Industrial ecology

Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into commodities which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.

Industrial ecology has been defined as a "systems-based, multidisciplinary discourse that seeks to understand emergent behaviour of complex integrated human/natural systems".[1] The field approaches issues of sustainability by examining problems from multiple perspectives, usually involving aspects of sociology, the environment, economy and technology. The name comes from the idea that the analogy of natural systems should be used as an aid in understanding how to design sustainable industrial systems.[2]


Example of Industrial Symbiosis. Waste steam from a waste incinerator (right) is piped to an ethanol plant (left) where it is used as in input to their production process.

Industrial ecology is concerned with the shifting of industrial process from linear (open loop) systems, in which resource and capital investments move through the system to become waste, to a closed loop system where wastes can become inputs for new processes.

Much of the research focuses on the following areas:[3]

Industrial ecology seeks to understand the way in which industrial systems (for example a factory, an ecoregion, or national or global economy) interact with the biosphere. Natural ecosystems provide a metaphor for understanding how different parts of industrial systems interact with one another, in an "ecosystem" based on resources and infrastructural capital rather than on natural capital. It seeks to exploit the idea that natural systems do not have waste in them to inspire sustainable design.

Along with more general energy conservation and material conservation goals, and redefining commodity markets and product stewardship relations strictly as a service economy, industrial ecology is one of the four objectives of Natural Capitalism. This strategy discourages forms of amoral purchasing arising from ignorance of what goes on at a distance and implies a political economy that values natural capital highly and relies on more instructional capital to design and maintain each unique industrial ecology.


Industrial ecology was popularized in 1989 in a Scientific American article by Robert Frosch and Nicholas E. Gallopoulos. Frosch and Gallopoulos' vision was "why would not our industrial system behave like an ecosystem, where the wastes of a species may be resource to another species? Why would not the outputs of an industry be the inputs of another, thus reducing use of raw materials, pollution, and saving on waste treatment?"[2] A notable example resides in a Danish industrial park in the city of Kalundborg. Here several linkages of byproducts and waste heat can be found between numerous entities such as a large power plant, an oil refinery, a pharmaceutical plant, a plasterboard factory, an enzyme manufacturer, a waste company and the city itself.[4] Another example is the Rantasalmi EIP in Rantasalmi, Finland. While this country has had previous organically formed EIP's, the park at Rantasalmi is Finland's first planned EIP.

The scientific field Industrial Ecology has grown quickly in recent years. The Journal of Industrial Ecology (since 1997), the International Society for Industrial Ecology (since 2001), and the journal Progress in Industrial Ecology (since 2004) give Industrial Ecology a strong and dynamic position in the international scientific community. Industrial Ecology principles are also emerging in various policy realms such as the concept of the Circular Economy that is being promoted in China. Although the definition of the Circular Economy has yet to be formalized, generally the focus is on strategies such as creating a circular flow of materials, and cascading energy flows. An example of this would be using waste heat from one process to run another process that requires a lower temperature. The hope is that strategy such as this will create a more efficient economy with fewer pollutants and other unwanted by-products.[5]


One of the central principles of Industrial Ecology is the view that societal and technological systems are bounded within the biosphere, and do not exist outside it. Ecology is used as a metaphor due to the observation that natural systems reuse materials and have a largely closed loop cycling of nutrients. Industrial Ecology approaches problems with the hypothesis that by using similar principles as natural systems, industrial systems can be improved to reduce their impact on the natural environment as well. The table shows the general metaphor.

Biosphere Technosphere

IE examines societal issues and their relationship with both technical systems and the environment. Through this holistic view , IE recognizes that solving problems must involve understanding the connections that exist between these systems, various aspects cannot be viewed in isolation. Often changes in one part of the overall system can propagate and cause changes in another part. Thus, you can only understand a problem if you look at its parts in relation to the whole. Based on this framework, IE looks at environmental issues with a systems thinking approach. A good IE example with these societal impacts can be found at the Blue Lagoon in Iceland. The Lagoon uses super-heated water from a local geothermal power plant to fill mineral-rich basins that have become recreational healing centers. In this sense the industrial process of energy production uses its wastewater to provide a crucial resource for the dependent recreational industry.

Take a city for instance. A city can be divided into commercial areas, residential areas, offices, services, infrastructures, and so forth. These are all sub-systems of the 'big city’ system. Problems can emerge in one sub-system, but the solution has to be global. Let’s say the price of housing is rising dramatically because there is too high a demand for housing. One solution would be to build new houses, but this will lead to more people living in the city, leading to the need for more infrastructure like roads, schools, more supermarkets, etc. This system is a simplified interpretation of reality whose behaviors can be ‘predicted’.

In many cases, the systems IE deals with are complex systems. Complexity makes it difficult to understand the behavior of the system and may lead to rebound effects. Due to unforeseen behavioral change of users or consumers, a measure taken to improve environmental performance does not lead to any improvement or may even worsen the situation.

Moreover, life cycle thinking is also a very important principle in industrial ecology. It implies that all environmental impacts caused by a product, system, or project during its life cycle are taken into account. In this context life cycle includes

  • Raw material extraction
  • Material processing
  • Manufacture
  • Use
  • Maintenance
  • Disposal

The transport necessary between these stages is also taken into account as well as, if relevant, extra stages such as reuse, remanufacture, and recycle. Adopting a life cycle approach is essential to avoid shifting environmental impacts from one life cycle stage to another. This is commonly referred to as problem shifting. For instance, during the re-design of a product, one can choose to reduce its weight, thereby decreasing use of resources. However, it is possible that the lighter materials used in the new product will be more difficult to dispose of. The environmental impacts of the product gained during the extraction phase are shifted to the disposal phase. Overall environmental improvements are thus null.

A final important principle of IE is its integrated approach or multidisciplinarity. IE takes into account three different disciplines: social sciences (including economics), technical sciences and environmental sciences. The challenge is to merge them into a single approach.


The Kalundborg industrial park is located in Denmark. This industrial park is special because companies reuse each other's waste (which then becomes by-products). For example, the Energy E2 Asnæs Power Station produces gypsum as a by-product of the electricity generation process; this gypsum becomes a resource for the BPB Gyproc A/S which produces plasterboards.[4] This is one example of a system inspired by the biosphere-technosphere metaphor: in ecosystems, the waste from one organism is used as inputs to other organisms; in industrial systems, waste from a company is used as a resource by others.

Apart from the direct benefit of incorporating waste into the loop, the use of an eco-industrial park can be a means of making renewable energy generating plants, like Solar PV, more economical and environmentally friendly. In essence, this assists the growth of the renewable energy industry and the environmental benefits that come with replacing fossil-fuels.[6]

Additional examples of industrial ecology include:

  • Substituting the fly ash byproduct of coal burning practices for cement in concrete production[7]
  • Using second generation biofuels. An example of this is converting grease or cooking oil to biodiesels to fuel vehicles.[8]
  • South Africa's National Cleaner Production Center (NCPC) was created in order to make the region's industries more efficient in terms of materials. Results of the use of sustainable methods will include lowered energy costs and improved waste management. The program assesses existing companies to implement change.[9]


People Planet Profit Modeling

Future directions

The ecosystem metaphor popularized by Frosch and Gallopoulos[2] has been a valuable creative tool for helping researchers look for novel solutions to difficult problems. Recently, it has been pointed out that this metaphor is based largely on a model of classical ecology, and that advancements in understanding ecology based on complexity science have been made by researchers such as C. S. Holling, James J. Kay,[10] and further advanced in terms of contemporary ecology by others.[11][12][13][14] For industrial ecology, this may mean a shift from a more mechanistic view of systems, to one where sustainability is viewed as an emergent property of a complex system.[15][16] To explore this further, several researchers are working with agent based modeling techniques .[17][18]

Exergy analysis is performed in the field of industrial ecology to use energy more efficiently.[19] The term exergy was coined by Zoran Rant in 1956, but the concept was developed by J. Willard Gibbs. In recent decades, utilization of exergy has spread outside physics and engineering to the fields of industrial ecology, ecological economics, systems ecology, and energetics.

Other examples

Another great example of industrial ecology both in practice and in potential is the Burnside Cleaner Production Centre in Burnside, Nova Scotia. They play a role in facilitating the 'greening' of over 1200 businesses that are located in Burnside, Eastern Canada's largest industrial park. The creation of waste exchange is a big part of what they work towards, which will promote strong industrial ecology relationships.[20]

See also


  1. ^ Allenby, Brad (2006). "The ontologies of industrial ecology" (PDF). Progress in Industrial Ecology. 3 (1/2): 28–40. doi:10.1504/PIE.2006.010039.
  2. ^ a b c Frosch, R.A.; Gallopoulos, N.E. (1989). "Strategies for Manufacturing". Scientific American. 261 (3): 144–152. doi:10.1038/scientificamerican0989-144.
  3. ^ "International Society for Industrial Ecology | History". Archived from the original on 10 July 2009. Retrieved 8 January 2009.
  4. ^ a b "The Kalundborg Centre for Industrial Symbiosis". Retrieved 2007. Check date values in: |accessdate= (help)
  5. ^ Yuan, Z.; Bi, J.; Moriguichi, Y. (2008). "The Circular Economy: A New Development Strategy in China". Journal of Industrial Ecology. 10 (1–2): 4–8. doi:10.1162/108819806775545321.
  6. ^ Pearce, J. M. (2008). "Industrial Symbiosis for Very Large Scale Photovoltaic Manufacturing". Renewable Energy. 33 (5): 1101–1108. CiteSeerX doi:10.1016/j.renene.2007.07.002.
  7. ^ Thomas, Michael. "Optimizing the Use of Fly Ash in Concrete." Portland Cement Association
  8. ^ "Used and Waste Oil and Grease for Biodiesel - eXtension". Retrieved 7 April 2018.
  9. ^ "NCPC - Cleaner and Reduced Energy".
  10. ^ Kay, J.J. (2002). Kibert, C.; Sendzimir, J.; Guy, B. (eds.). "On Complexity Theory, Exergy and Industrial Ecology: Some Implications for Construction Ecology" (PDF). Construction Ecology: Nature as the Basis for Green Buildings: 72–107. Archived from the original (PDF) on 6 January 2006
  11. ^ Levine, S. H. (2003). "Comparing Products and Production in Ecological and Industrial Systems". Journal of Industrial Ecology. 7 (2): 33–42. doi:10.1162/108819803322564334.
  12. ^ Nielsen, Søren Nors (2007). "What has modern ecosystem theory to offer to cleaner production, industrial ecology and society? The views of an ecologist". Journal of Cleaner Production. 15 (17): 1639–1653. doi:10.1016/j.jclepro.2006.08.008.
  13. ^ Ashton, W. S. (2009). "The Structure, Function, and Evolution of a Regional Industrial Ecosystem". Journal of Industrial Ecology. 13 (2): 228. doi:10.1111/j.1530-9290.2009.00111.x.
  14. ^ Jensen, P. D. (2011). "Reinterpreting Industrial Ecology" (PDF). Journal of Industrial Ecology. 15 (5): 680–692. doi:10.1111/j.1530-9290.2011.00377.x.
  15. ^ Ehrenfeld, John (2004). "Can Industrial Ecology be the Science of Sustainability?". Journal of Industrial Ecology. 8 (1–2): 1–3. doi:10.1162/1088198041269364.
  16. ^ Ehrenfeld, John (2007). "Would Industrial Ecology Exist without Sustainability in the Background?". Journal of Industrial Ecology. 11 (1): 73–84. doi:10.1162/jiec.2007.1177.
  17. ^ Axtell, R.L.; Andrews, C.J.; Small, M.J. (2002). "Agent-Based Modeling and Industrial Ecology". Journal of Industrial Ecology. 5 (4): 10–13. doi:10.1162/10881980160084006.
  18. ^ Kraines, S.; Wallace, D. (2006). "Applying Agent-based Simulation in Industrial Ecology". Journal of Industrial Ecology. 10 (1–2): 15–18. doi:10.1162/108819806775545376.
  19. ^ Wall, Göran. "Exergy - a useful concept"
  20. ^ "Industrial Ecology: From Theory to Practice". Archived from the original on 22 February 2006. Retrieved 7 April 2018.

Further reading

External links

Articles and books
Research material
Cleaner production

Cleaner production is a preventive, company-specific environmental protection initiative. It is intended to minimize waste and emissions and maximize product output. By analysing the flow of materials and energy in a company, one tries to identify options to minimize waste and emissions out of industrial processes through source reduction strategies. Improvements of organisation and technology help to reduce or suggest better choices in use of materials and energy, and to avoid waste, waste water generation, and gaseous emissions, and also waste heat and noise.

The concept was developed during the preparation of the Rio Summit as a programme of UNEP (United Nations Environmental Programme) and UNIDO (United Nations Industrial Development Organization) under the leadership of Jacqueline Aloisi de Larderel, the former Assistant Executive Director of UNEP. The programme was meant to reduce the environmental impact of industry. It built on ideas used by 3M in its 3P programme (pollution prevention pays). It has found more international support than all other comparable programmes. The programme idea was described " assist developing nations in leapfrogging from pollution to less pollution, using available technologies". Starting from the simple idea to produce with less waste Cleaner Production was developed into a concept to increase the resource efficiency of production in general. UNIDO has been operating National Cleaner Production Centers and Programmes (NCPCs/NCPPs) with centres in Latin America, Africa, Asia and Europe.In the US, the term pollution prevention is more commonly used for cleaner production.

Examples for cleaner production options are:

Documentation of consumption (as a basic analysis of material and energy flows, e. g. with a Sankey diagram)

Use of indicators and controlling (to identify losses from poor planning, poor education and training, mistakes)

Substitution of raw materials and auxiliary materials (especially renewable materials and energy)

Increase of useful life of auxiliary materials and process liquids (by avoiding drag in, drag out, contamination)

Improved control and automatisation

Reuse of waste (internal or external)

New, low waste processes and technologiesOne of the first European initiatives in cleaner production was started in Austria in 1992 by the BMVIT (Bundesministerium für Verkehr, Innovation und Technologie). This resulted in two initiatives: "Prepare" and EcoProfit.The "PIUS" initiative was founded in Germany in 1999. Since 1994, the United Nations Industrial Development Organization operates the National Cleaner Production Centre Programme with centres in Central America, South America, Africa, Asia, and Europe.

Dematerialization (products)

The dematerialization of a product literally means less, or better yet, no material is used to deliver the same level of functionality to the user. Sharing, borrowing and the organization of group services that facilitate and cater for communities needs could alleviate the requirement of ownership of many products.

In his book ‘'In the Bubble: designing in a complex world'’, John Thakara states that "the average consumer power tool is used for ten minutes in its entire life - but it takes hundreds of times its own weight to manufacture such an object”. A product service system with shared tools could simply offer access to them when needed. This shift from a reliance on products to services is the process of dematerialization. Digital music distribution systems, car clubs, bike hire schemes and laundry services are all examples of dematerialization.

Earth systems engineering and management

Earth systems engineering and management (ESEM) is a discipline used to analyze, design, engineer and manage complex environmental systems. It entails a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. At its core, ESEM looks to "rationally design and manage coupled human-natural systems in a highly integrated and ethical fashion" ESEM is a newly emerging area of study that has taken root at the University of Virginia, Cornell and other universities throughout the United States. Founders of Earth Systems Engineering & Management are Braden Allenby and Michael Gorman.

In the UK, the Centre for Earth Systems Engineering Research (CESER) at Newcastle University has a large ESEM programme, led by Professor Richard Dawson.

Eco-industrial park

An eco-industrial park (EIP) is an industrial park in which businesses cooperate with each other and with the local community in an attempt to reduce waste and pollution, efficiently share resources (such as information, materials, water, energy, infrastructure, and natural resources), and help achieve sustainable development, with the intention of increasing economic gains and improving environmental quality. An EIP may also be planned, designed, and built in such a way that it makes it easier for businesses to co-operate, and that results in a more financially sound, environmentally friendly project for the developer.

The Eco-industrial Park Handbook states that "An Eco-Industrial Park is a community of manufacturing and service businesses located together on a common property. Members seek enhanced environmental, economic, and social performance through collaboration in managing environmental and resource issues."

Based on the concepts of industrial ecology, collaborative strategies not only include by-product synergy ("waste-to-feed" exchanges), but can also take the form of wastewater cascading, shared logistics and shipping & receiving facilities, shared parking, green technology purchasing blocks, multi-partner green building retrofit, district energy systems, and local education and resource centres. This is an application of a systems approach, in which designs and processes/activities are integrated to address multiple objectives.

EIPs can be developed as greenfield land projects, where the eco-industrial intent is present throughout the planning, design and site construction phases, or developed through retrofits and new strategies in existing industrial developments.

Ecological modernization

Ecological modernization is a school of thought in the social sciences that argues that the economy benefits from moves towards environmentalism. It has gained increasing attention among scholars and policymakers in the last several decades internationally. It is an analytical approach as well as a policy strategy and environmental discourse (Hajer, 1995).


Energetics (also called energy economics) is the study of energy under transformation. Because energy flows at all scales, from the quantum level to the biosphere and cosmos, energetics is a very broad discipline, encompassing for example thermodynamics, chemistry, biological energetics, biochemistry and ecological energetics. Where each branch of energetics begins and ends is a topic of constant debate. For example, Lehninger (1973, p. 21) contended that when the science of thermodynamics deals with energy exchanges of all types, it can be called energetics.

Extended producer responsibility

In the field of waste management, extended producer responsibility (EPR) is a strategy to add all of the environmental costs associated with a product throughout the product life cycle to the market price of that product. Extended producer responsibility legislation is a driving force behind the adoption of remanufacturing initiatives because it

"focuses on the end-of-use treatment of consumer products and has the primary aim to increase the amount and degree of product recovery and to minimize the environmental impact of waste materials".The concept was first formally introduced in Sweden by Thomas Lindhqvist in a 1990 report to the Swedish Ministry of the Environment. In subsequent reports prepared for the Ministry, the following definition emerged: "[EPR] is an environmental protection strategy to reach an environmental objective of a decreased total environmental impact of a product, by making the manufacturer of the product responsible for the entire life-cycle of the product and especially for the take-back, recycling and final disposal.

Green economy

The green economy is defined as an economy that aims at reducing environmental risks and ecological scarcities, and that aims for sustainable development without degrading the environment. It is closely related with ecological economics, but has a more politically applied focus. The 2011 UNEP Green Economy Report argues "that to be green, an economy must not only be efficient, but also fair. Fairness implies recognizing global and country level equity dimensions, particularly in assuring a just transition to an economy that is low-carbon, resource efficient, and socially inclusive."A feature distinguishing it from prior economic regimes is the direct valuation of natural capital and ecological services as having economic value (see The Economics of Ecosystems and Biodiversity and Bank of Natural Capital) and a full cost accounting regime in which costs externalized onto society via ecosystems are reliably traced back to, and accounted for as liabilities of, the entity that does the harm or neglects an asset.Green Sticker and ecolabel practices have emerged as consumer facing measurements of friendliness to the environment and sustainable development. Many industries are starting to adopt these standards as a viable way to promote their greening practices in a globalizing economy.

ISO 14031

The ISO 14031:2013 Environmental management - Environmental Performance Evaluation – Guidelines gives guidance on the design and use of environmental performance evaluation, and on identification and selection of environmental performance indicators, for use by all organizations, regardless of type, size, location and complexity.

Industrial metabolism

Industrial metabolism is a concept to describe the material and energy turnover of industrial systems. It was proposed by Robert Ayres in analogy to the biological metabolism as "the whole integrated collection of physical processes that convert raw materials and energy, plus labour, into finished products and wastes..." In analogy to the biological concept of metabolism, which is used to describe the whole of chemical reactions in, for example, a cell to maintain its functions and reproduce itself, the concept of industrial metabolism describes the chemical reactions, transport processes, and manufacturing activities in industry. Industrial metabolism presupposes a connection between different industrial activities by seeing them as part of a larger system, such as a material cycle or the supply chain of a commodity. System scientists, for example in industrial ecology, use the concept as paradigm to study the flow of materials or energy through the industrial system in order to better understand supply chains, the sources and causes of emissions, and the linkages between the industrial and the wider socio-technological system.Industrial metabolism is a subsystem of the anthropogenic or socioeconomic metabolism, which also comprises non-industrial human activities in households or the public sector.

Industrial symbiosis

Industrial Symbiosis a subset of industrial ecology. It describes how a network of diverse organizations can foster eco-innovation and long-term culture change, create and share mutually profitable transactions - and improve business and technical processes.

Although geographic proximity is often associated with industrial symbiosis, it is neither necessary nor sufficient—nor is a singular focus on physical resource exchange. Strategic planning is required to optiize the synergies of co-location. In practice, using industrial symbiosis as an approach to commercial operations – using, recovering and redirecting resources for reuse – results in resources remaining in productive use in the economy for longer. This in turn creates business opportunities, reduces demands on the earth’s resources, and provides a stepping-stone towards creating a circular economy. The industrial symbiosis model devised and managed by International Synergies Limited is a facilitated model operating at the national scale in the United Kingdom (NISP - National Industrial Symbiosis Programme), and at other scales around the world. International Synergies Limited has developed global expertise in IS, instigating programmes in Belgium, Brazil, Canada, China, Denmark, Finland, Hungary, Italy, Mexico, Poland, Romania, Slovakia, South Africa and Turkey, as well as the UK. Industrial symbiosis is a subset of industrial ecology, with a particular focus on material and energy exchange. Industrial ecology is a relatively new field that is based on a natural paradigm, claiming that an industrial ecosystem may behave in a similar way to the natural ecosystem wherein everything gets recycled, albeit the simplicity and applicability of this paradigm has been questioned.

James J. Kay

James J. Kay (June 18, 1954 – May 30, 2004) was an ecological scientist and policy-maker. He was a respected physicist best known for his theoretical work on complexity and thermodynamics.

Material flow analysis

Material flow analysis (MFA), also referred to as substance flow analysis (SFA), is an analytical method to quantify flows and stocks of materials or substances in a well-defined system. MFA is an important tool to study the bio-physical aspects of human activity on different spatial and temporal scales. It is considered a core method of industrial ecology or anthropogenic, urban, social and industrial metabolism. MFA is used to study material, substance, or product flows across different industrial sectors or within ecosystems. MFA can also be applied to a single industrial installation, for example, for tracking nutrient flows through a waste water treatment plant. When combined with an assessment of the costs associated with material flows this business-oriented application of MFA is called material flow cost accounting. MFA is an important tool to study the circular economy and to devise material flow management. Since the 1990s, the number of publications related to material flow analysis has grown steadily. Peer-reviewed journals that publish MFA-related work include the Journal of Industrial Ecology, Ecological Economics, Environmental Science and Technology, and Resources, Conservation, and Recycling.

Polluter pays principle

In environmental law, the polluter pays principle is enacted to make the party responsible for producing pollution responsible for paying for the damage done to the natural environment. It is regarded as a regional custom because of the strong support it has received in most Organisation for Economic Co-operation and Development (OECD) and European Union countries. It is a fundamental principle in US environmental law.

Source reduction

Source reduction is activities designed to reduce the volume, mass, or toxicity of products throughout the life cycle. It includes the design and manufacture, use, and disposal of products with minimum toxic content, minimum volume of material, and/or a longer useful life.

An example of source reduction is use of a Reusable shopping bag at the grocery store; although it uses more material than a single-use disposable bag, the material per use is less.


Thermoeconomics, also referred to as biophysical economics, is a school of heterodox economics that applies the laws of statistical mechanics to economic theory. Thermoeconomics can be thought of as the statistical physics of economic value and is a subfield of econophysics.

Urban metabolism

Urban metabolism is a model to facilitate the description and analysis of the flows of the materials and energy within cities, such as undertaken in a material flow analysis of a city. It provides researchers with a metaphorical framework to study the interactions of natural and human systems in specific regions. From the beginning, researchers have tweaked and altered the parameters of the urban metabolism model. C. Kennedy and fellow researchers have produced a clear definition in the 2007 paper The Changing Metabolism of Cities claiming that urban metabolism is "the sum total of the technical and socio-economic process that occur in cities, resulting in growth, production of energy and elimination of waste." With the growing concern of climate change and atmospheric degradation, the use of the urban metabolism model has become a key element in determining and maintaining levels of sustainability and health in cities around the world. Urban metabolism provides a unified or holistic viewpoint to encompass all of the activities of a city in a single model.

Waste hierarchy

Waste hierarchy is a tool used in the evaluation of processes that protect the environment alongside resource and energy consumption to most favourable to least favourable actions. The hierarchy establishes preferred program priorities based on sustainability. To be sustainable, waste management cannot be solved only with technical end-of-pipe solutions and an integrated approach is necessary.The waste management hierarchy indicates an order of preference for action to reduce and manage waste, and is usually presented diagrammatically in the form of a pyramid. The hierarchy captures the progression of a material or product through successive stages of waste management, and represents the latter part of the life-cycle for each product.The aim of the waste hierarchy is to extract the maximum practical benefits from products and to generate the minimum amount of waste. The proper application of the waste hierarchy can have several benefits. It can help prevent emissions of greenhouse gases, reduces pollutants, save energy, conserves resources, create jobs and stimulate the development of green technologies.

Waste minimisation

Waste minimisation is a set of processes and practices intended to reduce the amount of waste produced. By reducing or eliminating the generation of harmful and persistent wastes, waste minimisation supports efforts to promote a more sustainable society. Waste minimisation involves redesigning products and processes and/or changing societal patterns of consumption and production.The most environmentally resourceful, economically efficient, and cost effective way to manage waste often is to not have to address the problem in the first place. Managers see waste minimisation as a primary focus for most waste management strategies. Proper waste treatment and disposal can require a significant amount of time and resources; therefore, the benefits of waste minimisation can be considerable if carried out in an effective, safe and sustainable manner.

Traditional waste management focuses on processing waste after it is created, concentrating on re-use, recycling, and waste-to-energy conversion. Waste minimisation involves efforts to avoid creating the waste during manufacturing. To effectively implement waste minimisation the manager requires knowledge of the production process, cradle-to-grave analysis (the tracking of materials from their extraction to their return to earth) and details of the composition of the waste.

The main sources of waste vary from country to country. In the UK, most waste comes from the construction and demolition of buildings, followed by mining and quarrying, industry and commerce. Household waste constitutes a relatively small proportion of all waste. Industrial waste is often tied to requirements in the supply chain. For example, a company handling a product may insist that it should be shipped using particular packing because it fits downstream needs.

Industrial ecology
Related fields
Air pollution
Water pollution
Soil contamination
Radioactive contamination
Other types of pollution
Pollution response
Inter-government treaties
Major organizations
See also
Systems types
Theoretical fields
Systems scientists

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.