Heinz Billing

Heinz Billing (7 April 1914 – 4 January 2017) was a German physicist and computer scientist, widely considered a pioneer in the construction of computer systems and computer data storage, who built a prototype laser interferometric gravitational wave detector.[1]

Heinz Billing
Heinz Billing-2012
Heinz Billing in 2012
Born7 April 1914
Died4 January 2017 (aged 102)
Alma materUniversity of Göttingen
Known forPrototype laser interferometric gravitational wave detector
Data storage device
AwardsKonrad Zuse Medal (1987)
Scientific career
Computer science
Experimental Gravitation
InstitutionsAerodynamic Test Centre at Göttingen[1]
Max Planck Institute for Astrophysics
Max Planck Institute for Physics
Doctoral advisorWalter Gerlach
Eduard Rüchardt


Billing was born in Salzwedel, in Saxony-Anhalt, Germany. After studying mathematics and physics in University of Göttingen he received his doctorate in 1938 in Munich at the age of 24.

On 3 October 1943 he married Anneliese Oetker. Billing has three children: Heiner Erhard Billing (born November 18, 1944 in Salzwedel), Dorit Gerda Gronefeld Billing (born 27 June 1946 in Göttingen) and Arend Gerd Billing (born 19 September 1954 in Göttingen).

He turned 100 in April 2014[2][3] and died on 4 January 2017 at the age of 102.[4] Advanced LIGO detected the third gravitational wave event GW170104 on the same day.[5]

Computer science

Billing worked at the Aerodynamic Research Institute in Göttingen, where he developed a magnetic drum memory.

According to Billing's memoirs, published by Genscher, Düsseldorf (1997), there was a meeting between Alan Turing and Konrad Zuse.[6] It took place in Göttingen in 1947. The interrogation had the form of a colloquium. Participants were Womersley, Turing, Porter from England and a few German researchers like Zuse, Walther, and Billing. (For more details see Herbert Bruderer, Konrad Zuse und die Schweiz).

After a brief stay at the University of Sydney, Billing returned to join the Max Planck Institute for Physics in 1951. From 1952 through 1961 the group under Billing's direction constructed a series of four digital computers: the G1, G2, G1a, and G3.[7]

He is the designer of the first German sequence-controlled electronic digital computer as well as of the first German stored-program electronic digital computer.[6]

Gravitational wave detector

After transistors had been firmly established, when microelectronics arrived, after scientific computers were slowly overshadowed by commercial applications and computers were mass-produced in factories, Heinz Billing left the computer field in which he had been a pioneer for nearly 30 years.[1]

In 1972, Billing returned to his original field of physics, at the Max Planck Institute's new location at Garching near Munich.[8] Beginning in 1972, Heinz Billing became involved in gravitational physics, when he tried to verify the detection claims made by American physicist Joseph Weber. Weber's results were considered to be proven wrong by these experiments.[2]

In 1975, Billing acted on a proposal by Rainer Weiss from the Massachusetts Institute of technology (MIT) to use laser interferometry to detect gravitational waves. He and colleagues built a 3m prototype Michelson interferometer using optical delay lines.[9] From 1980 onward Billing commissioned the development and construction in MPA in Garching of a laser interferometer with an arm length of 30m. Without the knowledge gained from this prototype, the LIGO project would not have been started when it did.[2][10][11][12][13]

Awards and honors

In 1987, Heinz Billing received the Konrad Zuse Medal for the invention of magnetic drum storage. In 2015 he received the Order of Merit of the Federal Republic of Germany.

In 1993, the annual Heinz Billing prize for "outstanding contributions to computational science" was established by the Max Planck Society in his honor, with a prize amount of 5000 Euro.[14]

Selected publications

  • Heinz Billing: Ein Interferenzversuch mit dem Lichte eines Kanalstrahles. J. A. Barth, Leipzig 1938.
  • Heinz Billing, Wilhelm Hopmann: Mikroprogramm-Steuerwerk. In: Elektronische Rundschau. Heft 10, 1955.
  • Heinz Billing, Albrecht Rüdiger: Das Parametron verspricht neue Möglichkeiten im Rechenmaschinenbau. In: eR - Elektronische Rechenanlagen. Band 1, Heft 3, 1959.
  • Heinz Billing: Lernende Automaten. Oldenbourg Verlag, München 1961.
  • Heinz Billing: Die im MPI für Physik und Astrophysik entwickelte Rechenanlage G3. In: eR - Elektronische Rechenanlagen. Band 5, Heft 2, 1961.
  • Heinz Billing: Magnetische Stufenschichten als Speicherelemente. In: eR - Elektronische Rechenanlagen. Band 5, Heft 6, 1963.
  • Heinz Billing: Schnelle Rechenmaschinenspeicher und ihre Geschwindigkeits- und Kapazitätsgrenzen. In: eR - Elektronische Rechenanlagen. Band 5, Heft 2, 1963.
  • Heinz Billing, Albrecht Rüdiger, Roland Schilling: BRUSH - Ein Spezialrechner zur Spurerkennung und Spurverfolgung in Blasenkammerbildern. In: eR - Elektronische Rechenanlagen. Band 11, Heft 3, 1969.
  • Heinz Billing: Zur Entwicklungsgeschichte der digitalen Speicher. In: eR - Elektronische Rechenanlagen. Band 19, Heft 5, 1977.
  • Heinz Billing: A wide-band laser interferometer for the detection of gravitational radiation. progress report, Max-Planck-Institut für Physik und Astrophysik, München 1979.
  • Heinz Billing: Die Göttinger Rechenmaschinen G1, G2, G3. In: Entwicklungstendenzen wissenschaftlicher Rechenzentren, Kolloquium, Göttingen. Springer, Berlin 1980, ISBN 3-540-10491-7.
  • Heinz Billing: The Munich gravitational wave detector using laser interferometry. Max-Planck-Institut für Physik und Astrophysik, München 1982.
  • Heinz Billing: Die Göttinger Rechenmaschinen G1, G2 und G3. In: MPG-Spiegel. 4, 1982.
  • Heinz Billing: Meine Lebenserinnerungen. Selbstverlag, 1994.
  • Heinz Billing: Ein Leben zwischen Forschung und Praxis. Selbstverlag F. Genscher, Düsseldorf 1997.
  • Heinz Billing: Fast memories for computers and their limitations regarding speed and capacity (Schnelle Rechenmaschinen- speicher und ihre Geschwindigkeits- und Kapazitätsgrenzen). In: IT - Information Technology. Band 50, Heft 5, 2008.


  1. ^ a b c J. A. N. Lee (1995). "Heinz Billing". Computer pioneers. IEEE Computer Society. ISBN 0-8186-6357-X. Retrieved 21 February 2016.
  2. ^ a b c "Computer and gravitational wave astronomy pioneer Heinz Billing celebrates his 100th birthday". Benjamin Knispel. GEO600.org. 7 April 2014. Retrieved 11 June 2016.
  3. ^ Detlef Borchers (7 April 2014). "Computerpionier Heinz Billing feiert 100. Geburtstag". heise online (in German). Retrieved 21 February 2016.
  4. ^ "Computerpionier Heinz Billing ist tot". Bild (in German). 1 August 2017.
  5. ^ B. P. Abbott; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (1 June 2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". Physical Review Letters. 118 (22): 221101. arXiv:1706.01812. Bibcode:2017PhRvL.118v1101A. doi:10.1103/PhysRevLett.118.221101.
  6. ^ a b Herbert Bruderer. "Did Alan Turing interrogate Konrad Zuse in Göttingen in 1947?" (PDF). Retrieved 21 February 2016.
  7. ^ Rojas, Raúl; Hashagen, Ulf (2002). "The G1 and the Göttingen Family of Digital Computers". The First Computers: History and Architectures. MIT Press. pp. 295, 312. ISBN 978-0-262-68137-7.
  8. ^ "Wer?" [Who? (Heinz Billing on magnetic storage drum)] (PDF) (in German).
  9. ^ Jim Hough; Sheila Rowan (2005). "Laser interferometry for the detection of gravitational waves" (PDF). Journal of Optics A: Pure and Applied Optics. 7: S257-S264. Bibcode:2005JOptA...7S.257H. doi:10.1088/1464-4258/7/6/001.
  10. ^ "Q&A: Rainer Weiss on LIGO's origins". news.mit.edu. Retrieved 21 February 2016.
  11. ^ Albrecht Rüdiger. "In memoriam Jürgen Ehlers" (PDF). aei.mpg.de. Archived from the original (PDF) on 21 February 2016. Retrieved 21 February 2016.
  12. ^ H. Billing; K. Maischberger; A. Rüdiger; R. Schilling; L. Schnupp; W. Winkler (1979). "An argon laser interferometer for the detection of gravitational radiation". Journal of Physics E: Scientific Instruments. 12 (11): 1043–1050. Bibcode:1979JPhE...12.1043B. doi:10.1088/0022-3735/12/11/010.
  13. ^ D. Shoemaker; R. Schilling; L. Schnupp; W. Winkler; K. Maischberger; A. Rüdiger (1988). "Noise behavior of the Garching 30-meter prototype gravitational-wave detector". Phys. Rev. D. 38 (2): 423–432. Bibcode:1988PhRvD..38..423S. doi:10.1103/PhysRevD.38.423.
  14. ^ "The Heinz Billing Prize for the Advancement of Scientific computing". MPG.

External links

2017 in Germany

This list details notable events occurring in 2017 in Germany. Major events included the death of Helmut Kohl and the legalization of same-sex marriage.

Alan Turing

Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher and theoretical biologist. Turing was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general-purpose computer. Turing is widely considered to be the father of theoretical computer science and artificial intelligence. Despite these accomplishments, he was never fully recognised in his home country during his lifetime, due to his homosexuality, which was then a crime in the UK.

During the Second World War, Turing worked for the Government Code and Cypher School (GC&CS) at Bletchley Park, Britain's codebreaking centre that produced Ultra intelligence. For a time he led Hut 8, the section that was responsible for German naval cryptanalysis. Here, he devised a number of techniques for speeding the breaking of German ciphers, including improvements to the pre-war Polish bombe method, an electromechanical machine that could find settings for the Enigma machine.

Turing played a pivotal role in cracking intercepted coded messages that enabled the Allies to defeat the Nazis in many crucial engagements, including the Battle of the Atlantic, and in so doing helped win the war. Counterfactual history is difficult with respect to the effect Ultra intelligence had on the length of the war, but at the upper end it has been estimated that this work shortened the war in Europe by more than two years and saved over 14 million lives.After the war, Turing worked at the National Physical Laboratory, where he designed the Automatic Computing Engine, which was one of the first designs for a stored-program computer. In 1948, Turing joined Max Newman's Computing Machine Laboratory at the Victoria University of Manchester, where he helped develop the Manchester computers and became interested in mathematical biology. He wrote a paper on the chemical basis of morphogenesis and predicted oscillating chemical reactions such as the Belousov–Zhabotinsky reaction, first observed in the 1960s.

Turing was prosecuted in 1952 for homosexual acts; the Labouchere Amendment had mandated that "gross indecency" was a criminal offence in the UK. He accepted chemical castration treatment, with DES, as an alternative to prison. Turing died in 1954, 16 days before his 42nd birthday, from cyanide poisoning. An inquest determined his death as a suicide, but it has been noted that the known evidence is also consistent with accidental poisoning.In 2009, following an Internet campaign, British Prime Minister Gordon Brown made an official public apology on behalf of the British government for "the appalling way he was treated". Queen Elizabeth II granted Turing a posthumous pardon in 2013. The Alan Turing law is now an informal term for a 2017 law in the United Kingdom that retroactively pardoned men cautioned or convicted under historical legislation that outlawed homosexual acts.


Billing may refer to:

The process of sending an invoice (a bill) to customers for goods or services

Electronic billing

Telecommunications billing, systems and methods that collect information about calls and other services to be billed to the subscriber

Medical billingBilling may also refer to:

Billing (filmmaking), a list of movie credits

Billing (birds), a behavior in some birds involving touching and clasping each other's bills

Billing, Northamptonshire

Billing Aquadrome, a leisure park in Great Billing, Northamptonshire

Billing Hall, Northamptonshire

Rawdon Billing, a hill in West Yorkshire

Billingr, in Norse mythology the father of a maiden desired by Odin

Ed Seidel

Edward Seidel (born August 21, 1957) is the Vice President for Economic Development and Innovation for the University of Illinois System, as well as a Founder Professor in the Department of Physics and a professor in the Department of Astronomy at the University of Illinois at Urbana-Champaign. He was the director of the National Center for Supercomputing Applications at Illinois from 2014 to 2017.

From September 2012 until January 2014, he was the senior vice president for research and innovation at the Skolkovo Institute of Science and Technology. Previously, he was the assistant director for Mathematical and Physical Sciences at the National Science Foundation and was director of NSF's Office of Cyberinfrastructure.Before moving to NSF, Seidel was the founding director of the LSU Center for Computation & Technology, or CCT, in Baton Rouge, Louisiana. Seidel is a career computer scientist and physicist who has received a number of awards for his work. His most noted achievements are in the field of numerical relativity, which involves solving Einstein's equations on computers. Seidel's research groups are known for modeling black hole collisions and for work in scientific computing. Seidel is also a co-founder of the Cactus Framework.In Louisiana, Seidel served as the first Chief Scientist for the Louisiana Optical Network Initiative, or LONI, which connects supercomputing resources throughout Louisiana to enable faster and more accurate research collaboration.

Seidel, who has a Ph.D. in astrophysics from Yale University, moved to Baton Rouge to lead the CCT in 2003. Prior to his work at CCT, he was with the Albert Einstein Institute in Potsdam, Germany and also worked as a research scientist and professor at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.In November 2006, Seidel received the Sidney Fernbach Award at the Supercomputing Conference in Tampa, Florida."For outstanding contributions to the development of software for HPC and Grid computing to enable the collaborative numerical investigation of complex problems in physics; in particular, modeling black hole collisions." This award, which is one of the highest honors in computing, was awarded for his achievements in numerical relativity.

Ed Seidel was also awarded the Heinz-Billing-Preis of the Max Planck Society in 1998, and shared the Gordon Bell Prize in 2001 with colleagues.Seidel is related to Chicago artist Emory Seidel.

Eduard Rüchardt

Eduard Rüchardt (March 29, 1888 – March 7, 1962) was a German physicist. In modern times Rüchardt is mainly noted for the experiment named after him. However, Rüchardt's chief topic was the study of canal rays. This work started under the supervision of Wilhelm Wien and continued later in collaborations with Walther Gerlach.


GEO600 is a gravitational wave detector located near Sarstedt in the South of Hanover, Germany. It is designed and operated by scientists from the Max Planck Institute for Gravitational Physics, Max Planck Institute of Quantum Optics and the Leibniz Universität Hannover, along with University of Glasgow, University of Birmingham and Cardiff University in the United Kingdom, and is funded by the Max Planck Society and the Science and Technology Facilities Council (STFC). GEO600 is part of a worldwide network of gravitational wave detectors. This instrument, and its sister interferometric detectors, when operational, are some of the most sensitive gravitational wave detectors ever designed. They are designed to detect relative changes in distance of the order of 10−21, about the size of a single atom compared to the distance from the Sun to the Earth. GEO600 is capable of detecting gravitational waves in the frequency range 50 Hz to 1.5 kHz. Construction on the project began in 1995.

Hannah Bast

Hannah Bast is a German computer scientist known for her work on routing in transportation networks and search engines. She works as a professor at the University of Freiburg, where she holds the chair in algorithms and data structures and is dean of the faculty of engineering. She is one of the members of the Enquete Commission on Artificial Intelligence of the German federal parliament.Bast studied at Saarland University, earning bachelor's degrees in mathematics and computer science in 1990, a master's degree in computer science in 1994, and a doctorate in 2000. Her dissertation, supervised by Kurt Mehlhorn, was Provably Optimal Scheduling of Similar Tasks. She worked as a researcher at the Max Planck Institute for Informatics until 2007, and as a visiting scientist at Google from 2008 to 2009, before moving to Freiburg in 2009. Bast was program chair for Track B (Engineering and Applications) of the 2018 European Symposium on Algorithms, where she conducted an experiment on the quality of peer review by having two parallel program committees reviewing the complete set of submissions independently.Bast won several awards: the Saarland University Dissertation Award, the Otto Hahn Medal from the Max Planck Society, the Heinz Billing Prize (together with Stefan Funke), the Meyer Struckmann Science Prize, the Alcatel-Lucent Research Award, a Google Focused Research Award (together with Dorothea Wagner and Peter Sanders), and various teaching awards.

Heinz Billing Prize

In 1993, the Heinz Billing Prize for the advancement of scientific computation was presented for the first time. The aim of this award is to honour the achievements of those who have spent time and effort developing the hardware and software crucial for scientific advances. It is the purpose of the award to honour outstanding scientific contributions in all areas of computational science, specifically:

Modelling and computer simulation

Design of user interfaces based on new scientific findings

Data handling and data analysis procedures

Scientific visualization of data and processes

Joseph Weber

Joseph Weber (May 17, 1919 – September 30, 2000) was an American physicist. He gave the earliest public lecture on the principles behind the laser and the maser and developed the first gravitational wave detectors (Weber bars).

Konrad Zuse

Konrad Zuse (German: [ˈkɔnʁat ˈtsuːzə]; 22 June 1910 – 18 December 1995) was a German civil engineer, inventor and computer pioneer. His greatest achievement was the world's first programmable computer; the functional program-controlled Turing-complete Z3 became operational in May 1941. Thanks to this machine and its predecessors, Zuse has often been regarded as the inventor of the modern computer.Zuse was also noted for the S2 computing machine, considered the first process control computer. He founded one of the earliest computer businesses in 1941, producing the Z4, which became the world's first commercial computer. From 1943 to 1945 he designed the first high-level programming language, Plankalkül. In 1969, Zuse suggested the concept of a computation-based universe in his book Rechnender Raum (Calculating Space).

Much of his early work was financed by his family and commerce, but after 1939 he was given resources by the Nazi German government. Due to World War II, Zuse's work went largely unnoticed in the United Kingdom and the United States. Possibly his first documented influence on a US company was IBM's option on his patents in 1946.

There is a replica of the Z3, as well as the original Z4, in the Deutsches Museum in Munich. The Deutsches Technikmuseum in Berlin has an exhibition devoted to Zuse, displaying twelve of his machines, including a replica of the Z1 and several of Zuse's paintings.

Konrad Zuse Medal

The Konrad Zuse Medal is the highest award of the Gesellschaft für Informatik (German Computer Science Society), given every two years to one or sometimes two leading German computer scientists. It is named after German computer pioneer Konrad Zuse.

Note that a different medal with the same name is also given out by the Zentralverband des Deutschen Baugewerbes (Central Association of German Construction).


The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These can detect a change in the 4 km mirror spacing of less than a ten-thousandth the charge diameter of a proton.The initial LIGO observatories were funded by the National Science Foundation (NSF) and were conceived, built and are operated by Caltech and MIT. They collected data from 2002 to 2010 but no gravitational waves were detected.

The Advanced LIGO Project to enhance the original LIGO detectors began in 2008 and continues to be supported by the NSF, with important contributions from the UK Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council. The improved detectors began operation in 2015. The detection of gravitational waves was reported in 2016 by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration with the international participation of scientists from several universities and research institutions. Scientists involved in the project and the analysis of the data for gravitational-wave astronomy are organized by the LSC, which includes more than 1000 scientists worldwide, as well as 440,000 active Einstein@Home users as of December 2016.LIGO is the largest and most ambitious project ever funded by the NSF.

In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry C. Barish "for decisive contributions to the LIGO detector and the observation of gravitational waves."As of December 2018, LIGO has made eleven detections of gravitational waves, of which ten are from binary black hole mergers. The other event was the first detection of a collision of two neutron stars, on 17 August 2017 which simultaneously produced optical signals detectable by conventional telescopes. All eleven events were observed in data from the first and second observing runs of Advanced LIGO.

List of German physicists

This is a list of German physicists.

List of centenarians (scientists and mathematicians)

The following is a list of centenarians – specifically, people who became famous as scientists and mathematicians – known for reasons other than their longevity. For more lists, see lists of centenarians.

List of contributors to general relativity

This is a partial list of persons who have made major contributions to the development of standard mainstream general relativity. One simple rule of thumb for who belongs here is whether their contribution is recognized in the canon of standard general relativity textbooks. Some related lists are mentioned at the bottom of the page.

Max Planck Institute for Physics

The Max Planck Institute for Physics (MPP) is a physics institute in Munich, Germany that specializes in high energy physics and astroparticle physics. It is part of the Max-Planck-Gesellschaft and is also known as the Werner Heisenberg Institute, after its first director in its current location.

The founding of the institute traces back to 1914, as an idea from Fritz Haber, Walther Nernst, Max Planck, Emil Warburg, Heinrich Rubens. On October 1, 1917, the institute was officially founded in Berlin as Kaiser-Wilhelm-Institut für Physik (KWIP, Kaiser Wilhelm Institute for Physics) with Albert Einstein as the first head director. In October 1922, Max von Laue succeeded Einstein as managing director. Einstein gave up his position as a director of the institute in April 1933. The Institute took part in the German nuclear weapon project from 1939-1942.A year after the end of fighting in Europe in World War II, the institute was moved to Göttingen and renamed the Max Planck Institute for Physics, with Heisenberg continuing as managing director. In 1946, Carl Friedrich von Weizsäcker and Karl Wirtz joined the faculty as the directors for theoretical and experimental physics, respectively.In June 1942, Werner Heisenberg took over as managing director. In 1955 the institute made the decision to move to Munich, and soon after began construction of its current building, designed by Sep Ruf. The institute moved into its current location on September 1, 1958 and took on the new name the Max Planck Institute for Physics and Astrophysics, still with Heisenberg as the managing director. In 1991, the institute was split into the Max Planck Institute for Physics, the Max Planck Institute for Astrophysics and the Max Planck Institute for Extraterrestrial Physics.


Salzwedel (German pronunciation: [ˈzaltsveːdəl], officially known as Hansestadt Salzwedel, is a town in Saxony-Anhalt, Germany. It is the capital of the district (Kreis) of Altmarkkreis Salzwedel, and has a population of approximately 21,500. Salzwedel is located on the German Timber-Frame Road.

Walther Gerlach

Walther Gerlach (1 August 1889 – 10 August 1979) was a German physicist who co-discovered spin quantization in a magnetic field, the Stern–Gerlach effect.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.