Hafnium dioxide

Hafnium(IV) oxide is the inorganic compound with the formula HfO2. Also known as hafnia, this colourless solid is one of the most common and stable compounds of hafnium. It is an electrical insulator with a band gap of 5.3~5.7 eV.[1] Hafnium dioxide is an intermediate in some processes that give hafnium metal.

Hafnium(IV) oxide is quite inert. It reacts with strong acids such as concentrated sulfuric acid and with strong bases. It dissolves slowly in hydrofluoric acid to give fluorohafnate anions. At elevated temperatures, it reacts with chlorine in the presence of graphite or carbon tetrachloride to give hafnium tetrachloride.

Hafnium dioxide
Hafnium(IV) oxide structure
Hafnium(IV) oxide
IUPAC name
Hafnium(IV) oxide
Other names
Hafnium dioxide
3D model (JSmol)
ECHA InfoCard 100.031.818
Molar mass 210.49 g/mol
Appearance off-white powder
Density 9.68 g/cm3, solid
Melting point 2,758 °C (4,996 °F; 3,031 K)
Boiling point 5,400 °C (9,750 °F; 5,670 K)
−23.0·10−6 cm3/mol
Flash point Non-flammable
Related compounds
Other cations
Titanium(IV) oxide
Zirconium(IV) oxide
Related compounds
Hafnium nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


Hafnia adopts the same structure as zirconia (ZrO2). Unlike TiO2, which features six-coordinate Ti in all phases, zirconia and hafnia consists of seven-coordinate metal centres. A variety of crystalline phases have been experimentally observed, including cubic (Fm-3m), tetragonal (P42/nmc), monoclinic (P21/c) and orthorhombic (Pbca and Pnma).[2] It is also known that hafnia may adopt two other orthorhombic metastable phases (space group Pca21 and Pmn21) over a wide range of pressures and temperatures,[3] presumably being the sources of the ferroelectricity recently observed in thin films of hafnia.[4]

Thin films of hafnium oxides, used in modern semiconductor devices, are often deposited with an amorphous structure (commonly by atomic layer deposition). Possible benefits of the amorphous structure have led researchers to alloy hafnium oxide with silicon (forming hafnium silicates) or aluminium, which were found to increase the crystallization temperature of hafnium oxide.[5]


Hafnia is used in optical coatings, and as a high-κ dielectric in DRAM capacitors and in advanced metal-oxide-semiconductor devices.[6] Hafnium-based oxides were introduced by Intel in 2007 as a replacement for silicon oxide as a gate insulator in field-effect transistors.[7] The advantage for transistors is its high dielectric constant: the dielectric constant of HfO2 is 4–6 times higher than that of SiO2.[8] The dielectric constant and other properties depend on the deposition method, composition and microstructure of the material.

In recent years, hafnium oxide (as well as doped and oxygen-deficient hafnium oxide) attracts additional interest as a possible candidate for resistive-switching memories[9] and CMOS-compatible ferroelectric field effect transistors and memory chips.[10][11][12][13]

Because of its very high melting point, hafnia is also used as a refractory material in the insulation of such devices as thermocouples, where it can operate at temperatures up to 2500 °C.[14]

Multilayered films of hafnium dioxide, silica, and other materials have been developed for use in passive cooling of buildings. The films reflect sunlight and radiate heat at wavelengths that pass through Earth's atmosphere, and can have temperatures several degrees cooler than surrounding materials under the same conditions.[15]


  1. ^ Bersch, Eric; et al. (2008). "Band offsets of ultrathin high-k oxide films with Si". Phys. Rev. B. 78 (8): 085114. Bibcode:2008PhRvB..78h5114B. doi:10.1103/PhysRevB.78.085114.
  2. ^ Table III, V. Miikkulainen; et al. (2013). "Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends". Journal of Applied Physics. 113 (2): 021301–021301–101. Bibcode:2013JAP...113b1301M. doi:10.1063/1.4757907.
  3. ^ T. D. Huan; V. Sharma; G. A. Rossetti, Jr.; R. Ramprasad (2014). "Pathways towards ferroelectricity in hafnia". Physical Review B. 90 (6): 064111. arXiv:1407.1008. Bibcode:2014PhRvB..90f4111H. doi:10.1103/PhysRevB.90.064111.
  4. ^ T. S. Boscke (2011). "Ferroelectricity in hafnium oxide thin films". Applied Physics Letters. 99 (10): 102903. Bibcode:2011ApPhL..99j2903B. doi:10.1063/1.3634052.
  5. ^ J.H. Choi; et al. (2011). "Development of hafnium based high-k materials—A review". Materials Science and Engineering: R. 72 (6): 97–136. doi:10.1016/j.mser.2010.12.001.
  6. ^ H. Zhu; C. Tang; L. R. C. Fonseca; R. Ramprasad (2012). "Recent progress in ab initio simulations of hafnia-based gate stacks". Journal of Materials Science. 47 (21): 7399–7416. Bibcode:2012JMatS..47.7399Z. doi:10.1007/s10853-012-6568-y.
  7. ^ Intel (11 November 2007). "Intel's Fundamental Advance in Transistor Design Extends Moore's Law, Computing Performance".
  8. ^ Wilk G. D., Wallace R. M., Anthony J. M. (2001). "High-κ gate dielectrics: Current status and materials properties considerations". Journal of Applied Physics. 89 (10): 5243–5275. Bibcode:2001JAP....89.5243W. doi:10.1063/1.1361065.CS1 maint: Multiple names: authors list (link), Table 1
  9. ^ K.-L. Lin; et al. (2011). "Electrode dependence of filament formation in HfO2 resistive-switching memory". Journal of Applied Physics. 109 (8): 084104–084104–7. Bibcode:2011JAP...109h4104L. doi:10.1063/1.3567915.
  10. ^ Imec (7 June 2017). "Imec demonstrates breakthrough in CMOS-compatible Ferroelectric Memory".
  11. ^ The Ferroelectric Memory Company (8 June 2017). "World's first FeFET-based 3D NAND demonstration".
  12. ^ T. S. Böscke, J. Müller, D. Bräuhaus (7 Dec 2011). "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors". 2011 International Electron Devices Meeting. IEEE. doi:10.1109/IEDM.2011.6131606.CS1 maint: Uses authors parameter (link)
  13. ^ Nivole Ahner (August 2018). Mit HFO2 voll CMOS-kompatibel (in German). Elektronik Industrie.
  14. ^ Very High Temperature Exotic Thermocouple Probes product data, Omega Engineering, Inc., retrieved 2008-12-03
  15. ^ "Aaswath Raman | Innovators Under 35 | MIT Technology Review". August 2015. Retrieved 2015-09-02.
Conductive atomic force microscopy

Conductive atomic force microscopy (C-AFM) or current sensing atomic force microscopy (CS-AFM) is a mode in atomic force microscopy (AFM) that simultaneously measures the topography of a material and the electric current flow at the contact point of the tip with the surface of the sample. The topography is measured by detecting the deflection of the cantilever using an optical system (laser + photodiode), while the current is detected using a current-to-voltage preamplifier. The fact that the CAFM uses two different detection systems (optical for the topography and preamplifier for the current) is a strong advantage compared to scanning tunneling microscopy (STM). Basically, in STM the topography picture is constructed based on the current flowing between the tip and the sample (the distance can be calculated depending on the current). Therefore, when a portion of a sample is scanned with an STM, it is not possible to discern if the current fluctutations are related to a change in the topography (due to surface roughness) or to a change in the sample conductivity (due to intrinsic inhomogeneities).

The CAFM is usually operated in contact mode; the tip can be kept at one location while the voltage and current signals are applied/read, or it can be moved to scan a specific region of the sample under a constant voltage (and the current is collected). Recently, some manufacturers provide the option of measuring the current in semi-contact mode. The CAFM was first developed by John O'Shea and co-workers at the University of Cambridge in 1993, and it is referred to in the literature by several names, including C-AFM, local-conductivity AFM (LC-AFM), conductive probe AFM (CP-AFM), conductive scanning probe microscopy (C-SPM) or conductive scanning force microscopy (C-SFM), although CAFM is the most widespread.


A radiation dosimeter is a device that measures exposure to ionizing radiation. As a personal dosimeter it is normally worn by the person being monitored, and is a record of the radiation dose received. Older dosimeters, such as a film badge, require processing after use to reveal the cumulative dose received. Modern electronic personal dosimeters can give a continuous readout of cumulative dose and current dose rate, and can warn the person wearing it when a specified dose rate or a cumulative dose is exceeded.

Electronic personal dosimeter

The electronic personal dosimeter (EPD) is an electronic device that has a number of sophisticated functions, such as continual monitoring which allows alarm warnings at preset levels and live readout of dose accumulated. These are especially useful in high dose areas where residence time of the wearer is limited due to dose constraints. The dosimeter can be reset, usually after taking a reading for record purposes, and thereby re-used multiple times.


Hafnium is a chemical element with symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dmitri Mendeleev in 1869, though it was not identified until 1923, by Coster and Hevesy, making it the last stable element to be discovered. Hafnium is named after Hafnia, the Latin name for Copenhagen, where it was discovered.Hafnium is used in filaments and electrodes. Some semiconductor fabrication processes use its oxide for integrated circuits at 45 nm and smaller feature lengths. Some superalloys used for special applications contain hafnium in combination with niobium, titanium, or tungsten.

Hafnium's large neutron capture cross-section makes it a good material for neutron absorption in control rods in nuclear power plants, but at the same time requires that it be removed from the neutron-transparent corrosion-resistant zirconium alloys used in nuclear reactors.

Hafnium disulfide

Hafnium disulfide is an inorganic compound of hafnium and sulfur. It is a layered dichalcogenide with the chemical formula is HfS2. A few atomic layers of this material can be exfoliated using the standard Scotch Tape technique (see graphene) and used for the fabrication of a field-effect transistor. High-yield synthesis of HfS2 has also been demonstrated using liquid phase exfoliation, resulting in the production of stable few-layer HfS2 flakes. Hafnium disulfide powder can be produced by reacting hydrogen sulfide and hafnium oxides at 500–1300 °C.

Hafnium tetrachloride

Hafnium(IV) chloride is the inorganic compound with the formula HfCl4. This colourless solid is the precursor to most hafnium organometallic compounds. It has a variety of highly specialized applications, mainly in materials science and as a catalyst.

High-κ dielectric

The term high-κ dielectric refers to a material with a high dielectric constant κ (as compared to silicon dioxide). High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device. The implementation of high-κ gate dielectrics is one of several strategies developed to allow further miniaturization of microelectronic components, colloquially referred to as extending Moore's Law.

Sometimes these materials are called "high-k" instead of "high-κ" (high kappa).

Resistive random-access memory

Resistive random-access memory (ReRAM or RRAM) is a type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material, often referred to as a memristor. This technology bears some similarities to conductive-bridging RAM (CBRAM), and phase-change memory (PCM).

CBRAM involves one electrode providing ions that dissolve readily in an electrolyte material, while PCM involves generating sufficient Joule heating to effect amorphous-to-crystalline or crystalline-to-amorphous phase changes. On the other hand, ReRAM involves generating defects in a thin oxide layer, known as oxygen vacancies (oxide bond locations where the oxygen has been removed), which can subsequently charge and drift under an electric field. The motion of oxygen ions and vacancies in the oxide would be analogous to the motion of electrons and holes in a semiconductor.

Although ReRAM was initially seen as a replacement technology for flash memory, the cost and performance benefits of ReRAM have not been enough for companies to proceed with the replacement. Apparently, a broad range of materials can be used for ReRAM. However, the discovery that the popular high-κ gate dielectric HfO2 can be used as a low-voltage ReRAM has encouraged researchers to investigate more possibilities.

Among these, SiOx has been found to offer significant benefits and is currently being explored by some companies such as Weebit-Nano Ltd.RRAM® is the registered trademark name of Sharp Corporation, one of Japanese electronic components manufacturer, in some countries including EU.

Titanium dioxide

Titanium dioxide, also known as titanium(IV) oxide or titania, is the naturally occurring oxide of titanium, chemical formula TiO2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. Generally, it is sourced from ilmenite, rutile and anatase. It has a wide range of applications, including paint, sunscreen and food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million metric tons. It has been estimated that titanium dioxide is used in two-thirds of all pigments, and the oxide has been valued at $13.2 billion.


Yttralox is a transparent ceramic consisting of yttria (Y2O3) containing approximately 10% thorium dioxide (ThO2). It was one of the first transparent ceramics produced, and was invented in 1966 by Richard C. Anderson at the General Electric Research Laboratory while sintering mixtures of rare earth minerals.

Zirconium dioxide

Zirconium dioxide (ZrO2), sometimes known as zirconia (not to be confused with zircon), is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.