles, and typhus to the areas of Central and South America by European explorers during the 15th and 16th centuries caused pandemics among the native inhabitants. Between 1518 and 1568 disease pandemics are said to have caused the population of Mexico to fall from 20 million to 3 million.[45]
  • The first European influenza epidemic occurred between 1556 and 1560, with an estimated mortality rate of 20%.[45]
  • Smallpox killed an estimated 60 million Europeans during the 18th century[46] (approximately 400,000 per year).[47] Up to 30% of those infected, including 80% of the children under 5 years of age, died from the disease, and one-third of the survivors went blind.[48]
  • In the 19th century, tuberculosis killed an estimated one-quarter of the adult population of Europe;[49] by 1918 one in six deaths in France were still caused by TB.
  • The Influenza Pandemic of 1918 (or the Spanish flu) killed 25–50 million people (about 2% of world population of 1.7 billion).[50] Today Influenza kills about 250,000 to 500,000 worldwide each year.

Emerging diseases

In most cases, microorganisms live in harmony with their hosts via mutual or commensal interactions. Diseases can emerge when existing parasites become pathogenic or when new pathogenic parasites enter a new host.

  1. Coevolution between parasite and host can lead to hosts becoming resistant to the parasites or the parasites may evolve greater virulence, leading to immunopathological disease.
  2. Human activity is involved with many emerging infectious diseases, such as environmental change enabling a parasite to occupy new niches. When that happens, a pathogen that had been confined to a remote habitat has a wider distribution and possibly a new host organism. Parasites jumping from nonhuman to human hosts are known as zoonoses. Under disease invasion, when a parasite invades a new host species, it may become pathogenic in the new host.[51]

Several human activities have led to the emergence of zoonotic human pathogens, including viruses, bacteria, protozoa, and rickettsia,[52] and spread of vector-borne diseases,[51] see also globalization and disease and wildlife disease:

  • Encroachment on wildlife habitats. The construction of new villages and housing developments in rural areas force animals to live in dense populations, creating opportunities for microbes to mutate and emerge.[53]
  • Changes in agriculture. The introduction of new crops attracts new crop pests and the microbes they carry to farming communities, exposing people to unfamiliar diseases.
  • The destruction of rain forests. As countries make use of their rain forests, by building roads through forests and clearing areas for settlement or commercial ventures, people encounter insects and other animals harboring previously unknown microorganisms.
  • Uncontrolled urbanization. The rapid growth of cities in many developing countries tends to concentrate large numbers of people into crowded areas with poor sanitation. These conditions foster transmission of contagious diseases.
  • Modern transport. Ships and other cargo carriers often harbor unintended "passengers", that can spread diseases to faraway destinations. While with international jet-airplane travel, people infected with a disease can carry it to distant lands, or home to their families, before their first symptoms appear.

History

Stamps of Germany (DDR) 1980, MiNr Zusammendruck 2534-2537
East German postage stamps depicting four antique microscopes. Advancements in microscopy were essential to the early study of infectious diseases.

Ideas of contagion became more popular in Europe during the Renaissance, particularly through the writing of the Italian physician Girolamo Fracastoro.[54]

Anton van Leeuwenhoek (1632–1723) advanced the science of microscopy by being the first to observe microorganisms, allowing for easy visualization of bacteria.

In the mid-19th century John Snow and William Budd did important work demonstrating the contagiousness of typhoid and cholera through contaminated water. Both are credited with decreasing epidemics of cholera in their towns by implementing measures to prevent contamination of water.[55]

Louis Pasteur proved beyond doubt that certain diseases are caused by infectious agents, and developed a vaccine for rabies.

Robert Koch, provided the study of infectious diseases with a scientific basis known as Koch's postulates.

Edward Jenner, Jonas Salk and Albert Sabin developed effective vaccines for smallpox and polio, which would later result in the eradication and near-eradication of these diseases, respectively.

Alexander Fleming discovered the world's first antibiotic, Penicillin, which Florey and Chain then developed.

Gerhard Domagk developed sulphonamides, the first broad spectrum synthetic antibacterial drugs.

Medical specialists

The medical treatment of infectious diseases falls into the medical field of Infectious Disease and in some cases the study of propagation pertains to the field of Epidemiology. Generally, infections are initially diagnosed by primary care physicians or internal medicine specialists. For example, an "uncomplicated" pneumonia will generally be treated by the internist or the pulmonologist (lung physician). The work of the infectious diseases specialist therefore entails working with both patients and general practitioners, as well as laboratory scientists, immunologists, bacteriologists and other specialists.

An infectious disease team may be alerted when:

Society and culture

A number of studies have reported associations between pathogen load in an area and human behavior. Higher pathogen load is associated with decreased size of ethnic and religious groups in an area. This may be due high pathogen load favoring avoidance of other groups, which may reduce pathogen transmission, or a high pathogen load preventing the creation of large settlements and armies that enforce a common culture. Higher pathogen load is also associated with more restricted sexual behavior, which may reduce pathogen transmission. It also associated with higher preferences for health and attractiveness in mates. Higher fertility rates and shorter or less parental care per child is another association that may be a compensation for the higher mortality rate. There is also an association with polygyny which may be due to higher pathogen load, making selecting males with a high genetic resistance increasingly important. Higher pathogen load is also associated with more collectivism and less individualism, which may limit contacts with outside groups and infections. There are alternative explanations for at least some of the associations although some of these explanations may in turn ultimately be due to pathogen load. Thus, polygny may also be due to a lower male:female ratio in these areas but this may ultimately be due to male infants having increased mortality from infectious diseases. Another example is that poor socioeconomic factors may ultimately in part be due to high pathogen load preventing economic development.[56]

Fossil record

Evidence of infection in fossil remains is a subject of interest for paleopathologists, scientists who study occurrences of injuries and illness in extinct life forms. Signs of infection have been discovered in the bones of carnivorous dinosaurs. When present, however, these infections seem to tend to be confined to only small regions of the body. A skull attributed to the early carnivorous dinosaur Herrerasaurus ischigualastensis exhibits pit-like wounds surrounded by swollen and porous bone. The unusual texture of the bone around the wounds suggests they were afflicted by a short-lived, non-lethal infection. Scientists who studied the skull speculated that the bite marks were received in a fight with another Herrerasaurus. Other carnivorous dinosaurs with documented evidence of infection include Acrocanthosaurus, Allosaurus, Tyrannosaurus and a tyrannosaur from the Kirtland Formation. The infections from both tyrannosaurs were received by being bitten during a fight, like the Herrerasaurus specimen.[57]

Outer space

A 2006 Space Shuttle experiment found that Salmonella typhimurium, a bacterium that can cause food poisoning, became more virulent when cultivated in space.[58] On April 29, 2013, scientists in Rensselaer Polytechnic Institute, funded by NASA, reported that, during spaceflight on the International Space Station, microbes seem to adapt to the space environment in ways "not observed on Earth" and in ways that "can lead to increases in growth and virulence".[59] More recently, in 2017, bacteria were found to be more resistant to antibiotics and to thrive in the near-weightlessness of space.[60] Microorganisms have been observed to survive the vacuum of outer space.[61][62]

See also

Notes and references

  1. ^ Definition of "infection" from several medical dictionaries – Retrieved on 2012-04-03
  2. ^ "Utilizing antibiotics agents effectively will preserve present day medication". News Ghana. 21 November 2015. Retrieved 21 November 2015.
  3. ^ Alberto Signore (2013). "About inflammation and infection" (PDF). EJNMMI Research. 8 (3).
  4. ^ GBD 2013 Mortality and Causes of Death, Collaborators (17 December 2014). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 385 (9963): 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442.
  5. ^ "Infectious Disease, Internal Medicine". Association of American Medical Colleges. Archived from the original on 2015-02-06. Retrieved 2015-08-20. Infectious disease is the subspecialty of internal medicine dealing with the diagnosis and treatment of communicable diseases of all types, in all organs, and in all ages of patients.
  6. ^ Kayser, Fritz H; Kurt A Bienz; Johannes Eckert; Rolf M Zinkernagel (2005). Medical microbiology. Stuttgart: Georg Thieme Verlag. p. 398. ISBN 978-3-13-131991-3.
  7. ^ Elsevier, Dorland's Illustrated Medical Dictionary, Elsevier.
  8. ^ a b This section incorporates public domain materials included in the text: Medical Microbiology Fourth Edition: Chapter 8 (1996). Baron, Samuel MD. The University of Texas Medical Branch at Galveston. Medical Microbiology. University of Texas Medical Branch at Galveston. 1996. ISBN 9780963117212. Archived from the original on June 29, 2009. Retrieved 2013-11-27.CS1 maint: BOT: original-url status unknown (link)
  9. ^ a b c d e f Ryan KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 978-0-8385-8529-0.
  10. ^ (Higurea & Pietrangelo 2016).
  11. ^ a b c "Bacterial vs. Viral Infections – Do You Know the Difference?" National Information Program on Antibiotics
  12. ^ Robert N. Golden; Fred Peterson (2009). The Truth About Illness and Disease. Infobase Publishing, 2009. p. 181. ISBN 978-1438126371.
  13. ^ "Infection". Rencare. Archived from the original on March 5, 2012. Retrieved 4 July 2013.
  14. ^ Infection Cycle – Retrieved on 2010-01-21 Archived May 17, 2014, at the Wayback Machine
  15. ^ Understanding Infectious Diseases Archived 2009-09-24 at the Wayback Machine Science.Education.Nih.Gov article – Retrieved on 2010-01-21
  16. ^ Duerkop, Breck A; Hooper, Lora V (2013-07-01). "Resident viruses and their interactions with the immune system". Nature Immunology. 14 (7): 654–59. doi:10.1038/ni.2614. PMC 3760236. PMID 23778792.
  17. ^ "Bacterial Pathogenesis at Washington University". StudyBlue. St. Louis. Retrieved 2016-12-02.
  18. ^ "Print Friendly". www.lifeextension.com. Retrieved 2016-12-02.
  19. ^ Reddy M, Gill SS, Wu W, et al. (Feb 2012). "Does this patient have an infection of a chronic wound?". JAMA. 307 (6): 605–11. doi:10.1001/jama.2012.98. PMID 22318282.
  20. ^ http://www.immunize.org/catg.d/p4215.pdf
  21. ^ Chronic Infection Information Retrieved on 2010-01-14 Archived July 22, 2015, at the Wayback Machine
  22. ^ Intestinal Parasites and Infection fungusfocus.com – Retrieved on 2010-01-21
  23. ^ "Clinical Infectious Disease – Introduction". www.microbiologybook.org. Retrieved 2017-04-19.
  24. ^ Pathogens and vectors. MetaPathogen.com.
  25. ^ Ljubin-Sternak, Suncanica; Mestrovic, Tomislav (2014). "Review: Clamydia trachonmatis and Genital Mycoplasmias: Pathogens with an Impact on Human Reproductive Health". Journal of Pathogens. 2014 (183167): 3. doi:10.1155/2014/183167. PMC 4295611. PMID 25614838.
  26. ^ a b Van den Bruel A, Haj-Hassan T, Thompson M, Buntinx F, Mant D (March 2010). "Diagnostic value of clinical features at presentation to identify serious infection in children in developed countries: a systematic review". Lancet. 375 (9717): 834–45. doi:10.1016/S0140-6736(09)62000-6. PMID 20132979.
  27. ^ Bloomfield SF, Aiello AE, Cookson B, O'Boyle C, Larson EL (2007). "The effectiveness of hand hygiene procedures including hand-washing and alcohol-based hand sanitizers in reducing the risks of infections in home and community settings". American Journal of Infection Control. 35 (10): S27–S64. doi:10.1016/j.ajic.2007.07.001.
  28. ^ ""Generalized Infectious Cycle" Diagram Illustration". science.education.nih.gov. Archived from the original on 2009-09-24. Retrieved 2010-01-21.
  29. ^ a b Watts, Duncan (2003). Six degrees: the science of a connected age. London: William Heinemann. ISBN 978-0-393-04142-2.
  30. ^ Preston, Richard (1995). The hot zone. Garden City, N.Y.: Anchor Books. ISBN 978-0-385-49522-6.
  31. ^ Ferguson NM, Donnelly CA, Anderson RM (May 2001). "The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions". Science. 292 (5519): 1155–60. Bibcode:2001Sci...292.1155F. doi:10.1126/science.1061020. PMID 11303090.
  32. ^ Barreto ML, Teixeira MG, Carmo EH (2006). "Infectious diseases epidemiology". Journal of Epidemiology and Community Health. 60 (3): 192–95. doi:10.1136/jech.2003.011593. PMC 2465549. PMID 16476746.
  33. ^ Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB (2009). "Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance". Nature. 461 (7262): 399–401. Bibcode:2009Natur.461..399G. doi:10.1038/nature08309. PMID 19684573.
  34. ^ Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O'Huigin C, Kidd J, Kidd K, Khakoo SI, Alexander G, Goedert JJ, Kirk GD, Donfield SM, Rosen HR, Tobler LH, Busch MP, McHutchison JG, Goldstein DB, Carrington M (2009). "Genetic variation in IL28B and spontaneous clearance of hepatitis C virus". Nature. 461 (7265): 798–801. Bibcode:2009Natur.461..798T. doi:10.1038/nature08463. PMC 3172006. PMID 19759533.
  35. ^ O'Brien, Deirdre J.; Gould, Ian M. (August 2013). "Maximizing the impact of antimicrobial stewardship". Current Opinion in Infectious Diseases. 26 (4): 352–58. doi:10.1097/QCO.0b013e3283631046. PMID 23806898.
  36. ^ World Health Organization (February 2009). "Age-standardized DALYs per 100,000 by cause, and Member State, 2004".
  37. ^ "Could Ebola rank among the deadliest communicable diseases?". CBC News. 20 October 2014.
  38. ^ "The World Health Report (Annex Table 2)" (PDF). 2004.
  39. ^ "Table 5" (PDF). 1995.
  40. ^ Lower respiratory infections include various pneumonias, influenzas and acute bronchitis.
  41. ^ Diarrheal diseases are caused by many different organisms, including cholera, botulism, and E. coli to name a few. See also: Intestinal infectious diseases
  42. ^ Tropical diseases include Chagas disease, dengue fever, lymphatic filariasis, leishmaniasis, onchocerciasis, schistosomiasis and trypanosomiasis.
  43. ^ "WHO | The top 10 causes of death". WHO. Retrieved 2015-09-24.
  44. ^ "Infectious and Epidemic Disease in History" Archived July 12, 2012, at Archive.today
  45. ^ a b Dobson AP, Carter ER (1996). "Infectious Diseases and Human Population History" (PDF). BioScience. 46 (2): 115–26. doi:10.2307/1312814. JSTOR 1312814.
  46. ^ "Smallpox". North Carolina Digital History.
  47. ^ Smallpox and Vaccinia. National Center for Biotechnology Information. Archived June 1, 2009, at the Wayback Machine
  48. ^ Barquet, Nicolau (15 October 1997). "Smallpox: The Triumph over the Most Terrible of the Ministers of Death". Annals of Internal Medicine. 127 (8_Part_1): 635. doi:10.7326/0003-4819-127-8_Part_1-199710150-00010.
  49. ^ Multidrug-Resistant "Tuberculosis". Centers for Disease Control and Prevention. Archived March 9, 2010, at the Wayback Machine
  50. ^ "Influenza of 1918 (Spanish Flu) and the US Navy". web.archive.org. 20 February 2006.
  51. ^ a b Krauss H, Weber A, Appel M (2003). Zoonoses: Infectious Diseases Transmissible from Animals to Humans (3rd ed.). Washington, D.C.: ASM Press. ISBN 978-1-55581-236-2.
  52. ^ Potter P (July 2013). "Summer buzz". Emerg Infect Dis. 19 (3): 1184. doi:10.3201/eid1907.AC1907. PMC 3903457.
  53. ^ Peter Daszak; Andrew A. Cunningham; Alex D. Hyatt (27 January 2000). "Emerging Infectious Diseases of Wildlife—Threats to Biodiversity and Human Health". Science. 287 (5452): 443–49. Bibcode:2000Sci...287..443D. doi:10.1126/science.287.5452.443. PMID 10642539.
  54. ^ Beretta M (2003). "The revival of Lucretian atomism and contagious diseases during the renaissance". Medicina Nei Secoli. 15 (2): 129–54. PMID 15309812.
  55. ^ Moorhead Robert (November 2002). "William Budd and typhoid fever". J R Soc Med. 95 (11): 561–64. doi:10.1258/jrsm.95.11.561. PMC 1279260. PMID 12411628.
  56. ^ Nettle D (2009). "Ecological influences on human behavioural diversity: a review of recent findings". Trends Ecol. Evol. 24 (11): 618–24. doi:10.1016/j.tree.2009.05.013. PMID 19683831.
  57. ^ Molnar, R. E., 2001, "Theropod paleopathology: a literature survey": In: Mesozoic Vertebrate Life, edited by Tanke, D. H., and Carpenter, K., Indiana University Press, pp. 337–63.
  58. ^ Caspermeyer, Joe (23 September 2007). "Space flight shown to alter ability of bacteria to cause disease". Arizona State University. Retrieved 14 September 2017.
  59. ^ Kim W, et al. (April 29, 2013). "Spaceflight Promotes Biofilm Formation by Pseudomonas aeruginosa". PLOS One. 8 (4): e6237. Bibcode:2013PLoSO...862437K. doi:10.1371/journal.pone.0062437. PMC 3639165. PMID 23658630.
  60. ^ Dvorsky, George (13 September 2017). "Alarming Study Indicates Why Certain Bacteria Are More Resistant to Drugs in Space". Gizmodo. Retrieved 14 September 2017.
  61. ^ Dose, K.; Bieger-Dose, A.; Dillmann, R.; Gill, M.; Kerz, O.; Klein, A.; Meinert, H.; Nawroth, T.; Risi, S.; Stridde, C. (1995). "ERA-experiment "space biochemistry"" (PDF). Advances in Space Research. 16 (8): 119–29. Bibcode:1995AdSpR..16..119D. doi:10.1016/0273-1177(95)00280-R. PMID 11542696.
  62. ^ Vaisberg, Horneck G.; Eschweiler, U.; Reitz, G.; Wehner, J.; Willimek, R.; Strauch, K. (1995). "Biological responses to space: results of the experiment "Exobiological Unit" of ERA on EURECA I". Adv. Space Res. 16 (8): 105–18. Bibcode:1995AdSpR..16..105V. doi:10.1016/0273-1177(95)00279-N. PMID 11542695.

External links

Anthrax

Anthrax is an infection caused by the bacterium Bacillus anthracis. It can occur in four forms: skin, lungs, intestinal, and injection. Symptoms begin between one day and two months after the infection is contracted. The skin form presents with a small blister with surrounding swelling that often turns into a painless ulcer with a black center. The inhalation form presents with fever, chest pain, and shortness of breath. The intestinal form presents with diarrhea which may contain blood, abdominal pains, and nausea and vomiting. The injection form presents with fever and an abscess at the site of drug injection.Anthrax is spread by contact with the bacterium's spores, which often appear in infectious animal products. Contact is by breathing, eating, or through an area of broken skin. It does not typically spread directly between people. Risk factors include people who work with animals or animal products, travelers, postal workers, and military personnel. Diagnosis can be confirmed based on finding antibodies or the toxin in the blood or by culture of a sample from the infected site.Anthrax vaccination is recommended for people who are at high risk of infection. Immunizing animals against anthrax is recommended in areas where previous infections have occurred. Two months of antibiotics such as ciprofloxacin, levofloxacin, and doxycycline after exposure can also prevent infection. If infection occurs treatment is with antibiotics and possibly antitoxin. The type and number of antibiotics used depends on the type of infection. Antitoxin is recommended for those with widespread infection.Although a rare disease, human anthrax, when it does occur, is most common in Africa and central and southern Asia. It also occurs more regularly in Southern Europe than elsewhere on the continent, and is uncommon in Northern Europe and North America. Globally, at least 2,000 cases occur a year with about two cases a year in the United States. Skin infections represent more than 95% of cases. Without treatment, the risk of death from skin anthrax is 24%. For intestinal infection, the risk of death is 25 to 75%, while respiratory anthrax has a mortality of 50 to 80%, even with treatment. Until the 20th century, anthrax infections killed hundreds of thousands of people and animals each year. Anthrax has been developed as a weapon by a number of countries. In plant-eating animals, infection occurs when they eat or breathe in the spores while grazing. Carnivores may become infected by eating infected animals.

Candidiasis

Candidiasis is a fungal infection due to any type of Candida (a type of yeast). When it affects the mouth, it is commonly called thrush. Signs and symptoms include white patches on the tongue or other areas of the mouth and throat. Other symptoms may include soreness and problems swallowing. When it affects the vagina, it is commonly called a yeast infection. Signs and symptoms include genital itching, burning, and sometimes a white "cottage cheese-like" discharge from the vagina. Yeast infections of the penis are less common and typically present with an itchy rash. Very rarely, yeast infections may become invasive, spreading to other parts of the body. This may result in fevers along with other symptoms depending on the parts involved.More than 20 types of Candida can cause infection with Candida albicans being the most common. Infections of the mouth are most common among children less than one month old, the elderly, and those with weak immune systems. Conditions that result in a weak immune system include HIV/AIDS, the medications used after organ transplantation, diabetes, and the use of corticosteroids. Other risks include dentures and following antibiotic therapy. Vaginal infections occur more commonly during pregnancy, in those with weak immune systems, and following antibiotic use. Individuals at risk for invasive candidiasis include low birth weight babies, people recovering from surgery, people admitted to an intensive care units, and those with an otherwise compromised immune systems.Efforts to prevent infections of the mouth include the use of chlorhexidine mouth wash in those with poor immune function and washing out the mouth following the use of inhaled steroids. Little evidence supports probiotics for either prevention or treatment even among those with frequent vaginal infections. For infections of the mouth, treatment with topical clotrimazole or nystatin is usually effective. By mouth or intravenous fluconazole, itraconazole, or amphotericin B may be used if these do not work. A number of topical antifungal medications may be used for vaginal infections including clotrimazole. In those with widespread disease, an echinocandin such as caspofungin or micafungin is used. A number of weeks of intravenous amphotericin B may be used as an alternative. In certain groups at very high risk, antifungal medications may be used preventatively.Infections of the mouth occur in about 6% of babies less than a month old. About 20% of those receiving chemotherapy for cancer and 20% of those with AIDS also develop the disease. About three-quarters of women have at least one yeast infection at some time during their lives. Widespread disease is rare except in those who have risk factors.

Chickenpox

Chickenpox, also known as varicella, is a highly contagious disease caused by the initial infection with varicella zoster virus (VZV). The disease results in a characteristic skin rash that forms small, itchy blisters, which eventually scab over. It usually starts on the chest, back, and face then spreads to the rest of the body. Other symptoms may include fever, tiredness, and headaches. Symptoms usually last five to seven days. Complications may occasionally include pneumonia, inflammation of the brain, and bacterial skin infections. The disease is often more severe in adults than in children. Symptoms begin 10 to 21 days after exposure to the virus.Chickenpox is an airborne disease which spreads easily through the coughs and sneezes of an infected person. It may be spread from one to two days before the rash appears until all lesions have crusted over. It may also spread through contact with the blisters. Those with shingles may spread chickenpox to those who are not immune through contact with the blisters. The disease can usually be diagnosed based on the presenting symptom; however, in unusual cases it may be confirmed by polymerase chain reaction (PCR) testing of the blister fluid or scabs. Testing for antibodies may be done to determine if a person is or is not immune. People usually only get chickenpox once. Although reinfections by the virus occur, these reinfections usually do not cause any symptoms.Since its introduction in 1995, the varicella vaccine has resulted in a decrease in the number of cases and complications from the disease. It protects about 70 to 90 percent of people from disease with a greater benefit for severe disease. Routine immunization of children is recommended in many countries. Immunization within three days of exposure may improve outcomes in children. Treatment of those infected may include calamine lotion to help with itching, keeping the fingernails short to decrease injury from scratching, and the use of paracetamol (acetaminophen) to help with fevers. For those at increased risk of complications, antiviral medication such as aciclovir are recommended.Chickenpox occurs in all parts of the world. In 2013 there were 140 million cases of chickenpox and herpes zoster worldwide. Before routine immunization the number of cases occurring each year was similar to the number of people born. Since immunization the number of infections in the United States has decreased nearly 90%. In 2015 chickenpox resulted in 6,400 deaths globally – down from 8,900 in 1990. Death occurs in about 1 per 60,000 cases. Chickenpox was not separated from smallpox until the late 19th century. In 1888 its connection to shingles was determined. The first documented use of the term chicken pox was in 1658. Various explanations have been suggested for the use of "chicken" in the name, one being the relative mildness of the disease.

Chlamydia infection

Chlamydia infection, often simply known as chlamydia, is a sexually transmitted infection caused by the bacterium Chlamydia trachomatis. Most people who are infected have no symptoms. When symptoms do develop this can take a few weeks following infection to occur. Symptoms in women may include vaginal discharge or burning with urination. Symptoms in men may include discharge from the penis, burning with urination, or pain and swelling of one or both testicles. The infection can spread to the upper genital tract in women causing pelvic inflammatory disease which may result in future infertility or ectopic pregnancy. Repeated infections of the eyes that go without treatment can result in trachoma, a common cause of blindness in the developing world.Chlamydia can be spread during vaginal, anal, or oral sex, and can be passed from an infected mother to her baby during childbirth. The eye infections may also be spread by personal contact, flies, and contaminated towels in areas with poor sanitation. Chlamydia trachomatis only occurs in humans. Diagnosis is often by screening which is recommended yearly in sexually active women under the age of twenty-five, others at higher risk, and at the first prenatal visit. Testing can be done on the urine or a swab of the cervix, vagina, or urethra. Rectal or mouth swabs are required to diagnose infections in those areas.Prevention is by not having sex, the use of condoms, or having sex with only one other person, who is not infected. Chlamydia can be cured by antibiotics with typically either azithromycin or doxycycline being used. Erythromycin or azithromycin is recommended in babies and during pregnancy. Sexual partners should also be treated and the infected people advised not to have sex for seven days and until symptom free. Gonorrhea, syphilis, and HIV should be tested for in those who have been infected. Following treatment people should be tested again after three months.Chlamydia is one of the most common sexually transmitted infections, affecting about 4.2% of women and 2.7% of men worldwide. In 2015 about 61 million new cases occurred globally. In the United States about 1.4 million cases were reported in 2014. Infections are most common among those between the ages of 15 and 25 and are more common in women than men. In 2015 infections resulted in about 200 deaths. The word "chlamydia" is from the Greek, χλαμύδα meaning "cloak".

Dermatophytosis

Dermatophytosis, also known as ringworm, is a fungal infection of the skin. Typically it results in a red, itchy, scaly, circular rash. Hair loss may occur in the area affected. Symptoms begin four to fourteen days after exposure. Multiple areas can be affected at a given time.About 40 types of fungi can cause ringworm. They are typically of the Trichophyton, Microsporum, or Epidermophyton type. Risk factors include using public showers, contact sports such as wrestling, excessive sweating, contact with animals, obesity, and poor immune function. Ringworm can spread from other animals or between people. Diagnosis is often based on the appearance and symptoms. It may be confirmed by either culturing or looking at a skin scraping under a microscope.Prevention is by keeping the skin dry, not walking barefoot in public, and not sharing personal items. Treatment is typically with antifungal creams such as clotrimazole or miconazole. If the scalp is involved, antifungals by mouth such as fluconazole may be needed.Globally, up to 20% of the population may be infected by ringworm at any given time. Infections of the groin are more common in males, while infections of the scalp and body occur equally in both sexes. Infections of the scalp are most common in children while infections of the groin are most common in the elderly. Descriptions of ringworm date back to ancient history.

Gonorrhea

Gonorrhea, colloquially known as the clap, is a sexually transmitted infection (STI) caused by the bacterium Neisseria gonorrhoeae. Infection may involve the genitals, mouth, or rectum. Infected men may experience pain or burning with urination, discharge from the penis, or testicular pain. Infected women may experience burning with urination, vaginal discharge, vaginal bleeding between periods, or pelvic pain. Complications in women include pelvic inflammatory disease and in men include inflammation of the epididymis. Many of those infected, however, have no symptoms. If untreated, gonorrhea can spread to joints or heart valves.Gonorrhea is spread through sexual contact with an infected person. This includes oral, anal, and vaginal sex. It can also spread from a mother to a child during birth. Diagnosis is by testing the urine, urethra in males, or cervix in females. Testing all women who are sexually active and less than 25 years of age each year as well as those with new sexual partners is recommended; the same recommendation applies in men who have sex with men (MSM).Gonorrhea can be prevented with the use of condoms, having sex with only one person who is uninfected, and by not having sex. Treatment is usually with ceftriaxone by injection and azithromycin by mouth. Resistance has developed to many previously used antibiotics and higher doses of ceftriaxone are occasionally required. Retesting is recommended three months after treatment. Sexual partners from the last 2 months should also be treated.Gonorrhea affects about 0.8% of women and 0.6% of men. An estimated 33 to 106 million new cases occur each year, out of the 498 million new cases of curable STI – which also includes syphilis, chlamydia, and trichomoniasis. Infections in women most commonly occur when they are young adults. In 2015, it caused about 700 deaths. Descriptions of the disease date as far back as the Old Testament.

HIV

The human immunodeficiency viruses (HIV) are two species of Lentivirus (a subgroup of retrovirus) that causes HIV infection and over time acquired immunodeficiency syndrome (AIDS). AIDS is a condition in humans in which progressive failure of the immune system allows life-threatening opportunistic infections and cancers to thrive. Without treatment, average survival time after infection with HIV is estimated to be 9 to 11 years, depending on the HIV subtype. In most cases, HIV is a sexually transmitted infection and occurs by contact with or transfer of blood, pre-ejaculate, semen, and vaginal fluids. Non-sexual transmission can occur from an infected mother to her infant during pregnancy, during childbirth by exposure to her blood or vaginal fluid, and through breast milk. Within these bodily fluids, HIV is present as both free virus particles and virus within infected immune cells.

HIV infects vital cells in the human immune system, such as helper T cells (specifically CD4+ T cells), macrophages, and dendritic cells. HIV infection leads to low levels of CD4+ T cells through a number of mechanisms, including pyroptosis of abortively infected T cells, apoptosis of uninfected bystander cells, direct viral killing of infected cells, and killing of infected CD4+ T cells by CD8+ cytotoxic lymphocytes that recognize infected cells. When CD4+ T cell numbers decline below a critical level, cell-mediated immunity is lost, and the body becomes progressively more susceptible to opportunistic infections, leading to the development of AIDS.

HIV/AIDS

Human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) is a spectrum of conditions caused by infection with the human immunodeficiency virus (HIV). Following initial infection, a person may not notice any symptoms or may experience a brief period of influenza-like illness. Typically, this is followed by a prolonged period with no symptoms. As the infection progresses, it interferes more with the immune system, increasing the risk of developing common infections such as tuberculosis, as well as other opportunistic infections, and tumors that rarely affect people who have uncompromised immune systems. These late symptoms of infection are referred to as acquired immunodeficiency syndrome (AIDS). This stage is often also associated with unintended weight loss.HIV is spread primarily by unprotected sex (including anal and oral sex), contaminated blood transfusions, hypodermic needles, and from mother to child during pregnancy, delivery, or breastfeeding. Some bodily fluids, such as saliva and tears, do not transmit HIV. Methods of prevention include safe sex, needle exchange programs, treating those who are infected, pre- and post-exposure prophylaxis, and male circumcision. Disease in a baby can often be prevented by giving both the mother and child antiretroviral medication. There is no cure or vaccine; however, antiretroviral treatment can slow the course of the disease and may lead to a near-normal life expectancy. Treatment is recommended as soon as the diagnosis is made. Without treatment, the average survival time after infection is 11 years.In 2016, about 36.7 million people were living with HIV and it resulted in 1 million deaths. There were 300,000 fewer new HIV cases in 2016 than in 2015. Most of those infected live in sub-Saharan Africa. From the time AIDS was identified in the early 1980s to 2017, the disease has caused an estimated 35 million deaths worldwide. HIV/AIDS is considered a pandemic—a disease outbreak which is present over a large area and is actively spreading. HIV originated in west-central Africa during the late 19th or early 20th century. AIDS was first recognized by the United States Centers for Disease Control and Prevention (CDC) in 1981 and its cause—HIV infection—was identified in the early part of the decade.HIV/AIDS has had a large impact on society, both as an illness and as a source of discrimination. The disease also has large economic impacts. There are many misconceptions about HIV/AIDS such as the belief that it can be transmitted by casual non-sexual contact. The disease has become subject to many controversies involving religion including the Catholic Church's position not to support condom use as prevention. It has attracted international medical and political attention as well as large-scale funding since it was identified in the 1980s.

Helicobacter pylori

Helicobacter pylori, previously known as Campylobacter pylori, is a Gram-negative, microaerophilic bacterium usually found in the stomach. It was identified in 1982 by Australian scientists Barry Marshall and Robin Warren, who found that it was present in a person with chronic gastritis and gastric ulcers, conditions not previously believed to have a microbial cause. It is also linked to the development of duodenal ulcers and stomach cancer. However, over 80% of individuals infected with the bacterium are asymptomatic, and it may play an important role in the natural stomach ecology.More than 50% of the world's population has H. pylori in their upper gastrointestinal tracts. Infection is more common in developing countries than Western countries. H. pylori's helical shape (from which the genus name derives) is thought to have evolved to penetrate the mucoid lining of the stomach.

Hepatitis C

Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV) that primarily affects the liver. During the initial infection people often have mild or no symptoms. Occasionally a fever, dark urine, abdominal pain, and yellow tinged skin occurs. The virus persists in the liver in about 75% to 85% of those initially infected. Early on chronic infection typically has no symptoms. Over many years however, it often leads to liver disease and occasionally cirrhosis. In some cases, those with cirrhosis will develop serious complications such as liver failure, liver cancer, or dilated blood vessels in the esophagus and stomach.HCV is spread primarily by blood-to-blood contact associated with intravenous drug use, poorly sterilized medical equipment, needlestick injuries in healthcare, and transfusions. Using blood screening, the risk from a transfusion is less than one per two million. It may also be spread from an infected mother to her baby during birth. It is not spread by superficial contact. It is one of five known hepatitis viruses: A, B, C, D, and E. Diagnosis is by blood testing to look for either antibodies to the virus or its RNA. Testing is recommended in all people who are at risk.There is no vaccine against hepatitis C. Prevention includes harm reduction efforts among people who use intravenous drugs and testing donated blood. Chronic infection can be cured about 95% of the time with antiviral medications such as sofosbuvir or simeprevir. Peginterferon and ribavirin were earlier generation treatments that had a cure rate of less than 50% and greater side effects. Getting access to the newer treatments however can be expensive. Those who develop cirrhosis or liver cancer may require a liver transplant. Hepatitis C is the leading reason for liver transplantation, though the virus usually recurs after transplantation.An estimated 143 million people (2%) worldwide are infected with hepatitis C as of 2015. In 2013 about 11 million new cases occurred. It occurs most commonly in Africa and Central and East Asia. About 167,000 deaths due to liver cancer and 326,000 deaths due to cirrhosis occurred in 2015 due to hepatitis C. The existence of hepatitis C – originally identifiable only as a type of non-A non-B hepatitis – was suggested in the 1970s and proven in 1989. Hepatitis C infects only humans and chimpanzees.

Herpes simplex

Herpes simplex is a viral infection caused by the herpes simplex virus. Infections are categorized based on the part of the body infected. Oral herpes involves the face or mouth. It may result in small blisters in groups often called cold sores or fever blisters or may just cause a sore throat. Genital herpes, often simply known as herpes, may have minimal symptoms or form blisters that break open and result in small ulcers. These typically heal over two to four weeks. Tingling or shooting pains may occur before the blisters appear. Herpes cycles between periods of active disease followed by periods without symptoms. The first episode is often more severe and may be associated with fever, muscle pains, swollen lymph nodes and headaches. Over time, episodes of active disease decrease in frequency and severity. Other disorders caused by herpes simplex include: herpetic whitlow when it involves the fingers, herpes of the eye, herpes infection of the brain, and neonatal herpes when it affects a newborn, among others.There are two types of herpes simplex virus, type 1 (HSV-1) and type 2 (HSV-2). HSV-1 more commonly causes infections around the mouth while HSV-2 more commonly causes genital infections. They are transmitted by direct contact with body fluids or lesions of an infected individual. Transmission may still occur when symptoms are not present. Genital herpes is classified as a sexually transmitted infection. It may be spread to an infant during childbirth. After infection, the viruses are transported along sensory nerves to the nerve cell bodies, where they reside lifelong. Causes of recurrence may include: decreased immune function, stress, and sunlight exposure. Oral and genital herpes is usually diagnosed based on the presenting symptoms. The diagnosis may be confirmed by viral culture or detecting herpes DNA in fluid from blisters. Testing the blood for antibodies against the virus can confirm a previous infection but will be negative in new infections.The most effective method of avoiding genital infections is by avoiding vaginal, oral, and anal sex. Condom use decreases the risk. Daily antiviral medication taken by someone who has the infection can also reduce spread. There is no available vaccine and once infected, there is no cure. Paracetamol (acetaminophen) and topical lidocaine may be used to help with the symptoms. Treatments with antiviral medication such as aciclovir or valaciclovir can lessen the severity of symptomatic episodes.Worldwide rates of either HSV-1 or HSV-2 are between 60% and 95% in adults. HSV-1 is usually acquired during childhood. Rates of both increase as people age. Rates of HSV-1 are between 70% and 80% in populations of low socioeconomic status and 40% to 60% in populations of improved socioeconomic status. An estimated 536 million people worldwide (16% of the population) were infected with HSV-2 as of 2003 with greater rates among women and those in the developing world. Most people with HSV-2 do not realize that they are infected. The name is from Greek: ἕρπης herpēs which means "to creep", referring to spreading blisters. The name does not refer to latency.

Lyme disease

Lyme disease, also known as Lyme borreliosis, is an infectious disease caused by a bacterium named Borrelia spread by ticks. The most common sign of infection is an expanding area of redness on the skin, known as erythema migrans, that appears at the site of the tick bite about a week after it occurred. The rash is typically neither itchy nor painful. Approximately 70–80% of infected people develop a rash. Other early symptoms may include fever, headache and tiredness. If untreated, symptoms may include loss of the ability to move one or both sides of the face, joint pains, severe headaches with neck stiffness, or heart palpitations, among others. Months to years later, repeated episodes of joint pain and swelling may occur. Occasionally, people develop shooting pains or tingling in their arms and legs. Despite appropriate treatment, about 10 to 20% of people develop joint pains, memory problems, and tiredness for at least six months.Lyme disease is transmitted to humans by the bites of infected ticks of the genus Ixodes. In the United States, ticks of concern are usually of the Ixodes scapularis type, and must be attached for at least 36 hours before the bacteria can spread. In Europe ticks of the Ixodes ricinus type may spread the bacteria more quickly. In North America, Borrelia burgdorferi and Borrelia mayonii are the cause. In Europe and Asia, the bacteria Borrelia afzelii and Borrelia garinii are also causes of the disease. The disease does not appear to be transmissible between people, by other animals, or through food. Diagnosis is based upon a combination of symptoms, history of tick exposure, and possibly testing for specific antibodies in the blood. Blood tests are often negative in the early stages of the disease. Testing of individual ticks is not typically useful.Prevention includes efforts to prevent tick bites such as by wearing clothing to cover the arms and legs, and using DEET-based insect repellents. Using pesticides to reduce tick numbers may also be effective. Ticks can be removed using tweezers. If the removed tick was full of blood, a single dose of doxycycline may be used to prevent development of infection, but is not generally recommended since development of infection is rare. If an infection develops, a number of antibiotics are effective, including doxycycline, amoxicillin, and cefuroxime. Standard treatment usually lasts for two or three weeks. Some people develop a fever and muscle and joint pains from treatment which may last for one or two days. In those who develop persistent symptoms, long-term antibiotic therapy has not been found to be useful.Lyme disease is the most common disease spread by ticks in the Northern Hemisphere. It is estimated to affect 300,000 people a year in the United States and 65,000 people a year in Europe. Infections are most common in the spring and early summer. Lyme disease was diagnosed as a separate condition for the first time in 1975 in Old Lyme, Connecticut. It was originally mistaken for juvenile rheumatoid arthritis. The bacterium involved was first described in 1981 by Willy Burgdorfer. Chronic symptoms following treatment are well described and are known as post-treatment Lyme disease syndrome (PTLDS). PTLDS is different to chronic Lyme disease; a term no longer supported by the scientific community and used in different ways by different groups. Some healthcare providers claim that PTLDS is caused by persistent infection, but this is not believed to be true because of the inability to detect infectious organisms after standard treatment. A vaccine for Lyme disease was marketed in the United States between 1998 and 2002, but was withdrawn from the market due to poor sales. Research is ongoing to develop new vaccines.

Pathogenic bacteria

Pathogenic bacteria are bacteria that can cause disease. This article deals with human pathogenic bacteria. Although most bacteria are harmless or often beneficial, some are pathogenic, with the number of species estimated as fewer than a hundred that are seen to cause infectious diseases in humans. By contrast, several thousand species exist in the human digestive system.

One of the bacterial diseases with the highest disease burden is tuberculosis, caused by Mycobacterium tuberculosis bacteria, which kills about 2 million people a year, mostly in sub-Saharan Africa. Pathogenic bacteria contribute to other globally important diseases, such as pneumonia, which can be caused by bacteria such as Streptococcus and Pseudomonas, and foodborne illnesses, which can be caused by bacteria such as Shigella, Campylobacter, and Salmonella. Pathogenic bacteria also cause infections such as tetanus, typhoid fever, diphtheria, syphilis, and leprosy. Pathogenic bacteria are also the cause of high infant mortality rates in developing countries.Koch's postulates are the standard to establish a causative relationship between a microbe and a disease.

Sepsis

Sepsis is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There may also be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and people with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high. Severe sepsis is sepsis causing poor organ function or insufficient blood flow. Insufficient blood flow may be evident by low blood pressure, high blood lactate, or low urine output. Septic shock is low blood pressure due to sepsis that does not improve after fluid replacement.Sepsis is caused by an inflammatory immune response triggered by an infection. Most commonly, the infection is bacterial, but it may also be fungal, viral, or protozoan. Common locations for the primary infection include the lungs, brain, urinary tract, skin, and abdominal organs. Risk factors include very young age, older age, a weakened immune system from conditions such as cancer or diabetes, major trauma, or burns. An older method of diagnosis was based on meeting at least two systemic inflammatory response syndrome (SIRS) criteria due to a presumed infection. In 2016, SIRS was replaced with a shortened sequential organ failure assessment score (SOFA score) known as the quick SOFA score (qSOFA) which is two of the following three: increased breathing rate, change in level of consciousness, and low blood pressure. Blood cultures are recommended preferably before antibiotics are started, however, infection of the blood is not required for the diagnosis. Medical imaging should be used to look for the possible location of infection. Other potential causes of similar signs and symptoms include anaphylaxis, adrenal insufficiency, low blood volume, heart failure, and pulmonary embolism.Sepsis is usually treated with intravenous fluids and antibiotics. Typically, antibiotics are given as soon as possible. Often, ongoing care is performed in an intensive care unit. If fluid replacement is not enough to maintain blood pressure, medications that raise blood pressure may be used. Mechanical ventilation and dialysis may be needed to support the function of the lungs and kidneys, respectively. To guide treatment, a central venous catheter and an arterial catheter may be placed for access to the bloodstream. Other measurements such as cardiac output and superior vena cava oxygen saturation may be used. People with sepsis need preventive measures for deep vein thrombosis, stress ulcers and pressure ulcers, unless other conditions prevent such interventions. Some might benefit from tight control of blood sugar levels with insulin. The use of corticosteroids is controversial. Drotrecogin alfa, originally marketed for severe sepsis, has not been found to be helpful, and was withdrawn from sale in 2011.Disease severity partly determines the outcome. The risk of death from sepsis is as high as 30%, from severe sepsis as high as 50%, and from septic shock as high as 80%. The number of cases worldwide is unknown as there is little data from the developing world. Estimates suggest sepsis affects millions of people a year. In the developed world approximately 0.2 to 3 people per 1000 are affected by sepsis yearly, resulting in about a million cases per year in the United States. Rates of disease have been increasing. Sepsis is more common among males than females. The medical condition has been described since the time of Hippocrates. The terms "septicemia" and "blood poisoning" have been used in various ways and are no longer recommended.

Sexually transmitted infection

Sexually transmitted infections (STIs), also referred to as sexually transmitted diseases (STDs), are infections that are commonly spread by sexual activity, especially vaginal intercourse, anal sex and oral sex. Many times STIs initially do not cause symptoms. This results in a greater risk of passing the disease on to others. Symptoms and signs of disease may include vaginal discharge, penile discharge, ulcers on or around the genitals, and pelvic pain. STIs can be transmitted to an infant before or during childbirth and may result in poor outcomes for the baby. Some STIs may cause problems with the ability to get pregnant.More than 30 different bacteria, viruses, and parasites can be transmitted through sexual activity. Bacterial STIs include chlamydia, gonorrhea, and syphilis. Viral STIs include genital herpes, HIV/AIDS, and genital warts. Parasitic STIs include trichomoniasis. While usually spread by sex, some STIs can be spread by non-sexual contact with donor tissue, blood, breastfeeding, or during childbirth. STI diagnostic tests are usually easily available in the developed world, but this is often not the case in the developing world.The most effective way of preventing STIs is by not having sex. Some vaccinations may also decrease the risk of certain infections including hepatitis B and some types of HPV. Safer sex practices such as use of condoms, having a smaller number of sexual partners, and being in a relationship where each person only has sex with the other also decreases the risk. Circumcision in males may be effective to prevent some infections. During school, comprehensive sex education may also be useful. Most STIs are treatable or curable. Of the most common infections, syphilis, gonorrhea, chlamydia, and trichomoniasis are curable, while herpes, hepatitis B, HIV/AIDS, and HPV are treatable but not curable. Resistance to certain antibiotics is developing among some organisms such as gonorrhea.In 2015, about 1.1 billion people had STIs other than HIV/AIDS. About 500 million were infected with either syphilis, gonorrhea, chlamydia or trichomoniasis. At least an additional 530 million people have genital herpes and 290 million women have human papillomavirus. STIs other than HIV resulted in 108,000 deaths in 2015. In the United States there were 19 million new cases of sexually transmitted infections in 2010. Historical documentation of STIs date back to at least the Ebers papyrus around 1550 BC and the Old Testament. There is often shame and stigma associated with these infections. The term sexually transmitted infection is generally preferred over sexually transmitted disease or venereal disease, as it includes those who do not have symptomatic disease.

Sinusitis

Sinusitis, also known as a sinus infection or rhinosinusitis, is inflammation of the mucous membrane that lines the sinuses resulting in symptoms. Common symptoms include thick nasal mucus, a plugged nose, and facial pain. Other signs and symptoms may include fever, headaches, a poor sense of smell, sore throat, and a cough. The cough is often worse at night. Serious complications are rare. It is defined as acute sinusitis if it lasts less than 4 weeks, and as chronic sinusitis if it lasts for more than 12 weeks.Sinusitis can be caused by infection, allergies, air pollution, or structural problems in the nose. Most cases are caused by a viral infection. A bacterial infection may be present if symptoms last more than ten days or if a person worsens after starting to improve. Recurrent episodes are more likely in persons with asthma, cystic fibrosis, and poor immune function. X-rays are not usually needed unless complications are suspected. In chronic cases confirmatory testing is recommended by either direct visualization or computed tomography.Some cases may be prevented by hand washing, avoiding smoking, and immunization. Pain killers such as naproxen, nasal steroids, and nasal irrigation may be used to help with symptoms. Recommended initial treatment for acute sinusitis is watchful waiting. If symptoms do not improve in 7–10 days or get worse, then an antibiotic may be used or changed. In those in whom antibiotics are used, either amoxicillin or amoxicillin/clavulanate is recommended first line. Surgery may occasionally be used in people with chronic disease.Sinusitis is a common condition. It affects between about 10% and 30% of people each year in the United States and Europe. Women are more often affected than men. Chronic sinusitis affects approximately 12.5% of people. Treatment of sinusitis in the United States results in more than US$11 billion in costs. The unnecessary and ineffective treatment of viral sinusitis with antibiotics is common.

Tonsillitis

Tonsillitis is inflammation of the tonsils, typically of rapid onset. It is a type of pharyngitis. Symptoms may include sore throat, fever, enlargement of the tonsils, trouble swallowing, and large lymph nodes around the neck. Complications include peritonsillar abscess.Tonsillitis is most commonly caused by a viral infection, with about 5% to 40% of cases caused by a bacterial infection. When caused by the bacterium group A streptococcus, it is referred to as strep throat. Rarely bacteria such as Neisseria gonorrhoeae, Corynebacterium diphtheriae, or Haemophilus influenzae may be the cause. Typically the infection is spread between people through the air. A scoring system, such as the Centor score, may help separate possible causes. Confirmation may be by a throat swab or rapid strep test.Treatment efforts involve improving symptoms and decreasing complications. Paracetamol (acetaminophen) and ibuprofen may be used to help with pain. If strep throat is present the antibiotic penicillin by mouth is generally recommended. In those who are allergic to penicillin, cephalosporins or macrolides may be used. In children with frequent episodes of tonsillitis, tonsillectomy modestly decreases the risk of future episodes.About 7.5% of people have a sore throat in any three-month period and 2% of people visit a doctor for tonsillitis each year. It is most common in school aged children and typically occurs in the fall and winter months. The majority of people recover with or without medication. In 40% of people, symptoms resolve within three days, and in 80% symptoms resolve within one week, regardless of whether streptococcus is present or not. Antibiotics decrease symptom duration by approximately 16 hours.

Toxoplasmosis

Toxoplasmosis is a parasitic disease caused by Toxoplasma gondii. Infections with toxoplasmosis usually cause no obvious symptoms in adults. Occasionally, people may have a few weeks or months of mild, flu-like illness such as muscle aches and tender lymph nodes. In a small number of people, eye problems may develop. In those with a weak immune system, severe symptoms such as seizures and poor coordination may occur. If infected during pregnancy, a condition known as congenital toxoplasmosis may affect the child.Toxoplasmosis is usually spread by eating poorly cooked food that contains cysts, exposure to infected cat feces, and from a mother to a child during pregnancy if the mother becomes infected. Rarely, the disease may be spread by blood transfusion. It is not otherwise spread between people. The parasite is known to reproduce sexually only in the cat family. However, it can infect most types of warm-blooded animals, including humans. Diagnosis is typically by testing blood for antibodies or by testing amniotic fluid for the parasite's DNA.Prevention is by properly preparing and cooking food. Pregnant women are also recommended not to clean cat litter boxes. Treatment of otherwise healthy people is usually not needed. During pregnancy, spiramycin or pyrimethamine/sulfadiazine and folinic acid may be used for treatment.Up to half of the world's population is infected by toxoplasmosis, but have no symptoms. In the United States, about 23% are affected and in some areas of the world this is up to 95%. About 200,000 cases of congenital toxoplasmosis occur a year. Charles Nicolle and Louis Manceaux first described the organism in 1908. In 1941, transmission during pregnancy from a mother to a child was confirmed.

Urinary tract infection

A urinary tract infection (UTI) is an infection that affects part of the urinary tract. When it affects the lower urinary tract it is known as a bladder infection (cystitis) and when it affects the upper urinary tract it is known as kidney infection (pyelonephritis). Symptoms from a lower urinary tract include pain with urination, frequent urination, and feeling the need to urinate despite having an empty bladder. Symptoms of a kidney infection include fever and flank pain usually in addition to the symptoms of a lower UTI. Rarely the urine may appear bloody. In the very old and the very young, symptoms may be vague or non-specific.The most common cause of infection is Escherichia coli, though other bacteria or fungi may rarely be the cause. Risk factors include female anatomy, sexual intercourse, diabetes, obesity, and family history. Although sexual intercourse is a risk factor, UTIs are not classified as sexually transmitted infections (STIs). Kidney infection, if it occurs, usually follows a bladder infection but may also result from a blood-borne infection. Diagnosis in young healthy women can be based on symptoms alone. In those with vague symptoms, diagnosis can be difficult because bacteria may be present without there being an infection. In complicated cases or if treatment fails, a urine culture may be useful.In uncomplicated cases, UTIs are treated with a short course of antibiotics such as nitrofurantoin or trimethoprim/sulfamethoxazole. Resistance to many of the antibiotics used to treat this condition is increasing. In complicated cases, a longer course or intravenous antibiotics may be needed. If symptoms do not improve in two or three days, further diagnostic testing may be needed. Phenazopyridine may help with symptoms. In those who have bacteria or white blood cells in their urine but have no symptoms, antibiotics are generally not needed, although during pregnancy is an exception. In those with frequent infections, a short course of antibiotics may be taken as soon as symptoms begin or long-term antibiotics may be used as a preventative measure.About 150 million people develop a urinary tract infection in a given year. They are more common in women than men. In women, they are the most common form of bacterial infection. Up to 10% of women have a urinary tract infection in a given year, and half of women have at least one infection at some point in their lifetime. They occur most frequently between the ages of 16 and 35 years. Recurrences are common. Urinary tract infections have been described since ancient times with the first documented description in the Ebers Papyrus dated to c. 1550 BC.

Infectious disease and microbiology
Disciplines
(pathogens)
Major diseases
People
Related topics
Specialties
and
subspecialties
Medical education
Related topics
Principles of pathology
Anatomical pathology
Clinical pathology

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.