Guild (ecology)

A guild (or ecological guild) is any group of species that exploit the same resources, or that exploit different resources in related ways.[1][2][3] It is not necessary that the species within a guild occupy the same, or even similar, ecological niches. An ecological niche is defined as the role an organism plays in its community, i.e. decomposer, primary producer, etc.[4] Guilds are defined according to the locations, attributes, or activities of their component species. For example, the mode of acquiring nutrients, the mobility, and the habitat zones that the species occupy or exploit can be used to define a guild. The number of guilds occupying an ecosystem is termed its disparity. Members of a guild within a given ecosystem could be competing for resources, such as space or light, while cooperating in resisting wind stresses, attracting pollinators, or detecting predators, such as happens among savannah-dwelling antelope and zebra.

A guild does not typically have strict, or even clearly defined boundaries, nor does it need to be taxonomically cohesive. A broadly defined guild will almost always have constituent guilds; for example, grazing guilds will have some species that concentrate on coarse, plentiful forage, while others concentrate on low-growing, finer plants. Each of those two sub-guilds may be regarded as guilds in appropriate contexts, and they might, in turn, have sub-guilds in more closely selective contexts. Some authorities even speak of guilds in terms of a fractal resource model.[5] This concept arises in several related contexts, such as the metabolic theory of ecology, the scaling pattern of occupancy, and spatial analysis in ecology, all of which are fundamental concepts in defining guilds.

An ecological guild is not to be confused with a taxocene, a group of phylogenetically related organisms in a community that do not necessarily share the same or similar niches (for example, "the insect community"). Nor is a guild the same as a trophic species, organisms of the same species that have mutual predators and prey.[6]

Example guilds


  1. ^ Simberloff, D; Dayan, T (1991). "The Guild Concept and the Structure of Ecological Communities". Annual Review of Ecology and Systematics. 22: 115. doi:10.1146/
  2. ^ Encyclopædia Britannica article on guilds
  3. ^ Williams, SE; Hero, JM (1998). "Rainforest frogs of the Australian Wet Tropics: guild classification and the ecological similarity of declining species". Proceedings: Biological Sciences. 265 (1396): 597–602. doi:10.1098/rspb.1998.0336. PMC 1689015. PMID 9881468.
  4. ^ "the definition of ecological niche". Retrieved 2017-05-02.
  5. ^ Ritchie, Mark E. (2010). Scale, Heterogeneity, and the Structure and Diversity of Ecological Communities. Volume 45 of Monographs in population biology. Princeton: Princeton University Press. ISBN 978-0-691-09070-2.
  6. ^ Dunne, Jennifer A.; Williams, Richard J.; Martinez, Neo D. (2002-10-01). "Food-web structure and network theory: The role of connectance and size". Proceedings of the National Academy of Sciences. 99 (20): 12917–12922. doi:10.1073/pnas.192407699. ISSN 0027-8424. PMC 130560. PMID 12235364.
Body size and species richness

The body size-species richness distribution is a pattern observed in the way taxa are distributed over large spatial scales. The number of species that exhibit small body size generally far exceed the number of species that are large-bodied. Macroecology has long sought to understand the mechanisms that underlie the patterns of biodiversity, such as the body size-species richness pattern.

This pattern was first observed by Hutchinson and MacArthur (1959), and it appears to apply equally well to a broad range of taxa: from birds and mammals to insects, bacteria (May, 1978; Brown and Nicoletto, 1991) and deep sea gastropods (McClain, 2004). Nonetheless, its ubiquity remains undecided. Most studies focus on the distribution of taxonomic fractions of largely non-interacting species such as birds or mammals; this article is primarily based on those data.

Niche apportionment models

Mechanistic models for niche apportionment are biological models used to explain relative species abundance distributions. These niche apportionment models describe how species break up resource pool in multi-dimensional space, determining the distribution of abundances of individuals among species. The relative abundances of species are usually expressed as a Whittaker plot, or rank abundance plot, where species are ranked by number of individuals on the x-axis, plotted against the log relative abundance of each species on the y-axis. The relative abundance can be measured as the relative number of individuals within species or the relative biomass of individuals within species.

Food webs
Example webs
Ecology: Modelling ecosystems: Other components


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.