The Great American Interchange was an important late Cenozoicpaleozoogeographic event in which land and freshwater fauna migrated from North America via Central America to South America and vice versa, as the volcanic Isthmus of Panama rose up from the sea floor and bridged the formerly separated continents. Although there were earlier dispersals, probably over water, the migration accelerated dramatically about 2.7 million years (Ma) ago during the Piacenzian age.[1] It resulted in the joining of the Neotropic (roughly South America) and Nearctic (roughly North America) ecozones definitively to form the Americas. The interchange is visible from observation of both biostratigraphy and nature (neontology). Its most dramatic effect is on the zoogeography of mammals but it also gave an opportunity for reptiles, amphibians, arthropods, weak-flying or flightless birds, and even freshwater fish to migrate.
Analogous interchanges occurred earlier in the Cenozoic, when the formerly isolated land masses of India[6] and Africa[7]made contact with Eurasia c. 50 and 30 Ma ago, respectively.
Examples of migrant species in both Americas. Olive green silhouettes denote North American species with South American ancestors; blue silhouettes denote South American species of North American origin.
Marsupials present in South America included didelphimorphs (opossums) and several other smallgroups; larger predatory relatives of these also existed, like the borhyaenids and the sabertoothThylacosmilus (sparassodontmetatherians which are no longer considered to be true marsupials).[18] After the extinction of sparassodonts, and before the arrival of carnivorans, giant opossums like Thylophorops represented true marsupial macropredators.
Metatherians (and a few xenarthran armadillos like Macroeuphractus) were the only South American mammals to specialize as carnivores; their relative inefficiency created openings for nonmammalian predators to play more prominent roles than usual (similar to the situation in Australia). Sparassodonts and giant opossums shared the ecological niches for large predators with fearsome flightless "terror birds" (phorusrhacids), whose closest extant relatives are the seriemas.[19][20] (Similar large terrestrial predatory birds, the bathornithids, were found in North America during the early Cenozoic, but they died out in the Early Miocene, about 20 million years ago.) Through the skies over late Miocene South America (6 Ma ago) soared the largest flying bird known, the teratornArgentavis, with a wing span of 6 m or more, which may have subsisted in part on the leftovers of Thylacosmilus kills.[21] Terrestrial ziphodont[n 5]sebecid (metasuchian) crocodyliforms were also present at least through the middle Miocene[22][23][24][25] and maybe to the Miocene-Pliocene boundary.[26] Some of South America's aquatic crocodilians, such as Gryposuchus, Mourasuchus and Purussaurus, reached monstrous sizes, with lengths up to 12 m (comparable to the largest Mesozoic crocodyliforms). They shared their habitat with one of the largest turtles of all time, the 3.3 m (11 ft) Stupendemys.
The giant anteater, Myrmecophaga tridactyla, the largest living descendant of South American's early Cenozoic mammalian fauna
The notoungulates and litopterns had many strange forms, like Macrauchenia, a camel-like litoptern with a small proboscis. They also produced a number of familiar-looking body types that represent examples of parallel or convergent evolution: one-toed Thoatherium had legs like those of a horse, Pachyrukhos resembled a rabbit, Homalodotherium was a semi-bipedal clawed browser like a chalicothere, and horned Trigodon looked like a rhino. Both groups started evolving in the Lower Paleocene, possibly from condylarth stock, diversified, dwindled before the great interchange, and went extinct at the end of the Pleistocene. The pyrotheres and astrapotheres were also strange but were less diverse and disappeared earlier, well before the interchange.
The invasions of South America started about 40 Ma ago (middle Eocene), when caviomorph rodents arrived in South America.[30][31][32] Their subsequent vigorous diversification displaced some of South America's small marsupials and gave rise to – among others – capybaras, chinchillas, viscachas, and New World porcupines. (The independent development of spines by New and Old World porcupines is another example of parallel evolution.) This invasion most likely came from Africa.[33][34] The crossing from West Africa to the northeast corner of Brazil was much shorter then, due to continental drift, and may have been aided by island hopping (e.g. via St. Paul's Rocks, if they were an inhabitable island at the time) and westward oceanic currents.[35] Crossings of the ocean were accomplished when at least one fertilised female (more commonly a group of animals) accidentally floated over on driftwood or mangrove rafts. (Island-hopping caviomorphs would subsequently colonize the West Indies as far as the Bahamas,[36][37] reaching the Greater Antilles by the early Oligocene.[38]) Over time, some caviomorph rodents evolved into larger forms that competed with some of the native South American ungulates, which may have contributed to the gradual loss of diversity suffered by the latter after the early Oligocene.[8] By the Pliocene, some caviomorphs (e.g., Josephoartigasia) attained sizes on the order of 500 kg (1,100 lb) or larger.[39]
Later (by 36 Ma ago)[40]primates followed, again from Africa in a fashion similar to that of the rodents.[30] Primates capable of migrating had to be small. Like caviomorph rodents, South American monkeys are believed to be a clade (i.e., monophyletic). However, although they would have had little effective competition, all extant New World monkeys appear to derive from a radiation that occurred long afterwards, in the Early Miocene about 18 Ma ago.[30] Subsequent to this, monkeys apparently most closely related to titis island-hopped to Cuba, Hispaniola and Jamaica. Additionally, a find of seven 21-Ma-old apparent cebid teeth in Panama suggests that South American monkeys had dispersed across the seaway separating Central and South America by that early date. However, all extant Central American monkeys are believed to be descended from much later migrants, and there is as yet no evidence that these early Central American cebids established an extensive or long-lasting population, perhaps due to a shortage of suitable rainforest habitat at the time.[41][42]
Remarkably, the descendents of those few bedraggled waifs that crawled ashore from their rafts of African flotsam in the Eocene now constitute more than twice as many of South America's species as the descendents of all the nonflying mammals previously resident on the continent (372 caviomorph and monkey species versus 136 marsupial and xenarthran species).[n 6]
Many of South America's bats may have arrived from Africa during roughly the same period, possibly with the aid of intervening islands, although by flying rather than floating. Noctilionoid bats ancestral to those in the neotropical families Furipteridae, Mormoopidae, Noctilionidae, Phyllostomidae, and Thyropteridae are thought to have reached South America from Africa in the Eocene,[44] possibly via Antarctica.[45] Similarly, molossid bats may have reached South America from Africa in as many as five dispersals, starting in the Eocene.[44]Emballonurid bats may have also reached South America from Africa about 30 Ma ago, based on molecular evidence.[44][46]Vespertilionid bats may have arrived in five dispersals from North America and one from Africa.[44]Natalid bats are thought to have arrived during the Pliocene from North America via the Caribbean.[44]
Tortoises also arrived in South America in the Oligocene. It was long thought that they had come from North America, but a recent comparative genetic analysis concludes that the South American genus Chelonoidis (formerly part of Geochelone) is actually most closely related to African hingeback tortoises.[n 7][47] Tortoises are aided in oceanic dispersal by their ability to float with their heads up, and to survive up to six months without food or water.[47] South American tortoises then went on to colonize the West Indies[48] and Galápagos Islands. A number of clades of American geckos seem to have rafted over from Africa during both the Paleogene and Neogene.[49] Skinks of the related genera Mabuya and Trachylepis apparently dispersed across the Atlantic from Africa to South America and Fernando de Noronha, respectively, during the last 9 Ma.[50] Surprisingly, South America's burrowing amphisbaenians[51] and blind snakes[52] also appear to have rafted from Africa, as does the hoatzin, a weak-flying bird of South American rainforests.[53]
The earliest traditionally recognized mammalian arrival from North America was a procyonid that island-hopped from Central America before the isthmus of Panamaland bridge formed, around 7.3 Ma ago.[54] This was South America's first eutherian carnivore. South American procyonids then diversified into forms now extinct (e.g. the "dog-coati" Cyonasua, which evolved into the bear-like Chapalmalania). However, all extant procyonid genera appear to have originated in North America.[55] It has been suggested that the first South American procyonids may have contributed to the extinction of sebecid crocodilians by eating their eggs, but this view has not been universally viewed as plausible.[n 8][25] The procyonids were followed to South America by rafting/island-hopping hog-nosed skunks[56] and sigmodontine rodents[57][58][59][60] The oryzomyine tribe of sigmodontine rodents went on to colonize the Lesser Antilles up to Anguilla.
One group has proposed that a number of large Neartic herbivores actually reached South America as early as 9–10 Ma ago, in the late Miocene, via the "Baudo pathway", an early land bridge that was probably incomplete and required some swimming and island-hopping to traverse. The limited evidence for these early immigrants may reflect their presence primarily in the Amazon basin, an area where fewer fossils have been collected. These taxa are: a proboscidean (Amahuacatherium),[61][62][n 9]peccaries (Sylvochoerus and Waldochoerus),[64]tapirs and a palaeomerycid (from a family probably ancestral to cervids), Surameryx; the paleomerycids were probably unable to successfully colonize South America.[65]
Similarly, megalonychid and mylodontid ground sloths island-hopped to North America by 9 Ma ago.[57]Megalonychids had colonized the Antilles previously, by the early Miocene.[66] (Megatheriid and nothrotheriid ground sloths did not migrate north until the formation of the isthmus.) Terror birds may have also island-hopped to North America as early as 5 Ma ago.[67]
The Caribbean islands were populated primarily by species from South America. This was due to the prevailing direction of oceanic currents, rather than to a competition between North and South American forms.[36][37] (Except in the case of Jamaica, oryzomyine rodents of North American origin were able to enter the region only after invading South America.)
The Great American Biotic Interchange
The Virginia opossum, Didelphis virginiana, the only marsupial in temperate North America
†Arctotherium bonariense, a South American short-faced bear
In general, the initial net migration was symmetrical. Later on, however, the Neotropic species proved far less successful than the Nearctic. This misfortune happened both ways. Northwardly migrating animals often were not able to compete for resources as well as the North American species already occupying the same ecological niches; those that did become established were not able to diversify much.[68] Southwardly migrating Nearctic species established themselves in larger numbers and diversified considerably more,[68] and are thought to have caused the extinction of a large proportion of the South American fauna.[56][69][70] (There were no extinctions in North America plainly linked to South American immigrants.[n 11]) Although terror birds were able to invade part of North America, their success was temporary; this lineage disappeared about two million years ago. The large Neotropic metatherian predators fared no better. Native South American ungulates also did poorly, with only a handful of genera withstanding the northern onslaught. (It has long been recognized that several of the largest forms, macraucheniids and toxodontids, survived to the end of the Pleistocene. Recent fossil finds indicate that one species of the horse-like proterotheriid litopterns did as well.[72] The notoungulate mesotheriids and hegetotheriids also managed to hold on at least part way through the Pleistocene.)[A] On the other hand, South America's small marsupials survived in large numbers, while the primitive-looking xenarthrans proved to be surprisingly competitive and became the most successful invaders of North America. The African immigrants, the caviomorph rodents and platyrrhine monkeys, were less impacted by the interchange than most of South America's 'old-timers', although the caviomorphs suffered a significant loss of diversity,[n 12][n 13] including the elimination of the largest forms (e.g. the dinomyids). With the exception of the North American porcupine and several extinct porcupines and capybaras, however, they did not migrate past Central America.[n 14]
The initial wave of southwardly migrating Nearctic carnivorans rapidly occupied the South American predatory niches, displacing phorusrhacids and sparassodonts,[n 15] as well as eliminating Chapalmalania. It has been argued that canids probably played the major role in the borhyaenids' extinction; they are ecologically and morphologically more similar to them than other carnivorans, and are also the most diverse family of modern carnivorans on the continent.[75] The paucity of early competition and plentiful prey seems to have allowed short-faced bears to rapidly evolve into the largest known bear or terrestrial mammalian carnivore species; Arctotherium angustidens is estimated to have weighed around 1600 kg. Later species of Arctotherium exhibited a trend towards smaller size and a more omnivorous diet, probably due to increasing competition from later-arriving or evolving carnivores.[76][77] In contrast, Smilodon showed a trend toward increasing body size that culminated in the appearance of S. populator, at up to nearly 500 kg the most massive felid known.
Due in large part to the continued success of the xenarthrans, one area of South American ecospace the Nearctic invaders were unable to dominate was the niches for megaherbivores.[78] Before 12,000 years ago, South America was home to about 25 species of herbivores weighing more than 1000 kg, consisting of Neotropic ground sloths, glyptodonts and toxodontids, as well as gomphotheres and camelids of Nearctic origin.[n 16] Native South American forms made up about 75% of these species. However, none of these megaherbivores have survived.
Armadillos, opossums and porcupines are present in North America today because of the Great American Interchange. Opossums and porcupines were among most successful northward migrants, reaching as far as Canada and Alaska, respectively. Most major groups of xenarthrans were present in North America up until the end-PleistoceneQuaternary extinction event (as a result of at least eight successful invasions of temperate North America, and at least six more invasions of Central America only). Among the megafauna, ground sloths were notably successful emigrants; four different lineages invaded North America. A megalonychid representative, Megalonyx, spread as far north as the Yukon[80] and Alaska,[81] and might well have invaded Eurasia had a suitable habitat corridor across Beringia been present.
Generally speaking, however, the dispersal and subsequent explosive adaptive radiation of sigmodontine rodents throughout South America (leading to over 80 currently recognized genera) was vastly more successful (both spatially and by number of species) than any northward migration of South American mammals. Other examples of North American mammal groups that diversified conspicuously in South America include canids and cervids, both of which currently have 3 or 4 genera in North America, 2 or 3 in Central America, and 6 in South America.[n 17][n 18] Although members of Canis (specifically, coyotes) currently range only as far south as Panama,[n 19] South America still has more extant genera of canids than any other continent.[n 17]
The effect of formation of the isthmus on the marine biota of the area was the inverse of its effect on terrestrial organisms, a development that has been termed the "Great American Schism". The connection between the east Pacific Ocean and the Caribbean (the Central American Seaway) was severed, setting now-separated populations on divergent evolutionary paths.[85] Caribbean species also had to adapt to an environment of lower productivity after the inflow of nutrient-rich water of deep Pacific origin was blocked.[86]
Reasons for success or failure
A north-south climatic asymmetry in the Americas. Tropical climate zones, which are warm year-round and moist at least part of the year (blue zones Af, Am and Aw), cover much of South America and nearly all of Central America, but very little of the rest of North America.
The eventual triumph of the Nearctic migrants was ultimately based on geography, which played into the hands of the northern invaders in two crucial respects. The first was a matter of climate. Any species that reached Panama from either direction obviously had to be able to tolerate moist tropical conditions. Those migrating southward would then be able to occupy much of South America without encountering climates that were markedly different. However, northward migrants would have encountered drier and/or cooler conditions by the time they reached the vicinity of the Trans-Mexican Volcanic Belt. The challenge this climatic asymmetry (see map on right) presented was particularly acute for Neotropic species specialized for tropical rainforest environments, who had little prospect of penetrating beyond Central America. As a result, Central America currently has 41 mammal species of Neotropical origin,[n 20] compared to only 3 for temperate North America. However, species of South American origin (marsupials, xenarthrans, caviomorph rodents and monkeys) still comprise only 21% of species from nonflying, nonmarine mammal groups in Central America, while North American invaders constitute 49% of species from such groups in South America. Thus, climate alone cannot fully account for the greater success of species of Nearctic origin during the interchange.
Land areas over which ancestors of Neotropic (green) and Nearctic (red) species could wander via two-way migrations during the latter part of the Cenozoic prior to the interchange. The smaller area available for Neotropic species to evolve in tended to put them at a competitive disadvantage.
The second and more important advantage geography gave to the northerners is related to the land area available for their ancestors to evolve in. During the Cenozoic, North America was periodically connected to Eurasia via Beringia, allowing repeated migrations back and forth to unite the faunas of the two continents.[n 21] Eurasia was connected in turn to Africa, which contributed further to the species that made their way to North America.[n 22] South America, on the other hand, was connected only to Antarctica and Australia, two much smaller and less hospitable continents, and only in the early Cenozoic. Moreover, this land connection does not seem to have carried much traffic (apparently no mammals other than marsupials and perhaps a few monotremes ever migrated by this route), particularly in the direction of South America. This means that Northern Hemisphere species arose over a land area roughly six times greater than was available to South American species. North American species were thus products of a larger and more competitive arena,[n 23][68][87][88] where evolution would have proceeded more rapidly. They tended to be more efficient and brainier,[n 24][n 25] generally able to outrun and outwit their South American counterparts, who were products of an evolutionary backwater. These advantages can be clearly seen in the cases of ungulates and their predators, where South American forms were replaced wholesale by the invaders.
The greater eventual success of South America's African immigrants compared to its native early Cenozoic mammal fauna is another example of this phenomenon, since the former evolved over a greater land area; their ancestors migrated from Eurasia to Africa, two significantly larger continents, before finding their way to South America.[43]
Against this backdrop, the ability of South America's xenarthrans to compete effectively against the northerners represents a special case. The explanation for the xenarthrans' success lies in part in their idiosyncratic approach to defending against predation, based on possession of body armor and/or formidable claws. The xenarthrans did not need to be fleet-footed or quick-witted to survive. Such a strategy may have been forced on them by their low metabolic rate (the lowest among the therians).[96][97] Their low metabolic rate may in turn have been advantageous in allowing them to subsist on less abundant[98] and/or less nutritious food sources. Unfortunately, the defensive adaptations of the large xenarthrans would have offered little protection against humans armed with spears and other projectiles.
Late Pleistocene extinctions
The North American porcupine, Erethizon dorsatum, the largest surviving Neotropic migrant to temperate North America
At the end of the Pleistocene epoch, about 12,000 years ago, three dramatic developments occurred in the Americas at roughly the same time (geologically speaking). Paleoindians invaded and occupied the New World, the last glacial period came to an end, and a large fraction of the megafauna of both North and South America went extinct. This wave of extinctions swept off the face of the Earth many of the successful participants of the Great American Interchange, as well as other species that had not migrated. All the pampatheres, glyptodonts, ground sloths, equids, proboscids,[99][100][101]giant short-faced bears, dire wolves and machairodont species of both continents disappeared. The last of the South and Central American notoungulates and litopterns died out, as well as North America's giant beavers, lions, dholes, cheetahs, and many of its antilocaprid, bovid, cervid, tapirid and tayassuid ungulates. Some groups disappeared over most or all of their original range but survived in their adopted homes, e.g. South American tapirs, camelids and tremarctine bears (cougars and jaguars may have been temporarily reduced to South American refugia also). Others, such as capybaras, survived in their original range but died out in areas they had migrated to. Notably, this extinction pulse eliminated all Neotropic migrants to North America larger than about 15 kg (the size of a big porcupine), and all native South American mammals larger than about 65 kg (the size of a big capybara or giant anteater). In contrast, the largest surviving native North American mammal, the wood bison, can exceed 900 kg, and the largest surviving Nearctic migrant to South America, Baird's tapir, can reach 400 kg.
Baird's tapir, Tapirus bairdii, the largest surviving Nearctic migrant to South America
The near-simultaneity of the megafaunal extinctions with the glacial retreat and the peopling of the Americas has led to proposals that both climate change and human hunting played a role.[78] Although the subject is contentious,[102][103][104][105][106] a number of considerations suggest that human activities were pivotal.[79][107] The extinctions did not occur selectively in the climatic zones that would have been most affected by the warming trend, and there is no plausible general climate-based megafauna-killing mechanism that could explain the continent-wide extinctions. The climate change took place worldwide, but had little effect on the megafauna in areas like Africa and southern Asia, where megafaunal species had coevolved with humans. Numerous very similar glacial retreats had occurred previously within the ice age of the last several Ma without ever producing comparable waves of extinction in the Americas or anywhere else. Similar megafaunal extinctions have occurred on other recently populated land masses (e.g. Australia,[108][109]Japan,[110]Madagascar,[111]New Zealand,[112] and many smaller islands around the world, such as Cyprus,[113]Crete, Tilos and New Caledonia[114]) at different times that correspond closely to the first arrival of humans at each location. These extinction pulses invariably swept rapidly over the full extent of a contiguous land mass, regardless of whether it was an island or a hemisphere-spanning set of connected continents. This was true despite the fact that all the larger land masses involved (as well as many of the smaller ones) contained multiple climatic zones that would have been affected differently by any climate changes ongoing at the time. However, on sizable islands far enough offshore from newly occupied territory to escape immediate human colonization, megafaunal species sometimes survived for many thousands of years after they or related species became extinct on the mainland; examples include giant kangaroos in Tasmania,[115][116]giantChelonoidis tortoises of the Galápagos Islands (formerly also of South America[78]), giant Dipsochelys tortoises of the Seychelles (formerly also of Madagascar), giant meiolaniid turtles on Lord Howe Island, New Caledonia and Vanuatu (previously also of Australia),[117][n 26]ground sloths on the Antilles,[120][121]Steller's sea cows off the Commander Islands[122] and woolly mammoths on Wrangel Island[123] and Saint Paul Island.[124] The glacial retreat may have played a primarily indirect role in the extinctions in the Americas by simply facilitating the movement of humans southeastward from Beringia down to North America. The reason that a number of groups went extinct in North America but lived on in South America (while there are no examples of the opposite pattern) appears to be that the dense rainforest of the Amazon basin and the high peaks of the Andes provided environments that afforded a degree of protection from human predation.[125][n 27][n 28]
South American invasions of North America exclusive of Central America
Extant or extinct (†) North American taxa whose ancestors migrated out of South America:[n 29]
Cricetid – primarily sigmodontine – rats and mice (Cricetidae: Sigmodontinae) – the nonsigmodontines consist of two species present only in Colombia and Ecuador[n 36]
†American lion (Panthera leo atrox), reported from Peru[165] and Argentina and Chile;[166] however, the former set of remains has later been identified as belonging to a jaguar[167] and the latter set of remains were initially identified as being from jaguars
^During the Eocene, astrapotheres[9] and litopterns[10][11] were also present in Antarctica.
^Sequencing of collagen from fossils of one recently extinct species each of notoungulates and litopterns has indicated that these orders comprise a sister group to the perissodactyls.[12][13] Mitochondrial DNA obtained from Macrauchenia corroborates this and gives an estimated divergence date of 66 Ma ago.[14]
^Once in Australia, facing less competition, marsupials diversified to fill a much larger array of niches than in South America, where they were largely carnivorous.
^It is the sister group to a clade containing all other extant australidelphians (roughly 238 species).
^Ziphodont (lateromedially compressed, recurved and serrated) teeth tend to arise in terrestrial crocodilians because, unlike their aquatic cousins, they are unable to dispatch their prey by simply holding them underwater and drowning them; they thus need cutting teeth with which to slice open their victims.
^It is also notable that both simian primates (ancestral to monkeys) and hystricognath rodents (ancestral to caviomorphs) are believed to have arrived in Africa by rafting from Eurasia about 40 Ma ago.[43]
^An alternative explanation blames climatic and physiographic changes associated with the uplift of the Andes.[25]
^The status of Amahuacatherium is controversial, and it is sometimes considered as a misinterpreted fossil of a Pleistocene gomphothere.[63]
^Of the 6 families of North American rodents that did not originate in South America, only beavers and mountain beavers failed to migrate to South America. (However, human-introduced beavers have become serious pests in Tierra del Fuego.)
^In this connection, however, it is interesting to note that chalicotheres, clawed perissodactyl herbivores ecologically similar to ground sloths, died out in North America in the Miocene about 9 Ma ago, while they survived to the early Pleistocene in Asia and Africa.[71]
^Of the 11 extant families of South American caviomorph rodents, 5 are present in Central America; only 2 of these, Erethizontidae and Caviidae, ever reached North America. (The nutria/coypu has been introduced to a number of North American locales.)
^The dog-like borhyaenids were already in decline before the main pulse of the interchange, at a time when Thylacosmilus and phorusrhacids were still common. Suggested reasons for this decline include competition with phorusrhacids, carnivorous opossums, or early-arriving procyonids.[74] However, it is clear that the remaining sparassodonts and most of the phorusrhacids (Titanis being an exception) disappeared quickly once canids and felids reached South America.
^P. S. Martin (2005), pp. 30–37, 119.[79] The figure of 25 South American megaherbivore species breaks down as follows: 4 gomphotheres, 2 camelids, 9 ground sloths, 5 glyptodonts, and 5 toxodontids. This can be compared to Africa's present and recent total of 6 megaherbivores: 1 giraffe, 1 hippo, 2 rhinos and 2 elephants (considering the African forest elephant as a separate species).
^Including extinct genera, South America has hosted 9 genera of cervids, 8 genera of mustelids, and 10 genera of canids. However, some of this diversity of South American forms apparently arose in North or Central America prior to the interchange.[68] There is significant disagreement in the literature concerning how much of the diversification of South America's canids occurred prior to the invasions. A number of studies concur that the grouping of endemic South American canids (excluding Urocyon and Canis, although sometimes transferring C. gezi to the South American group[82]) is a clade.[82][83][84] However, different authors conclude that members of this clade reached South America in at least two,[83] three to four,[82] or six[84] invasions from North America.
^Canis, e.g. Canis dirus, was present in South America until the end of the Pleistocene.
^During the Miocene alone, between about 23 and 5 Ma ago, 11 episodes of invasions of North America from Eurasia have been recognized, bringing a total of 81 new genera into North America.[68]
^The combination of Africa, Eurasia and North America was termed the "World Continent" by George Gaylord Simpson.[73]
^According to data on the EQ (encephalization quotient, a measure of the brain to body size ratio adjusted for the expected effect of differences in body size) of fossil ungulates compiled by H. Jerison,[89] North American ungulates showed a trend towards greater EQs going from the Paleogene to the Neogene periods (average EQs of 0.43 and 0.64, respectively), while the EQs of South American ungulates were static over the same time interval (average EQ unchanged at 0.48).[8] This analysis was later criticized.[90] Jerison subsequently presented data suggesting that native South American ungulates also lagged in the relative size of their neocortex (a measurement not subject to the vagaries of body mass estimation).[91] It is interesting to note that the late survivor Toxodon had one of the highest EQ values (0.88) among native Neotropic ungulates.[90]
Jerison also found that Neogene xenarthrans had low EQs, similar to those he obtained for South American ungulates.[89]
^The estimated EQ of Thylacosmilus atrox, 0.41 (based on a brain mass of 43.2 g, a body mass of 26.4 kg,[92] and an EQ of 43.2/[0.12*26400^(2/3)][91]), is high for a sparassodont,[93] but is lower than that of modern felids, with a mean value of 0.87.[94] Estimates of 0.38[95] and 0.59[94] have been given for the EQ of much larger Smilodon fatalis (based on body mass estimates of 330 and 175 kg, respectively).
^The giant tortoises of Asia and Africa[118] died out much earlier in the Quaternary than those of South America, Madagascar and Australia, while those of North America[119] died out around the same time.
^A number of recently extinct North American (and in some cases also South American) taxa such as tapirs, equids, camelids, saiga antelope, proboscids, dholes and lions survived in the Old World, probably mostly for different reasons – tapirs being a likely exception, since their Old World representative survived only in the rainforests of Southeast Asia. (Cheetahs in the broadest sense could be added to this list, although the New and Old World forms are in different genera.) Old World herbivores may in many cases have been able to learn to be vigilant about the presence of humans during a more gradual appearance (by development or migration) of advanced human hunters in their ranges. In the cases of predators, the Old World representatives in at least some locations would thus have suffered less from extinctions of their prey species. In contrast, the musk ox represents a rare example of a megafaunal taxon that recently became extinct in Asia but survived in remote areas of arctic North America (its more southerly-distributed relatives such as Harlan's musk ox and the shrub ox were less fortunate).
^ abcThis listing currently has fairly complete coverage of mammals, but only spotty coverage of other groups. Crossings by nonflying mammals and birds occurred during the last 10 Ma. Crossings by fish, arthropods, rafting amphibians and reptiles, and flying bats and birds were made before 10 Ma ago in many cases. Taxa listed as invasive did not necessarily cross the isthmus themselves; they may have evolved in the adopted land mass from ancestral taxa that made the crossing.
^While all megalonychid ground sloths are extinct, extant two-toed tree sloths are from the same family. Three-toed tree sloths, in contrast, are not closely related to any of the groups of extinct ground sloths.
^Mixotoxodon remains have been collected in Central America and Mexico as far north as Veracruz and Michoacán, with a possible find in Tamaulipas;[131] additionally, one fossil tooth has been identified in eastern Texas, United States.[132]
^For the purposes of this article, all northwardly migrating Neotropic taxa that failed to reach the territory of the continental U.S. will be treated as having only reached Central America. While Central America is usually defined physiographically as ending at the Isthmus of Tehuantepec, or less commonly, at the Trans-Mexican Volcanic Belt, most of the taxa that proceeded further but failed to reach the present Mexican border are or were confined to tropical or subtropical ecozones similar to those of Central America. Examples include the giant anteater, the grayish mouse opossum, the lowland paca and Geoffroy's spider monkey.
^It has been proposed that monkeys invaded Central America in at least three and probably four waves, as follows: (1) an initial invasion by A. pigra and S. oerstedii ~ 3 Ma ago; (2) an invasion by A. palliata (giving rise to A. coibensis), A. geoffroyi and C. capucinus ~ 2 Ma ago; an invasion by A. zonalis and S. geoffroyi ~ 1 Ma ago; a most recent invasion by A. fusciceps. The species of the first wave have apparently been out-competed by those of the second, and now have much more restricted distributions.[140]
^Salamanders apparently dispersed to South America by the Early Miocene, about 23 Ma ago.[144] Nevertheless, the salamander fauna of South America, which is restricted to the tropical region, consists of only 2 clades, and has fewer species and is far less diverse than that of much smaller Central America. Salamanders are believed to have originated in northern Pangea, perhaps not long before it separated to become Laurasia,[136] and are not present anywhere else in the Southern Hemisphere (see the world salamander distribution map). In contrast, caecilians have a mostly Gondwanan distribution. Apart from a small region of overlap in southern China and northern Southeast Asia, Central America and northern South America are the only places in the world where both salamanders and caecilians are present.
^ This is based on the definition of Sigmodontinae that excludes Neotominae and Tylomyinae.
^Hippidion, a relatively short-legged equid that developed in South America after invading from North America about 2.5 Ma ago, has traditionally been thought to have evolved from pliohippines.[151][152] However, recent studies of the DNA of Hippidion and other New World Pleistocene horses indicate that Hippidion is actually a member of Equus, closely related to the extant horse, E. ferus.[151][152] Another invasion of South America by Equus occurred about one Ma ago, and this lineage, traditionally viewed as the subgenus Equus (Amerhippus), appears indistinguishable from E. ferus.[152] Both these lineages became extinct at the end of the Pleistocene, but E. ferus was reintroduced from Eurasia by Europeans in the 16th century. Note: the authors of the DNA sequence study of Equus (Amerhippus) use "E. caballus" as an alternative specific name for "E. ferus".[152]
^Not to be confused with the American mastodon (Mammut americanum), a proboscid from a different family whose remains have been found no further south than Honduras.[153]
^Sometimes classified as elephantids rather than as gomphotheres.
^Condors apparently reached South America by the late Miocene or early Pliocene (4.5 – 6.0 Ma ago), several million years before the formation of the isthmus.[172] Condor-like forms in North America date back to the Barstovianstage (middle Miocene, 11.8 – 15.5 Ma ago).[171]
^ The native South American ungulates dwindled gradually as North American ungulates invaded and diversified. The changes in number and composition of South America's ungulate genera over time are given in the table below. The Quaternary extinction event that delivered the coup de grâce to the native Neotropic ungulates also dealt a heavy blow to South America's ungulate immigrants.
Change in number of South American ungulate genera over time[70]
^O'Dea, A.; Lessios, H. A.; Coates, A. G.; et al. (2016). "Formation of the Isthmus of Panama". Science Advances. 2 (8): e1600883. doi:10.1126/sciadv.1600883.
^Gelfo, J. N.; Mörs, T.; Lorente, M.; López, G. M.; Reguero, M.; O'Regan, H. (2014-07-16). "The oldest mammals from Antarctica, early Eocene of the La Meseta Formation, Seymour Island". Palaeontology. 58 (1): 101–110. doi:10.1111/pala.12121.
^Welker, F.; Collins, M. J.; Thomas, J. A.; Wadsley, M.; Brace, S.; Cappellini, E.; Turvey, S. T.; Reguero, M.; Gelfo, J. N.; Kramarz, A.; Burger, J.; Thomas-Oates, J.; Ashford, D. A.; Ashton, P. D.; Rowsell, K.; Porter, D. M.; Kessler, B.; Fischer, R.; Baessmann, C.; Kaspar, S.; Olsen, J. V.; Kiley, P.; Elliott, J. A.; Kelstrup, C. D.; Mullin, V.; Hofreiter, M.; Willerslev, E.; Hublin, J.-J.; Orlando, L.; Barnes, I.; MacPhee, R. D. E. (2015-03-18). "Ancient proteins resolve the evolutionary history of Darwin's South American ungulates". Nature. 522: 81–84. Bibcode:2015Natur.522...81W. doi:10.1038/nature14249. ISSN0028-0836. PMID25799987.
^Westbury, M.; Baleka, S.; Barlow, A.; Hartmann, S.; Paijmans, J. L. A.; Kramarz, A.; Forasiepi, A. M.; Bond, M.; Gelfo, J. N.; Reguero, M. A.; López-Mendoza, P.; Taglioretti, M.; Scaglia, F.; Rinderknecht, A.; Jones, W.; Mena, F.; Billet, G.; de Muizon, C.; Aguilar, J. L.; MacPhee, R. D. E.; Hofreiter, M. (2017-06-27). "A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica". Nature Communications. 8: 15951. Bibcode:2017NatCo...815951W. doi:10.1038/ncomms15951.
^Chimento, Nicolás R.; Agnolin, Federico L.; Novas, Fernando E. (2015). "The bizarre 'metatherians' Groeberia and Patagonia, late surviving members of gondwanatherian mammals". Historical Biology: An International Journal of Paleobiology. 27 (5): 603–623. doi:10.1080/08912963.2014.903945.
^Alvarenga, H. M. F.; Höfling, E. (2003). "Systematic Revision of the Phorusrhacidae (Aves: Ralliformes)". Papéis Avulsos de Zoologia. 43 (4): 55–91. doi:10.1590/S0031-10492003000400001.
^Busbey, Arthur B. III (1986-03-07). "New Material of Sebecus cf. huilensis (Crocodilia: Sebecosuchidae) from the Miocene La Venta Formation of Colombia". Journal of Vertebrate Paleontology. 6 (1): 20–27. doi:10.1080/02724634.1986.10011595. JSTOR4523070.
^Salas-Gismondi, R.; et al. (2007). "Middle Miocene Crocodiles From the Fitzcarrald Arch, Amazonian Peru"(PDF). In Díaz-Martínez, E.; Rábano, I. 4th European Meeting on the Palaeontology and Stratigraphy of Latin America. Madrid: Instituto Geológico y Minero de España. pp. 355–360. ISBN 978-84-7840-707-1.
^ abcGasparini, Zulma (September 1984). "New Tertiary Sebecosuchia (Crocodylia: Mesosuchia) from Argentina". Journal of Vertebrate Paleontology. 4 (1): 85–95. doi:10.1080/02724634.1984.10011988. JSTOR4522967.
^Möller-Krull, Maren; Delsuc, Frédéric; Churakov, Gennady; Marker, Claudia; Superina, Mariella; Brosius, Jürgen; Douzery, Emmanuel J. P.; Schmitz, Jürgen (2007-09-17). "Retroposed Elements and Their Flanking Regions Resolve the Evolutionary History of Xenarthran Mammals (Armadillos, Anteaters, and Sloths)". Molecular Biology and Evolution. 24 (11): 2573–2582. doi:10.1093/molbev/msm201. PMID17884827.
^Muizon, C. de; McDonald, H. G.; Salas, R.; Urbina, M. (June 2004). "The evolution of feeding adaptations of the aquatic sloth Thalassocnus". Journal of Vertebrate Paleontology. Society of Vertebrate Paleontology. 24 (2): 398–410. doi:10.1671/2429b. JSTOR4524727.
^Flynn, J. J.; Wyss, A. R. (1998). "Recent advances in South American mammalian paleontology". Trends in Ecology and Evolution. 13 (11): 449–454. doi:10.1016/S0169-5347(98)01457-8. PMID21238387.
^Fratantoni, D. M.; Johns, W. E.; Townsend, T. L.; Hurlburt, H. E. (August 2000). "Low-Latitude Circulation and Mass Transport Pathways in a Model of the Tropical Atlantic Ocean". Journal of Physical Oceanography. 30 (8): 1944–1966. doi:10.1175/1520-0485(2000)030<1944:LLCAMT>2.0.CO;2.
^ abHedges, S. Blair (November 1996). "Historical biogeography of West Indian vertebrates". Annual Review of Ecology and Systematics. 27 (1): 163–196. doi:10.1146/annurev.ecolsys.27.1.163.
^ abHedges, S. Blair (2006-08-23). "Paleogrography of the Antilles and Origin of West Indian Terrestrial Vertebrates". Annals of the Missouri Botanical Garden. 93 (2): 231–244. doi:10.3417/0026-6493(2006)93[231:POTAAO]2.0.CO;2.
^Vélez-Juarbe, J.; Martin, T.; Macphee, R. D. E.; Ortega-Ariza, D. (January 2014). "The earliest Caribbean rodents: Oligocene caviomorphs from Puerto Rico". Journal of Vertebrate Paleontology. 34 (1): 157–163. doi:10.1080/02724634.2013.789039.
^Bond, M.; Tejedor, M. F.; Campbell, K. E.; Chornogubsky, L.; Novo, N.; Goin, F. (2015-02-04). "Eocene primates of South America and the African origins of New World monkeys". Nature. Bibcode:2015Natur.520..538B. doi:10.1038/nature14120.
^Wade, L. (2016-04-20). "Monkey ancestors rafted across the sea to North America". Science. doi:10.1126/science.aaf4154.
^Bloch, J. I.; Woodruff, E. D.; Wood, A. R.; Rincon, A. F.; Harrington, A. R.; Morgan, G. S.; Foster, D. A.; Montes, C.; Jaramillo, C. A.; Jud, N. A.; Jones, D. S.; MacFadden, B. J. (2016-04-20). "First North American fossil monkey and early Miocene tropical biotic interchange". Nature. 533: 243–246. Bibcode:2016Natur.533..243B. doi:10.1038/nature17415. PMID27096364.
^ abTeeling, E. C.; Springer, M.; Madsen, O.; Bates, P.; O'Brien, S.; Murphy, W. (2005-01-28). "A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record". Science. 307 (5709): 580–584. Bibcode:2005Sci...307..580T. doi:10.1126/science.1105113. PMID15681385.
^Carranza, S.; Arnold, N. E. (2003-08-05). "Investigating the origin of transoceanic distributions: mtDNA shows Mabuya lizards (Reptilia, Scincidae) crossed the Atlantic twice". Systematics and Biodiversity. 1 (2): 275–282. doi:10.1017/S1477200003001099.
^Koepfli, K.-P.; Gompper, M. E.; Eizirik, E.; Ho, C.-C.; Linden, L.; Maldonado, J.; Wayne, E. R. K. (2007). "Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, morphology and the Great American Interchange". Molecular Phylogenetics and Evolution. 43 (3): 1076–1095. doi:10.1016/j.ympev.2006.10.003. PMID17174109.
^ abWebb, S. D. (1976). "Mammalian Faunal Dynamics of the Great American Interchange". Paleobiology. 2 (3): 220–234. JSTOR2400220.
^Smith, M. F.; Patton, J. L. (1999). "Phylogenetic Relationships and the Radiation of Sigmodontine Rodents in South America: Evidence from Cytochrome b". Journal of Mammalian Evolution. 6 (2): 89–128. doi:10.1023/A:1020668004578.
^Parada, A.; Pardiñas, U. F. J.; Salazar-Bravo, J.; D'Elía, G.; Palma, R. E. (March 2013). "Dating an impressive Neotropical radiation: Molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography". Molecular Phylogenetics and Evolution. 66 (3): 960–968. doi:10.1016/j.ympev.2012.12.001. PMID23257216.
^ abCampbell, K. E.; Frailey, C. D.; Romero-Pittman, L. (April 2009). "In defense of Amahuacatherium (Proboscidea: Gomphotheriidae)". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 252 (1): 113–128. doi:10.1127/0077-7749/2009/0252-0113.
^ abcFrailey, C. D.; Campbell, K. E. (September 2012). "Two New Genera of Peccaries (Mammalia, Artiodactyla, Tayassuidae) from Upper Miocene Deposits of the Amazon Basin". Journal of Paleontology. 86 (5): 852–877. doi:10.1666/12-012.1.
^ abProthero, D. R.; Campbell, K. E.; Beatty, B. L.; Frailey, C. D. (May 2014). "New late Miocene dromomerycine artiodactyl from the Amazon Basin: Implications for interchange dynamics". Journal of Paleontology. 88 (3): 434–443. doi:10.1666/13-022.
^McFadden, B.; Labs-Hochstein, J.; Hulbert, Jr., R.C.; Baskin, J.A. (2007). "Revised age of the late Neogene terror bird (Titanis) in North America during the Great American Interchange". Geology. 35 (2): 123–126. Bibcode:2007Geo....35..123M. doi:10.1130/G23186A.1.
^Soibelzon, L. H.; Schubert, B. W. (2011). "The Largest Known Bear, Arctotherium angustidens, from the Early Pleistocene Pampean Region of Argentina: With a Discussion of Size and Diet Trends in Bears". Journal of Paleontology. 85 (1): 69–75. doi:10.1666/10-037.1.
^ abcPrevosti, F. J. (2010-09-07). "Phylogeny of the large extinct South American Canids (Mammalia, Carnivora, Canidae) using a "total evidence" approach". Cladistics. 26 (5): 456–481. doi:10.1111/j.1096-0031.2009.00298.x.
^ abPerini, F. A.; Russo, C. A. M.; Schrago, C. G. (2009-11-26). "The evolution of South American endemic canids: a history of rapid diversification and morphological parallelism". Journal of Evolutionary Biology. 23 (2): 311–322. doi:10.1111/j.1420-9101.2009.01901.x. PMID20002250.
^Lessios, H.A. (December 2008). "The Great American Schism: Divergence of Marine Organisms After the Rise of the Central American Isthmus". Annual Review of Ecology, Evolution, and Systematics. Palo Alto. 39: 63–91. doi:10.1146/annurev.ecolsys.38.091206.095815.
^Jain, S.; Collins, L. S. (2007-04-30). "Trends in Caribbean Paleoproductivity related to the Neogene closure of the Central American Seaway". Marine Micropaleontology. 63 (1–2): 57–74. Bibcode:2007MarMP..63...57J. doi:10.1016/j.marmicro.2006.11.003.
^Wroe, S.; Myers, T.; Seebacher, F; Kear, B.; Gillespie, A.; Crowther, M.; Salisbury, S. (2003). "An alternative method for predicting body mass: the case of the Pleistocene marsupial lion". Paleobiology. 29 (3): 403–411. doi:10.1666/0094-8373(2003)029<0403:AAMFPB>2.0.CO;2.
^Quiroga, J. C.; Dozo, M. T. (1988). "The brain of Thylacosmilus atrox. Extinct South American saber-tooth carnivore marsupial". J. Hirnforschung. 29 (5): 573–586. PMID3216103.
^ abRadinsky, L. (1975). "Evolution of the Felid Brain". Brain, Behavior and Evolution. 11 (3–4): 214–254 (see p. 242). doi:10.1159/000123635.
^Elgar, M. A.; Harvey, P. H. (1987). "Basal Metabolic Rates in Mammals: Allometry, Phylogeny and Ecology". Functional Ecology. 1 (1): 25–36. doi:10.2307/2389354. JSTOR2389354.
^Lovegrove, B. G. (August 2000). "The Zoogeography of Mammalian Basal Metabolic Rate". The American Naturalist. 156 (2): 201–219, see 214–215. doi:10.1086/303383. JSTOR3079219. PMID10856202.
^Graham, R. W. (2001). "Late Quaternary Biogeography and Extinction of Proboscideans in North America"(PDF). In Cavarretta, G.; Gioia, P.; Mussi, M.; et al. The World of Elephants (La Terra degli Elefanti) – Proceedings of the 1st International Congress (Atti del 1 Congrsso Internazionale), Rome October 16–20, 2001. Rome: Consiglio Nazionale delle Ricerche. pp. 707–709. ISBN 88-8080-025-6.
^Grayson, D. K.; Meltzer, D. J. (2003). "A requiem for North American overkill". Journal of Archaeological Science. 30 (5): 585–593. doi:10.1016/S0305-4403(02)00205-4.
^Fiedel, S.; Haynes, G. (January 2004). "A premature burial: comments on Grayson and Meltzer's "Requiem for overkill"". Journal of Archaeological Science. 31 (1): 121–131. doi:10.1016/j.jas.2003.06.004.
^Haynes, G. (July 2007). "A review of some attacks on the overkill hypothesis, with special attention to misrepresentations and doubletalk". Quaternary International. 169–170: 84–94. Bibcode:2007QuInt.169...84H. doi:10.1016/j.quaint.2006.07.002.
^Johnson, C. N.; Alroy, J.; Beeton, N. J.; Bird, M. I.; Brook, B. W.; Cooper, A.; Gillespie, R.; Herrando-Pérez, S.; Jacobs, Z.; Miller, G. H.; Prideaux, G. J.; Roberts, R. G.; Rodríguez-Rey, M.; Saltré, F.; Turney, C. S. M.; Bradshaw, C. J. A. (10 February 2016). "What caused extinction of the Pleistocene megafauna of Sahul?". Proceedings of the Royal Society B: Biological Sciences. 283 (1824): 20152399. doi:10.1098/rspb.2015.2399.
^Anderson, A.; Sand, C.; Petchey, F.; Worthy, T. H. (2010). "Faunal extinction and human habitation in New Caledonia: Initial results and implications of new research at the Pindai Caves". Journal of Pacific Archaeology. 1 (1): 89–109. hdl:10289/5404.
^Harrison, T. (2011). "Tortoises (Chelonii, Testudinidae)". Paleontology and Geology of Laetoli: Human Evolution in Context, Vol. 2: Fossil Hominins and the Associated Fauna. Vertebrate Paleobiology and Paleoanthropology. Springer Science+Business Media. pp. 479–503. doi:10.1007/978-90-481-9962-4_17. ISBN 978-90-481-9961-7.
^Hansen, D. M.; Donlan, C. J.; Griffiths, C. J.; Campbell, K. J. (April 2010). "Ecological history and latent conservation potential: large and giant tortoises as a model for taxon substitutions". Ecography. 33 (2): 272–284. doi:10.1111/j.1600-0587.2010.06305.x.
^Cooke, S. B.; Dávalos, L. M.; Mychajliw, A. M.; Turvey, S. T.; Upham, N. S. (2017). "Anthropogenic Extinction Dominates Holocene Declines of West Indian Mammals". Annual Review of Ecology, Evolution, and Systematics. 48 (1): 301–327. doi:10.1146/annurev-ecolsys-110316-022754.
^Anderson, Paul K. (1995). "Competition, Predation, and the Evolution and Extinction of Steller's Sea Cow, Hydrodamalis Gigas". Marine Mammal Science. 11 (3): 391–394. doi:10.1111/j.1748-7692.1995.tb00294.x.
^Vartanyan, S. L.; Garutt, V. E.; Sher, A. V. (1993). "Holocene dwarf mammoths from Wrangel Island in the Siberian Arctic". Nature. 362 (6418): 337–349. Bibcode:1993Natur.362..337V. doi:10.1038/362337a0.
^Pauly, G. B; Hillis, D. M.; Cannatella, D. C. (November 2004). "The history of a Nearctic colonization: Molecular phylogenetics and biogeography of the Nearctic toads (Bufo)". Evolution. 58 (11): 2517–2535. doi:10.1111/j.0014-3820.2004.tb00881.x.
^Arroyo-Cabrales, Joaquín; Polaco, Oscar J.; Johnson, Eileen; Ferrusquía-Villafranca, Ismael (2010-02-01). "A perspective on mammal biodiversity and zoogeography in the Late Pleistocene of México". Quaternary International. 212 (2): 187–197. Bibcode:2010QuInt.212..187A. doi:10.1016/j.quaint.2009.05.012.
^ abcFeller, A. E.; Hedges, S. B. (June 1998). "Molecular Evidence for the Early History of Living Amphibians". Molecular Phylogenetics and Evolution. 9 (3): 509–516. doi:10.1006/mpev.1998.0500. PMID9667999.
^Taplin, L. E.; Grigg, G. C. (1989). "Historical Zoogeography of the Eusuchian Crocodilians: A Physiological Perspective". American Zoologist. 29 (3): 885–901. doi:10.1093/icb/29.3.885.
^Ford, S. (2006). "The Biogeographic History of Mesoamerican Primates". In Estrada, A.; Garber, P.A.; Pavelka, M.S.M.; Luecke, L. New Perspectives in the Study of Mesoamerican Primates. New York: Springer. pp. 81–114. doi:10.1007/0-387-25872-8_4. ISBN 978-0-387-25854-6.
^Pereira, S. L.; Baker, A. J. (2004). "Vicariant Speciation of Curassows (Aves, Cracidae): A Hypothesis Based On Mitochondrial DNA Phylogeny". The Auk (3): 682–694. doi:10.1642/0004-8038(2004)121[0682:VSOCAC]2.0.CO;2.
^Irestedt, Martin; Fjeldså, Jon; Johansson, Ulf S.; Ericson, Per G.P. (2002). "Systematic relationships and biogeography of the tracheophone suboscines (Aves: Passeriformes)". Molecular Phylogenetics and Evolution. 23 (3): 499–512. doi:10.1016/S1055-7903(02)00034-9. PMID12099801.
^Savage, J. M.; Wake, M. H.; Price, A. (2001). "Reevaluation of the Status of Taxa of Central American Caecilians (Amphibia: Gymnophiona), with Comments on Their Origin and Evolution". Copeia. 2001 (1): 52–64. doi:10.1643/0045-8511(2001)001[0052:ROTSOT]2.0.CO;2.
^Le, Minh; McCord, William P. (2008-07-25). "Phylogenetic relationships and biogeographical history of the genus Rhinoclemmys Fitzinger, 1835 and the monophyly of the turtle family Geoemydidae (Testudines: Testudinoidea)". Zoological Journal of the Linnean Society. 153 (4): 751–767. doi:10.1111/j.1096-3642.2008.00413.x.
^Slowinski, J. B.; Keogh, J. S. (April 2000). "Phylogenetic Relationships of Elapid Snakes Based on Cytochrome b mtDNA Sequences". Molecular Phylogenetics and Evolution. 15 (1): 157–164. doi:10.1006/mpev.1999.0725. PMID10764543.
^Slowinski, J. B.; Boundy, J.; Lawson, R. (June 2001). "The Phylogenetic Relationships of Asian Coral Snakes (Elapidae: Calliophis and Maticora) Based on Morphological and Molecular Characters". Herpetologica. 57 (2): 233–245. JSTOR3893186.
^Place, A. J.; Abramson, C. I. (2004). "A Quantitative Analysis of the Ancestral Area of Rattlesnakes". Journal of Herpetology. 38 (1): 152–156. doi:10.1670/103-03N.
^Parkinson, C. L. (1999). "Molecular Systematics and Biogeographical History of Pit Vipers as Determined by Mitochondrial Ribosomal DNA Sequences". Copeia. 3 (3): 576–586. doi:10.2307/1447591. JSTOR1447591.
^Polaco, O. J.; Arroyo-Cabrales, J.; Corona-M., E.; López-Oliva, J. G. (2001). "The American Mastodon Mammut americanum in Mexico"(PDF). In Cavarretta, G.; Gioia, P.; Mussi, M.; et al. The World of Elephants – Proceedings of the 1st International Congress, Rome October 16–20, 2001. Rome: Consiglio Nazionale delle Ricerche. pp. 237–242. ISBN 88-8080-025-6.
^Soibelzon, L. H.; Tonni, E. P.; Bond, M. (October 2005). "The fossil record of South American short-faced bears (Ursidae, Tremarctinae)". Journal of South American Earth Sciences. 20 (1–2): 105–113. Bibcode:2005JSAES..20..105S. doi:10.1016/j.jsames.2005.07.005.
^Hodnett, John-Paul M.; Mead, Jim I.; Baez, A. (2009). "Dire Wolf, Canis dirus (Mammalia; Carnivora; Canidae), from the Late Pleistocene (Rancholabrean) of East-Central Sonora, Mexico". The Southwestern Naturalist. 54 (1): 74–81. doi:10.1894/CLG-12.1.
^ abRincón, Ascanio D.; Prevosti, Francisco J.; Parra, Gilberto E. (2011). "New saber-toothed cat records (Felidae: Machairodontinae) for the Pleistocene of Venezuela, and the Great American Biotic Interchange". Journal of Vertebrate Paleontology. 31 (2): 468–478. doi:10.1080/02724634.2011.550366.
^Manzuetti, A.; Perea, D.; Ubilla, M.; Rinderknecht, A. (2018). "First record of Smilodon fatalis Leidy, 1868 (Felidae, Machairodontinae) in the extra-Andean region of South America (late Pleistocene, Sopas Formation), Uruguay: Taxonomic and paleobiogeographic implications". Quaternary Science Reviews. 180: 57. Bibcode:2018QSRv..180....1M. doi:10.1016/j.quascirev.2017.11.024.
^Chimento, N. R.; Agnolin, F. L. (2017). "The fossil American lion (Panthera atrox) in South America: Palaeobiogeographical implications". Comptes Rendus Palevol. 16 (8): 850–864. doi:10.1016/j.crpv.2017.06.009.
^Dacosta, J. M.; Klicka, J. (2008-02-21). "The Great American Interchange in birds: a phylogenetic perspective with the genus Trogon". Molecular Ecology. 17 (5): 1328–1343. doi:10.1111/j.1365-294X.2007.03647.x. PMID18302692.
^Emslie, Steven D. (22 June 1988). "The Fossil History and Phylogenetic Relationships of Condors (Ciconiiformes: Vulturidae) in the New World". Journal of Vertebrate Paleontology. 8 (2): 212–228. doi:10.1080/02724634.1988.10011699. JSTOR4523192.
^ abStucchi, Marcelo; Emslie, Steven D. (February 2005). "A New Condor (Ciconiiformes, Vulturidae) From The Late Miocene/Early Pliocene Pisco Formation, Peru". The Condor. 107 (1): 107–113. doi:10.1650/7475.
The Caribbean Plate is a mostly oceanic tectonic plate underlying Central America and the Caribbean Sea off the north coast of South America.
Roughly 3.2 million square kilometers (1.2 million square miles) in area, the Caribbean Plate borders the North American Plate, the South American Plate, the Nazca Plate and the Cocos Plate. These borders are regions of intense seismic activity, including frequent earthquakes, occasional tsunamis, and volcanic eruptions.
The Central American Seaway, also known as the Panamanic Inter-American and Proto-Caribbean Seaway, was a body of water that once separated North America from South America. It formed in the Mesozoic (200–154 Ma) during the breakup of the supercontinent Pangaea, and closed when the Isthmus of Panama was formed by volcanic activity in the late Pliocene (2.76–2.54 Ma).
The closure of the Central American Seaway had tremendous effects on oceanic circulation and the biogeography of the adjacent seas, isolating many species and triggering speciation and diversification of tropical and sub-tropical marine fauna. The inflow of nutrient-rich water of deep Pacific origin into the Caribbean was blocked, so local species had to adapt to an environment of lower productivity. It had an even larger impact on terrestrial life. The seaway had isolated South America for much of the Cenozoic, allowing the evolution of a wholly unique diverse mammalian fauna there; when it closed, a faunal exchange with North America ensued, leading to the extinction of many of the native South American forms.
Cingulata, part of the superorder Xenarthra, is an order of armored New World placental mammals. Dasypodids and chlamyphorids, the armadillos, are the only surviving families in the order. Two groups of cingulates much larger than extant armadillos (maximum body mass of 45 kg (100 lb) in the case of the giant armadillo) existed until recently: pampatheriids, which reached weights of up to 200 kg (440 lb) and chlamyphorid glyptodonts, which attained masses of 2,000 kg (4,400 lb) or more.
The cingulate order originated in South America during the Paleocene epoch about 66 to 56 million years ago, and due to the continent's former isolation remained confined to it during most of the Cenozoic. However, the formation of a land bridge allowed members of all three families to migrate to southern North America during the Pliocene or early Pleistocene as part of the Great American Interchange. After surviving for tens of millions of years, all of the pampatheriids and giant glyptodonts apparently died out during the Quaternary extinction event at the beginning of the Holocene, along with much of the rest of the regional megafauna, shortly after the colonization of the Americas by Paleo-Indians.
The fauna of South America consists of a huge variety of unique animals some of which evolved in relative isolation. The isolation of South America had an abrupt end some few million years ago when the Isthmus of Panama was formed allowing small scale migration of animals that would result in the Great American Interchange. South America is the continent with the largest number or recorded bird species.
Gomphotheres are any members of the diverse, extinct taxonomic family Gomphotheriidae. Gomphotheres were elephant-like proboscideans, but not belonging to the family Elephantidae. They were widespread in North America during the Miocene and Pliocene epochs, 12–1.6 million years ago. Some lived in parts of Eurasia, Beringia, and following the Great American Interchange into South America. Beginning about 5 million years ago, they were gradually replaced by modern elephants, apart from the last two South American genera, of which Cuvieronius did not become extinct until 9,100 BP, and Haplomastodon, by some authors reclassified into Notiomastodon, fossils have been dated to as recently as 6,060 BP in the Valle del Magdalena, Colombia. These gomphotheres also survived in Mexico and Central America until the end of the Pleistocene.The name "gomphothere" comes from Ancient Greek γόμφος, "peg, pin; wedge; joint" plus θηρίον, "beast".
This article is about the fossil site in Colombia. For the archeological site in Mexico, see La Venta.La Venta is a fossil locality located in the modern departments of Tolima and Huila in Colombia. This site is one of the richest Neogene fossil assemblages in South America and represents the best-known Cenozoic fossil site outside of Argentina. It provides a glimpse of what life in the region was like before the main wave of the Great American Interchange.
A land bridge, in biogeography, is an isthmus or wider land connection between otherwise separate areas, over which animals and plants are able to cross and colonise new lands. A land bridge can be created by marine regression, in which sea levels fall, exposing shallow, previously submerged sections of continental shelf; or when new land is created by plate tectonics; or occasionally when the sea floor rises due to post-glacial rebound after an ice age.
Meridiungulata is an extinct clade with the rank of cohort or superorder, containing the South American ungulates Pyrotheria (possibly including Xenungulata), Astrapotheria, Notoungulata and Litopterna. It is not known if it is a natural group; it was erected to distinguish the ungulates of South America from other ungulates. Relationships between the orders inside Meridiungulata remain unresolved and it could well be a 'wastebasket' taxon. Most Meridiungulata died out following the invasion of South America by North American ungulates and predators during the Great American Interchange, but a few of the largest species of notoungulates and litopterns survived until the end-Pleistocene extinctions.
Neochoerus pinckneyi was a North American species of capybara. While capybaras originated in South America, formation of the Isthmus of Panama three million years ago allowed some of them to migrate north as part of the Great American Interchange. Capybaras and porcupines are the only caviomorph rodents that reached temperate North America during this exchange (a much greater diversity of North American rodents invaded South America). At 90 to 113 kg (200 to 250 pounds), 40% larger than the living capybara, N. pinckneyi is one of the largest rodent species ever discovered, surpassed only by the recently discovered Josephoartigasia monesi, several species of Phoberomys, and possibly the Pleistocene giant beaver. Remains have been found in southern North America, from Arizona to Florida to South Carolina, and throughout Central America.
Notoungulata is an extinct order of hoofed, sometimes heavy-bodied mammalian ungulates that inhabited South America during the Paleocene to the mid-Holocene, living from approximately 57 Ma to 5,000 years ago.
Pampatheriidae ("Pampas beasts") is an extinct family of large plantigrade armored xenarthrans related to armadillos. However, pampatheriids have existed as a separate lineage since at least the middle Eocene Mustersan age, 45 to 48 million years ago. Pampatheres evolved in South America during its long period of Cenozoic isolation. Although widespread, they were less diverse and abundant than the armadillos. Holmesina spread to North America after the formation of the Isthmus of Panama as part of the Great American Interchange. They finally disappeared on both continents in the end-Pleistocene extinctions, about 12,000 years ago.
The Peruvian small-eared shrew (Cryptotis peruviensis) is a species of mammal in the family Soricidae. It is known only from northern Peru, where it has been found in shrubby "elfin" cloud forest in the Andes at elevations from 2050 to 3150 m. The species may also be present in Ecuador. It has the southernmost range of any shrew in South America. (The restricted range of shrews in South America is a reflection of their limited mobility and relatively recent arrival from Central America as part of the Great American Interchange.)
Phorusrhacids, colloquially known as terror birds, are an extinct clade of large carnivorous flightless birds that were the largest species of apex predators in South America during the Cenozoic era; their temporal range covers from 62 to 1.8 million years (Ma) ago.They ranged in height from 1–3 m (3 ft 3 in–9 ft 10 in) tall. Their closest modern-day relatives are believed to be the 80-centimetre-tall (31 in) seriemas. Titanis walleri, one of the larger species, is known from Texas and Florida in North America. This makes the phorusrhacids the only known large South American predator to migrate north in the Great American Interchange that followed the formation of the Isthmus of Panama land bridge (the main pulse of the interchange began about 2.6 Ma ago; Titanis at 5 Ma was an early northward migrant).It was once believed that T. walleri became extinct in North America around the time of the arrival of humans, but subsequent datings of Titanis fossils provided no evidence for their survival after 1.8 Ma. Still, reports from Uruguay of new findings of relatively small forms dating to 450,000 and 17,000 years ago, would imply that some phorusrhacids survived there until very recently (i.e., until the late Pleistocene); but this claim is debated.Phorusrhacids may have even made their way into Africa; the genus Lavocatavis was recently discovered in Algeria, but its status as a true phorusrhacid is questioned. A possible European form, Eleutherornis, has also been identified, suggesting that this group had a wider geographical range in the Paleogene.The closely related bathornithids occupied a similar ecological niche in North America across the Eocene to Early Miocene; some, like Paracrax, were similar in size to the largest phorusrhacids. At least one analysis recovers Bathornis as sister taxa to phorusrhacids, on the basis of shared features in the jaws and coracoid, though this has been seriously contested, as these might have evolved independently for the same carnivorous, flightless lifestyle.
The shrew (family Soricidae) is a small mole-like mammal classified in the order Eulipotyphla. True shrews are not to be confused with treeshrews, otter shrews, elephant shrews, or the West Indies shrews, which belong to different families or orders.
Although its external appearance is generally that of a long-nosed mouse, a shrew is not a rodent, as mice are. It is in fact a much closer relative of hedgehogs and moles, and shrews are related to rodents only to the extent that both belong to the Boreoeutheria Magnorder – together with humans, monkeys, cats, dogs, horses, rhinos, cows, pigs, whales, bats, and others. Shrews have sharp, spike-like teeth, not the familiar gnawing front incisor teeth of rodents.
Shrews are distributed almost worldwide: of the major tropical and temperate land masses, only New Guinea, Australia, and New Zealand have no native shrews; in South America shrews appeared only relatively recently, as a result of the Great American Interchange, and are present only in the northern Andes. In terms of species diversity, the shrew family is the fourth most successful mammal family, being rivalled only by the muroid rodent families Muridae and Cricetidae and the bat family Vespertilionidae.
The rodent subfamily Sigmodontinae includes New World rats and mice, with at least 376 species. Many authorities include the Neotominae and Tylomyinae as part of a larger definition of Sigmodontinae. When those genera are included, the species count numbers at least 508. Their distribution includes much of the New World, but the genera are predominantly South American, such as brucies. They invaded South America from Central America as part of the Great American Interchange near the end of the Miocene, about 5 million years ago. Sigmodontines proceeded to diversify explosively in the formerly isolated continent. They inhabit many of the same ecological niches that the Murinae occupy in the Old World.
The "Thomasomyini" from the Atlantic Forest of Brazil are generally thought to be not especially related to the "real" Thomasomyini from the northern Andes and the Amazon rainforest. The genera Wiedomys and Sigmodon are generally placed in their own tribe, and the "phyllotines" Irenomys, Punomys, Euneomys, and Reithrodon are considered incertae sedis.
The name "Sigmodontinae" is based on the name of the type genus, Sigmodon. This name in turn derives from the Greek roots for "S-tooth" (sigm- for "S" and odont- for "tooth", as in orthodontist) for the characteristic of the molars having an S-shape when viewed from above.
The genus Cryptotis is a group of relatively small shrews with short ears, which are usually not visible, and short tails, commonly called small-eared shrews. They have 30 teeth and are members of the red-toothed shrew subfamily. Since 1992, Neal Woodman (in cooperation with Robert Timm) at the United States National Museum has been in the process of revising the genus. To date, this has resulted in an increase in the number of species from 12 to 30.
Members of the genus are found mainly in Central America; the North American least shrew, C. parva, is the only species found north of Mexico. The genus occurs as far south as northern Peru and as far east as western Venezuela in South America. It is the only soricomorph genus found south of Guatemala. The limited diversity and restricted northern distribution of shrews in South America implies that the group invaded the continent relatively recently from Central America, where they are more diverse, presumably as part of the Great American Interchange. However, shrews have no fossil record in South America that would allow their arrival to be dated.
The South American snapping turtle (Chelydra acutirostris) is a species of turtle in the family Chelydridae. This species, which is endemic to
Central and northwestern South America, was previously considered a subspecies of Chelydra serpentina. Its restricted range in South America reflects its recent arrival there as part of the Great American Interchange.
Xenarthra (Latin, from Ancient Greek ξένος (xénos, “foreign, alien”) + ἄρθρον (árthron, “joint”) is a
superorder of placental mammals found in the Americas. It currently consists of anteaters, tree sloths, and armadillos. Xenarthrans originated in South America during the Paleocene about 59 million years ago. They evolved and diversified extensively in South America during the continent's long period of isolation in the early to mid Cenozoic Era. They spread to the Antilles by the early Miocene and, starting about 3 Mya, spread to Central and North America as part of the Great American Interchange. Nearly all of the formerly abundant megafaunal xenarthrans, such as ground sloths, glyptodonts, and pampatheres, became extinct at the end of the Pleistocene.
Xenarthrans share several characteristics not present in other placental mammals, and are often considered to be among the most primitive order of placental mammals. The name Xenarthra, which means "strange joints", was chosen because their vertebral joints have extra articulations unlike other mammals. This trait is referred to as "xenarthry". Also, unlike other mammals, the ischium and sacrum are fused. The males have internal testicles, which are located between the bladder and the rectum. Xenarthrans have been determined to have single-color vision. Furthermore, xenarthrans have the lowest metabolic rates among the therians. They also seem to lack a functional pineal gland.
This page is based on a Wikipedia article written by authors
(here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.