ISO 31-13

ISO 31-13 gives name, symbol and definition for 62 quantities and units of solid state physics. Where appropriate, conversion factors are also given.

ISO/IEC 80000

ISO 80000 or IEC 80000 is an international standard promulgated jointly by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC).

The standard introduces the International System of Quantities (ISQ). It is a style guide for the use of physical quantities and units of measurement, formulas involving them, and their corresponding units, in scientific and educational documents for worldwide use. In most countries, the notations used in mathematics and science textbooks at schools and universities follow closely the guidelines in this standard.The ISO/IEC 80000 family of standards was completed with the publication of Part 1 in November 2009.

ISO 31

ISO 31 (Quantities and units, International Organization for Standardization, 1992) is a deprecated international standard for the use of physical quantities and units of measurement, and formulas involving them, in scientific and educational documents. It is superseded by ISO/IEC 80000.

Index of physics articles (I)

The index of physics articles is split into multiple pages due to its size.

To navigate by individual letter use the table of contents below.

Italic type

In typography, italic type is a cursive font based on a stylized form of calligraphic handwriting. Owing to the influence from calligraphy, italics normally slant slightly to the right. Italics are a way to emphasise key points in a printed text, to identify many types of creative works, or, when quoting a speaker, a way to show which words they stressed. One manual of English usage described italics as "the print equivalent of underlining".The name comes from the fact that calligraphy-inspired typefaces were first designed in Italy, to replace documents traditionally written in a handwriting style called chancery hand. Aldus Manutius and Ludovico Arrighi (both between the 15th and 16th centuries) were the main type designers involved in this process at the time. Different glyph shapes from Roman type are usually used – another influence from calligraphy – and upper-case letters may have swashes, flourishes inspired by ornate calligraphy. An alternative is oblique type, in which the type is slanted but the letterforms do not change shape: this less elaborate approach is used by many sans-serif typefaces.

Typographical conventions in mathematical formulae

Typographical conventions in mathematical formulae provide uniformity across mathematical texts and help the readers of those texts to grasp new concepts quickly.

Mathematical notation includes letters from various alphabets, as well as special mathematical symbols. Letters in various fonts often have specific, fixed meanings in particular areas of mathematics. A mathematical article or a theorem typically starts from the definitions of the introduced symbols, such as: "Let G = (V, E) be a graph with the vertex set V and edge set E...". Theoretically it is admissible to write "Let X = (a, q) be a graph with the vertex set a and edge set q..."; however, this would decrease readability, since the reader has to consciously memorize these unusual notations in a limited context.

Usage of subscripts and superscripts is also an important convention. In the early days of computers with limited graphical capabilities for text, subscripts and superscripts were represented with the help of additional notation. In particular, n2 could be written as n^2 or n**2 (the latter borrowed from FORTRAN) and n2 could be written as n_2.

ISO standards by standard number
1–9999
10000–19999
20000+

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.