Grasshoppers are a group of insects belonging to the suborder Caelifera. They are among what is probably the most ancient living group of chewing herbivorous insects, dating back to the early Triassic around 250 million years ago.

Grasshoppers are typically ground-dwelling insects with powerful hind legs which allow them to escape from threats by leaping vigorously. As hemimetabolous insects, they do not undergo complete metamorphosis; they hatch from an egg into a nymph or "hopper" which undergoes five moults, becoming more similar to the adult insect at each developmental stage. At high population densities and under certain environmental conditions, some grasshopper species can change color and behavior and form swarms. Under these circumstances, they are known as locusts.

Grasshoppers are plant-eaters, with a few species at times becoming serious pests of cereals, vegetables and pasture, especially when they swarm in their millions as locusts and destroy crops over wide areas. They protect themselves from predators by camouflage; when detected, many species attempt to startle the predator with a brilliantly-coloured wing-flash while jumping and (if adult) launching themselves into the air, usually flying for only a short distance. Other species such as the rainbow grasshopper have warning coloration which deters predators. Grasshoppers are affected by parasites and various diseases, and many predatory creatures feed on both nymphs and adults. The eggs are the subject of attack by parasitoids and predators.

Grasshoppers have had a long relationship with humans. Swarms of locusts can have devastating effects and cause famine, and even in smaller numbers, the insects can be serious pests. They are used as food in countries such as Mexico and Indonesia. They feature in art, symbolism and literature.

Temporal range: 252 Ma–Recent
American Bird Grasshopper
American grasshopper (Schistocerca americana)
Scientific classification
Kingdom: Animalia
Phylum: Euarthropoda
Class: Insecta
Order: Orthoptera
Suborder: Caelifera
Infraorder: Acrididea
Informal group: Acridomorpha
Dirsh, 1966


Grasshoppers belong to the suborder Caelifera. Although, "grasshopper" is sometimes used as a common name for the suborder in general,[1][2][3] some sources restrict it to the more "advanced" groups.[4] They may be placed in the infraorder Acrididea[5] and have been referred-to as "short-horned grasshoppers" in older texts[6] to distinguish them from the also-obsolete term "long-horned grasshoppers" (now bush-crickets or katydids) with their much longer antennae. The phylogeny of the Caelifera, based on mitochondrial ribosomal RNA of thirty-two taxa in six out of seven superfamilies, is shown as a cladogram. The Ensifera (crickets, etc.) Caelifera and all the superfamilies of grasshoppers except Pamphagoidea appear to be monophyletic.[7][8]

Ensifera (crickets)

[6 superfamilies] Gryllus campestris MHNT.jpg


Tridactyloidea Ripipteryx mopana.jpg

Tetrigoidea Tetrix bipunctata01 crop.jpg

Eumastacidae Genera Insectorum - Eumastax vittata

Proscopiidae Pseudoproscopia spec. - Tiergarten Schönbrunn crop.jpg

Pneumoridae Bladder Grasshopper (Bullacris intermedia) (30068047440).jpg

Pyrgomorphidae Pyrgomorphidae - Phymateus aegrotus.JPG

Acrididae + Pamphagidae Annualreportofag1119021903univ 0052AA2 Figure 1.jpg

Fossil grasshoppers - Royal Ontario Museum - DSC00013
Fossil grasshoppers at the Royal Ontario Museum

In evolutionary terms, the split between the Caelifera and the Ensifera is no more recent than the Permo-Triassic boundary;[9] the earliest insects that are certainly Caeliferans are in the extinct families Locustopseidae and Locustavidae from the early Triassic, roughly 250 million years ago. The group diversified during the Triassic and have remained important plant-eaters from that time to now. The first modern families such as the Eumastacidae, Tetrigidae and Tridactylidae appeared in the Cretaceous, though some insects that might belong to the last two of these groups are found in the early Jurassic.[10][11] Morphological classification is difficult because many taxa have converged towards a common habitat type; recent taxonomists have concentrated on the internal genitalia, especially those of the male. This information is not available from fossil specimens, and the palaentological taxonomy is founded principally on the venation of the hindwings.[12]

The Caelifera includes some 2,400 valid genera and about 11,000 known species. Many undescribed species probably exist, especially in tropical wet forests. The Caelifera have a predominantly tropical distribution with fewer species known from temperate zones, but most of the superfamilies have representatives worldwide. They are almost exclusively herbivorous and are probably the oldest living group of chewing herbivorous insects.[12]

The most diverse superfamily is the Acridoidea, with around 8,000 species. The two main families in this are the Acrididae (grasshoppers and locusts) with a worldwide distribution, and the Romaleidae (lubber grasshoppers), found chiefly in the New World. The Ommexechidae and Tristiridae are South American, and the Lentulidae, Lithidiidae and Pamphagidae are mainly African. The Pauliniids are nocturnal and can swim or skate on water, and the Lentulids are wingless.[10] Pneumoridae are native to Africa, particularly southern Africa, and are distinguished by the inflated abdomens of the males.[13]


Grasshoppers have the typical insect body plan of head, thorax and abdomen. The head is held vertically at an angle to the body, with the mouth at the bottom. The head bears a large pair of compound eyes which give all-round vision, three simple eyes which can detect light and dark, and a pair of thread-like antennae that are sensitive to touch and smell. The downward-directed mouthparts are modified for chewing and there are two sensory palps in front of the jaws.[14]

The thorax and abdomen are segmented and have a rigid cuticle made up of overlapping plates composed of chitin. The three fused thoracic segments bear three pairs of legs and two pairs of wings. The forewings, known as tegmina, are narrow and leathery while the hindwings are large and membranous, the veins providing strength. The legs are terminated by claws for gripping. The hind leg is particularly powerful; the femur is robust and has several ridges where different surfaces join and the inner ridges bear stridulatory pegs in some species. The posterior edge of the tibia bears a double row of spines and there are a pair of articulated spurs near its lower end. The interior of the thorax houses the muscles that control the wings and legs.[14]

Heupferd fg01
Ensifera, like this great green bush-cricket Tettigonia viridissima, somewhat resemble grasshoppers but have over 20 segments in their antennae and different ovipositors.

The abdomen has eleven segments, the first of which is fused to the thorax and contains the tympanal organ and hearing system. Segments two to eight are ring-shaped and joined by flexible membranes. Segments nine to eleven are reduced in size; segment nine bears a pair of cerci and segments ten and eleven house the reproductive organs. Female grasshoppers are normally larger than males, with short ovipositors.[14] The name of the suborder "Caelifera" comes from the Latin and means chisel-bearing, referring to the shape of the ovipositor.[15]

Those species that make easily heard noises usually do so by rubbing a row of pegs on the hind legs against the edges of the forewings (stridulation). These sounds are produced mainly by males to attract females, though in some species the females also stridulate.[16]

Grasshoppers may be confused with crickets, but they differ in many aspects; these include the number of segments in their antennae and the structure of the ovipositor, as well as the location of the tympanal organ and the methods by which sound is produced.[17] Ensiferans have antennae that can be much longer than the body and have at least 20–24 segments, while caeliferans have fewer segments in their shorter, stouter antennae.[16]


Diet and digestion

Grasshopper mouth anatomy
Structure of mouthparts

Most grasshoppers are polyphagous, eating vegetation from multiple plant sources,[18] but some are omnivorous and also eat animal tissue and animal faeces. In general their preference is for grasses, including many cereals grown as crops.[19] The digestive system is typical of insects, with Malpighian tubules discharging into the midgut. Carbohydrates are digested mainly in the crop, while proteins are digested in the ceca of the midgut. Saliva is abundant but largely free of enzymes, helping to move food and Malpighian secretions along the gut. Some grasshoppers possess cellulase, which by softening plant cell walls makes plant cell contents accessible to other digestive enzymes.[20]

Sensory organs

Anacridium aegyptium - 01
Frontal view of Egyptian locust (Anacridium aegyptium) showing the compound eyes, tiny ocelli and numerous setae

Grasshoppers have a typical insect nervous system, and have an extensive set of external sense organs. On the side of the head are a pair of large compound eyes which give a broad field of vision and can detect movement, shape, colour and distance. There are also three simple eyes (ocelli) on the forehead which can detect light intensity, a pair of antennae containing olfactory (smell) and touch receptors, and mouthparts containing gustatory (taste) receptors.[21] At the front end of the abdomen there is a pair of tympanal organs for sound reception. There are numerous fine hairs (setae) covering the whole body that act as mechanoreceptors (touch and wind sensors), and these are most dense on the antennae, the palps (part of the mouth), and on the cerci at the tip of the abdomen.[22] There are special receptors (campaniform sensillae) embedded in the cuticle of the legs that sense pressure and cuticle distortion.[23] There are internal "chordotonal" sense organs specialized to detect position and movement about the joints of the exoskeleton. The receptors convey information to the central nervous system through sensory neurons, and most of these have their cell bodies located in the periphery near the receptor site itself.[22]

Circulation and respiration

Like other insects, grasshoppers have an open circulatory system and their body cavities are filled with haemolymph. A heart-like structure in the upper part of the abdomen pumps the fluid to the head from where it percolates past the tissues and organs on its way back to the abdomen. This system circulates nutrients throughout the body and carries metabolic wastes to be excreted into the gut. Other functions of the haemolymph include wound healing, heat transfer and the provision of hydrostatic pressure, but the circulatory system is not involved in gaseous exchange.[24] Respiration is performed using tracheae, air-filled tubes, which open at the surfaces of the thorax and abdomen through pairs of valved spiracles. Larger insects may need to actively ventilate their bodies by opening some spiracles while others remain closed, using abdominal muscles to expand and contract the body and pump air through the system.[25]


A large grasshopper, such as a locust, can jump about a metre (twenty body lengths) without using its wings; the acceleration peaks at about 20 g.[26] Grasshoppers jump by extending their large back legs and pushing against the substrate (the ground, a twig, a blade of grass or whatever else they are standing on); the reaction force propels them into the air.[27] They jump for several reasons; to escape from a predator, to launch themselves into flight, or simply to move from place to place. For the escape jump in particular there is strong selective pressure to maximize take-off velocity, since this determines the range. This means that the legs must thrust against the ground with both high force and a high velocity of movement. A fundamental property of muscle is that it cannot contract with high force and high velocity at the same time. Grasshoppers overcome this by using a catapult mechanism to amplify the mechanical power produced by their muscles.[28]

The jump is a three-stage process.[29] First, the grasshopper fully flexes the lower part of the leg (tibia) against the upper part (femur) by activating the flexor tibiae muscle (the back legs of the grasshopper in the top photograph are in this preparatory position). Second, there is a period of co-contraction in which force builds up in the large, pennate extensor tibiae muscle, but the tibia is kept flexed by the simultaneous contraction of the flexor tibiae muscle. The extensor muscle is much stronger than the flexor muscle, but the latter is aided by specialisations in the joint that give it a large effective mechanical advantage over the former when the tibia is fully flexed.[30] Co-contraction can last for up to half a second, and during this period the extensor muscle shortens and stores elastic strain energy by distorting stiff cuticular structures in the leg.[31] The extensor muscle contraction is quite slow (almost isometric), which allows it to develop high force (up to 14 N in the desert locust), but because it is slow only low power is needed. The third stage of the jump is the trigger relaxation of the flexor muscle, which releases the tibia from the flexed position. The subsequent rapid tibial extension is driven mainly by the relaxation of the elastic structures, rather than by further shortening of the extensor muscle. In this way the stiff cuticle acts like the elastic of a catapult, or the bow of a bow-and-arrow. Energy is put into the store at low power by slow but strong muscle contraction, and retrieved from the store at high power by rapid relaxation of the mechanical elastic structures.[32][33]


Male grasshoppers spend much of the day stridulating, singing more actively under optimal conditions and being more subdued when conditions are adverse; females also stridulate, but their efforts are insignificant when compared to the males. Late-stage male nymphs can sometimes be seen making stridulatory movements, although they lack the equipment to make sounds, demonstrating the importance of this behavioural trait. The songs are a means of communication; the male stridulation seems to express reproductive maturity, the desire for social cohesion and individual well-being. Social cohesion becomes necessary among grasshoppers because of their ability to jump or fly large distances, and the song can serve to limit dispersal and guide others to favourable habitat. The generalised song can vary in phraseology and intensity, and is modified in the presence of a rival male, and changes again to a courtship song when a female is nearby.[34] In male grasshoppers of the family Pneumoridae, the enlarged abdomen amplifies stridulation.[13]

Life cycle

Six stages (instars) of development, from newly hatched nymph to fully winged adult
Two eastern Lubber grasshopers (Romalea microptera), mating
Romalea microptera grasshoppers: female (larger) is laying eggs, with male in attendance.

In most grasshopper species, conflicts between males over females rarely escalate beyond ritualistic displays. Some exceptions include the chameleon grasshopper (Kosciuscola tristis), where males may fight on top of ovipositing females; engaging in leg grappling, biting, kicking and mounting.[35]

The newly emerged female grasshopper has a preoviposition period of a week or two while she increases in weight and her eggs mature. After mating, the female of most species digs a hole with her ovipositor and lays a batch of eggs in a pod in the ground near food plants, generally in the summer. After laying the eggs, she covers the hole with soil and litter.[14] Some, like the semi-aquatic Cornops aquaticum, deposit the pod directly into plant tissue.[36] The eggs in the pod are glued together with a froth in some species. After a few weeks of development, the eggs of most species in temperate climates go into diapause, and pass the winter in this state. Diapause is broken by a sufficiently low ground temperature, with development resuming as soon as the ground warms above a certain threshold temperature. The embryos in a pod generally all hatch out within a few minutes of each other. They soon shed their membranes and their exoskeletons harden. These first instar nymphs can then jump away from predators.[37]

Grasshoppers undergo incomplete metamorphosis: they repeatedly moult, each instar becoming larger and more like an adult, with the wing-buds increasing in size at each stage. The number of instars varies between species but is often six. After the final moult, the wings are inflated and become fully functional. The migratory grasshopper, Melanoplus sanguinipes, spends about 25 to 30 days as a nymph, depending on sex and temperature, and lives for about 51 days as an adult.[37]


CSIRO ScienceImage 7007 Plague locusts on the move
Millions of plague locusts on the move in Australia

Locusts are the swarming phase of certain species of short-horned grasshoppers in the family Acrididae. Swarming behaviour is a response to overcrowding. Increased tactile stimulation of the hind legs causes an increase in levels of serotonin.[38] This causes the grasshopper to change colour, feed more and breed faster. The transformation of a solitary individual into a swarming one is induced by several contacts per minute over a short period.[39]

Following this transformation, under suitable conditions dense nomadic bands of flightless nymphs known as "hoppers" can occur, producing pheromones which attract the insects to each other. With several generations in a year, the locust population can build up from localised groups into vast accumulations of flying insects known as plagues, devouring all the vegetation they encounter. The largest recorded locust swarm was one formed by the now-extinct Rocky Mountain locust in 1875; the swarm was 1,800 miles (2,900 km) long and 110 miles (180 km) wide,[40] and one estimate puts the number of locusts involved at 3.5 trillion.[41] An adult desert locust can eat about 2 g (0.1 oz) of plant material each day, so the billions of insects in a large swarm can be very destructive, stripping all the foliage from plants in an affected area and consuming stems, flowers, fruits, seeds and bark.[42]

Predators, parasites and pathogens

Cottontop tamarin
Cottontop tamarin monkey eating a grasshopper

Grasshoppers have a wide range of predators at different stages of their lives; eggs are eaten by bee-flies, ground beetles and blister beetles; hoppers and adults are taken by other insects such as ants, robber flies and sphecid wasps, by spiders, and by many birds and small mammals including dogs and cats.[43]

The eggs and nymphs are under attack by parasitoids including blow flies, flesh flies, and tachinid flies. External parasites of adults and nymphs include mites.[43] Female grasshoppers parasitised by mites produce fewer eggs and thus have fewer offspring than unaffected individuals.[44]

Unidentified Phlaeoba, near Godean Street, Yogyakarta, 2015-03-17
Grasshopper with parasitic mites

The grasshopper nematode (Mermis nigrescens) is a long slender worm that infects grasshoppers, living in the insect's hemocoel. Adult worms lay eggs on plants and the host becomes infected when the foliage is eaten.[45] Spinochordodes tellinii and Paragordius tricuspidatus are parasitic worms that infect grasshoppers and alter the behaviour of their hosts. When the worms are sufficiently developed, the grasshopper is persuaded to leap into a nearby body of water where it drowns, thus enabling the parasite to continue with the next stage of its life cycle, which takes place in water.[46][47]

CSIRO ScienceImage 1367 Locusts attacked by the fungus Metarhizium
Locusts killed by the naturally occurring fungus Metarhizium, an environmentally friendly means of biological control. CSIRO, 2005[48]

Grasshoppers are affected by diseases caused by bacteria, viruses, fungi and protozoa. The bacteria Serratia marcescens and Pseudomonas aeruginosa have both been implicated in causing disease in grasshoppers, as has the entomopathogenic fungus Beauveria bassiana. This widespread fungus has been used to control various pest insects around the world, but although it infects grasshoppers, the infection is not usually lethal because basking in the sun has the result of raising the insect's temperature above a threshold tolerated by the fungus.[49] The fungal pathogen Entomophaga grylli is able to influence the behaviour of its grasshopper host, causing it to climb to the top of a plant and cling to the stem as it dies. This ensures wide dispersal of the fungal spores liberated from the corpse.[50]

The fungal pathogen Metarhizium acridum is found in Africa, Australia and Brazil where it has caused epizootics in grasshoppers. It is being investigated for possible use as a microbial insecticide for locust control.[49] The microsporidian fungus Nosema locustae, once considered to be a protozoan, can be lethal to grasshoppers. It has to be consumed by mouth and is the basis for a bait-based commercial microbial pesticide. Various other microsporidians and protozoans are found in the gut.[49]

Anti-predator defences

Grasshoppers exemplify a range of anti-predator adaptations, enabling them to avoid detection, to escape if detected, and in some cases to avoid being eaten if captured. Grasshoppers are often camouflaged to avoid detection by predators that hunt by sight; some species can change their coloration to suit their surroundings.[51]

Several species such as the hooded leaf grasshopper Phyllochoreia ramakrishnai (Eumastacoidea) are detailed mimics of leaves. Stick grasshoppers (Proscopiidae) mimic wooden sticks in form and coloration.[52] Grasshoppers often have deimatic patterns on their wings, giving a sudden flash of bright colours that may startle predators long enough to give time to escape in a combination of jump and flight.[53]

Some species are genuinely aposematic, having both bright warning coloration and sufficient toxicity to dissuade predators. Dictyophorus productus (Pyrgomorphidae) is a "heavy, bloated, sluggish insect" that makes no attempt to hide; it has a bright red abdomen. A Cercopithecus monkey that ate other grasshoppers refused to eat the species.[54] Another species, the rainbow or painted grasshopper of Arizona, Dactylotum bicolor (Acridoidea), has been shown by experiment with a natural predator, the little striped whiptail lizard, to be aposematic.[55]

Atractomorpha lata, Burdwan, West Bengal, India 27 10 2012

Gaudy grasshopper, Atractomorpha lata, evades predators with camouflage.

Titanacris Albipes Vol

Lubber grasshopper, Titanacris albipes, has deimatically coloured wings, used to startle predators.


Leaf grasshopper, Phyllochoreia ramakrishnai, mimics a green leaf.

Dactylotum bicolor

Painted grasshopper, Dactylotum bicolor, deters predators with warning coloration.

Aularches miliaris at Mangunan Orchard, Dlingo, Bantul, Yogyakarta 07

Spotted grasshopper, Aularches miliaris, defends itself with toxic foam and warning colours.[56]

Relationship with humans

Grasshopper detail in Rachel Ruysch Flowers in a Vase c 1685
Detail of grasshopper on table in Rachel Ruysch's painting Flowers in a Vase, c. 1685. National Gallery, London

In art and media

Grasshoppers are occasionally depicted in artworks, such as the Dutch Golden Age painter Balthasar van der Ast's still life oil painting, Flowers in a Vase with Shells and Insects, c. 1630, now in the National Gallery, London, though the insect may be a bush-cricket.[57]

Another orthopteran is found in Rachel Ruysch's still life Flowers in a Vase, c. 1685. The seemingly static scene is animated by a "grasshopper on the table that looks about ready to spring", according to the gallery curator Betsy Wieseman, with other invertebrates including a spider, an ant, and two caterpillars.[58][59]

Grasshoppers are also featured in cinema. The 1957 film Beginning of the End portrayed giant grasshoppers attacking Chicago.[60] In the 1998 Pixar film A Bug's Life, the heroes are the members of an ant colony, and the lead villain and his henchmen are grasshoppers.[61]


Londres - Lombard Street
Sir Thomas Gresham's gilded grasshopper symbol, Lombard Street, London, 1563

Grasshoppers are sometimes used as symbols.[62] During the Greek Archaic Era, the grasshopper was the symbol of the polis of Athens,[63] possibly because they were among the most common insects on the dry plains of Attica.[63] Native Athenians for a while wore golden grasshopper brooches to symbolise that they were of pure Athenian lineage with no foreign ancestors.[63] Another symbolic use of the grasshopper is Sir Thomas Gresham's gilded grasshopper in Lombard Street, London, dating from 1563;[a] the building was for a while the headquarters of the Guardian Royal Exchange, but the company declined to use the symbol for fear of confusion with the locust.[64]

When grasshoppers appear in dreams, these have been interpreted as symbols of "Freedom, independence, spiritual enlightenment, inability to settle down or commit to decision". Locusts are taken literally to mean devastation of crops in the case of farmers; figuratively as "wicked men and women" for non-farmers; and "Extravagance, misfortune, & ephemeral happiness" by "gypsies".[65]

As food

Fried grasshoper
Fried grasshoppers from Gunung Kidul, Yogyakarta, Indonesia

In some countries, grasshoppers are used as food.[66] In southern Mexico, grasshoppers, known as chapulines, are eaten in a variety of dishes, such as in tortillas with chilli sauce.[67] Grasshoppers are served on skewers in some Chinese food markets, like the Donghuamen Night Market.[68] Fried grasshoppers (walang goreng) are eaten in the Gunung Kidul Regency, Yogyakarta, Java in Indonesia.[69] In America, the Ohlone burned grassland to herd grasshoppers into pits where they could be collected as food.[70]

It is recorded in the Bible that John the Baptist ate locusts and wild honey (Greek: ἀκρίδες καὶ μέλι ἄγριον, akrídes kaì méli ágrion) while living in the wilderness;[71] attempts have been made to explain the locusts as suitably ascetic vegetarian food such as carob beans, but the plain meaning of ἀκρίδες is the insects.[72][73]

As pests

Grasshopper eating the maize leaf
Crop pest: grasshopper eating a maize leaf

Grasshoppers eat large quantities of foliage both as adults and during their development, and can be serious pests of arid land and prairies. Pasture, grain, forage, vegetable and other crops can be affected. Grasshoppers often bask in the sun, and thrive in warm sunny conditions, so drought stimulates an increase in grasshopper populations. A single season of drought is not normally sufficient to stimulate a major population increase, but several successive dry seasons can do so, especially if the intervening winters are mild so that large numbers of nymphs survive. Although sunny weather stimulates growth, there needs to be an adequate food supply for the increasing grasshopper population. This means that although precipitation is needed to stimulate plant growth, prolonged periods of cloudy weather will slow nymphal development.[74]

Grasshoppers can best be prevented from becoming pests by manipulating their environment. Shade provided by trees will discourage them and they may be prevented from moving onto developing crops by removing coarse vegetation from fallow land and field margins and discouraging thick growth beside ditches and on roadside verges. With increasing numbers of grasshoppers, predator numbers may increase, but this seldom happens rapidly enough to have much effect on populations. Biological control is being investigated, and spores of the protozoan parasite Nosema locustae can be used mixed with bait to control grasshoppers, being more effective with immature insects.[75] On a small scale, neem products can be effective as a feeding deterrent and as a disruptor of nymphal development. Insecticides can be used, but adult grasshoppers are difficult to kill, and as they move into fields from surrounding rank growth, crops may soon become reinfested.[74]

Some grasshopper species, like the Chinese rice grasshopper, are a pest in rice paddies. Ploughing exposes the eggs on the surface of the field, to be destroyed by sunshine or eaten by natural enemies. Some eggs may be buried too deeply in the soil for hatching to take place.[76]

Locust plagues can have devastating effects on human populations, causing famines and population upheavals. They are mentioned in both the Koran and the Bible and have also been held responsible for cholera epidemics, resulting from the corpses of locusts drowned in the Mediterranean Sea and decomposing on beaches.[42] The FAO and other organisations monitor locust activity around the world. Timely application of pesticides can prevent nomadic bands of hoppers from forming before dense swarms of adults can build up.[77] Besides conventional control using contact insecticides,[77] biological pest control using the entomopathogenic fungus Metarhizium acridum, which specifically infects grasshoppers, has been used with some success.[78]

In literature

Egyptian-snḥm 2
Egyptian hieroglyphs "snḥm"

The Egyptian word for locust or grasshopper was written snḥm in the consonantal hieroglyphic writing system. The pharaoh Ramesses II compared the armies of the Hittites to locusts: "They covered the mountains and valleys and were like locusts in their multitude."[79]

One of Aesop's Fables, later retold by La Fontaine, is the tale of The Ant and the Grasshopper. The ant works hard all summer, while the grasshopper plays. In winter, the ant is ready but the grasshopper starves. Somerset Maugham's short story "The Ant and the Grasshopper" explores the fable's symbolism via complex framing.[80] Other human weaknesses besides improvidence have become identified with the grasshopper's behaviour.[65] So an unfaithful woman (hopping from man to man) is "a grasshopper" in "Poprygunya", an 1892 short story by Anton Chekhov,[81] and in Jerry Paris's 1969 film The Grasshopper.[82][83]

In mechanical engineering

The name "Grasshopper" was given to the Aeronca L-3 and Piper L-4 light aircraft, both used for reconnaissance and other support duties in World War II. The name is said to have originated when Major General Innis P. Swift saw a Piper making a rough landing and remarked that it looked like a "damned grasshopper" for its bouncing progress.[83][84][85]

Grasshopper beam engines were beam engines pivoted at one end, the long horizontal arm resembling the hind leg of a grasshopper. The type was patented by William Freemantle in 1803.[86][87][88]

See also

  • (Order including grasshoppers, locusts, crickets, and grigs)


  1. ^ The symbol is a wordplay on the name Gresham and "grass".[62]


  1. ^ "Caelifera:Grasshoppers and Locusts". Encyclopedia of Life. Archived from the original on 11 April 2017. Retrieved 4 August 2017.
  2. ^ "Suborder Caelifera – Grasshoppers". BugGuide. Archived from the original on 4 August 2017. Retrieved 4 August 2017.
  3. ^ "About Orthoptera: Crickets and grasshoppers". Archived from the original on 5 August 2017.
  4. ^ Grimaldi, David; Engel, Michael, S. (2005). Evolution of the Insects. Cambridge University Press. p. 210. ISBN 978-0-521-82149-0.
  5. ^ "ITIS Standard Report Page: Acrididea". Archived from the original on 2 August 2017.
  6. ^ Imms A.D., rev. Richards O.W. & Davies R.G. (1970) A General Textbook of Entomology 9th Ed. Methuen 886 pp.
  7. ^ Flook, P.K.; Rowell, C.H.F. (1997). "The Phylogeny of the Caelifera (Insecta, Orthoptera) as Deduced from mtrRNA Gene Sequences". Molecular Phylogenetics and Evolution. 8 (1): 89–103. doi:10.1006/mpev.1997.0412. PMID 9242597.
  8. ^ Zhang, Hong-Li; Huang, Yuan; Lin, Li-Liang; Wang, Xiao-Yang; Zheng, Zhe-Min (2013). "The phylogeny of the Orthoptera (Insecta) as deduced from mitogenomic gene sequences". Zoological Studies. 52: 37. doi:10.1186/1810-522X-52-37.
  9. ^ Zeuner, F.E. (1939). Fossil Orthoptera Ensifera. British Museum Natural History. OCLC 1514958.
  10. ^ a b Grimaldi, David; Engel, Michael S. (2005). Evolution of the Insects. Cambridge University Press. p. 210. ISBN 978-0-521-82149-0. Archived from the original on 27 November 2017.
  11. ^ Béthoux, Oliver; Ross, A.J. (2005). "Mesacridites Riek, 1954 (Middle Triassic; Australia) transferred from Protorthoptera to Orthoptera: Locustavidae". Journal of Paleontology. 79 (3): 607–610. doi:10.1666/0022-3360(2005)079<0607:mrmatf>;2.
  12. ^ a b Rowell, Hugh; Flook, Paul (2001). "Caelifera: Shorthorned Grasshoppers, Locusts and Relatives". Tree of Life web project. Archived from the original on 8 April 2015. Retrieved 3 April 2015.
  13. ^ a b Donelson, Nathan C.; van Staaden, Moira J. (2005). "Alternate tactics in male bladder grasshoppers Bullacris membracioides (Orthoptera: Pneumoridae)" (PDF). Behaviour. 142 (6): 761–778. doi:10.1163/1568539054729088. Archived from the original (PDF) on 20 December 2016.
  14. ^ a b c d Pfadt, 1994. pp. 1–8
  15. ^ Himmelman, John (2011). Cricket Radio. Harvard University Press. p. 45. ISBN 978-0-674-06102-6. Archived from the original on 27 November 2017.
  16. ^ a b "Grasshoppers, crickets, katydids and locusts: Order Orthoptera". Australian Museum. Archived from the original on 18 April 2015. Retrieved 6 April 2015.
  17. ^ Guthrie, David Maltby (1987). Aims and Methods in Neuroethology. Manchester University Press. p. 106. ISBN 978-0-7190-2320-0. Archived from the original on 27 November 2017.
  18. ^ Davidowitz, Goggy. "Grasshoppers". Arizona-Sonora Desert Museum. Archived from the original on 7 May 2015. Retrieved 4 May 2015.
  19. ^ O'Neill, Kevin M.; Woods, Stephen A.; Streett, Douglas A. (1997). "Grasshopper (Orthoptera: Acrididae) Foraging on Grasshopper Feces: Observational and Rubidium-Labeling Studies". Environmental Entomology. 26 (6): 1224–1231. doi:10.1093/ee/26.6.1224.CS1 maint: Uses authors parameter (link)
  20. ^ Gilbert, Lawrence Irwin (2012). Insect Molecular Biology and Biochemistry. Academic Press. p. 399. ISBN 978-0-12-384747-8. Archived from the original on 27 November 2017.
  21. ^ Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. pp. 735–737. ISBN 978-81-315-0104-7.
  22. ^ a b Chapman, 2013. pp. 745–755
  23. ^ Chapman, 2013. p. 163
  24. ^ Meyer, John R. (8 April 2009). "Circulatory system". General Entomology. NC State University. Archived from the original on 3 January 2017. Retrieved 12 April 2015.
  25. ^ Meyer, John R. (1 November 2006). "Insect physiology: Respiratory system". General Entomology. NC State University. Archived from the original on 3 January 2017. Retrieved 12 April 2015.
  26. ^ Heitler, W.J. (January 2007). "Performance". University of St Andrews. Archived from the original on 19 March 2015. Retrieved 13 April 2015.
  27. ^ Heitler, W.J. (January 2007). "How Grasshoppers Jump". University of St Andrews. Archived from the original on 24 September 2015. Retrieved 3 April 2015.
  28. ^ Heitler, W.J. (January 2007). "Energy and Power". University of St Andrews. Archived from the original on 18 November 2014. Retrieved 5 May 2015.
  29. ^ Burrows, M. (1995). "Motor patterns during kicking movements in the locust". Journal of Comparative Physiology A. 176 (3): 289–305. doi:10.1007/BF00219055. PMID 7707268.
  30. ^ Heitler, W.J. (1977). "The locust jump III. Structural specialisations of the metathoracic tibiae" (PDF). Journal of Experimental Biology. 67: 29–36. Archived (PDF) from the original on 19 October 2016.
  31. ^ Bennet-Clark, H.C. (1975). "The energetics of the jump of the locust Schistocerca gregaria". The Journal of Experimental Biology. 63 (1): 53–83. PMID 1159370. Archived from the original on 3 January 2017.
  32. ^ Biewener, Andrew A. (2003). Animal Locomotion. Oxford University Press. pp. 172–175. ISBN 978-0-19-850022-3. Archived from the original on 27 November 2017.
  33. ^ Vogel (2013). Comparative Biomechanics: Life's Physical World (2nd ed.). Princeton University Press. p. 312.
  34. ^ Brangham, A.N. (1960). "Communication among social insects". Bulletin of the Amateur Entomologists' Society. 19: 66–68.
  35. ^ Umbers, K.; Tatarnic, N.; Holwell, G.; Herberstein, M. (2012). "Ferocious Fighting between Male Grasshoppers". PLOS ONE. 7 (11): e49600. doi:10.1371/journal.pone.0049600. PMC 3498212. PMID 23166725.
  36. ^ Hill, M.P.; Oberholzer, I.G. (2000). Spencer, Neal R. (ed.). "Host specificity of the grasshopper, Cornops aquaticum, a natural enemy of water hyacinth" (PDF). Proceedings of the X International Symposium on Biological Control of Weeds. Montana State University: 349–356. Archived (PDF) from the original on 20 December 2016.
  37. ^ a b Pfadt, 1994. pp. 11–16. Diagrams Archived 2 April 2015 at the Wayback Machine Archived 2 April 2015 at the Wayback Machine
  38. ^ Morgan, James (29 January 2009). "Locust swarms 'high' on serotonin". BBC News. Archived from the original on 10 October 2013. Retrieved 31 March 2015.
  39. ^ Rogers, Stephen M.; Matheson, Thomas; Despland, Emma; Dodgson, Timothy; Burrows, Malcolm; Simpson, Stephen J. (2003). "Mechanosensory-induced behavioral gregarization in the desert locust Schistocerca gregaria" (PDF). Journal of Experimental Biology. 206 (22): 3991–4002. doi:10.1242/jeb.00648. PMID 14555739. Archived (PDF) from the original on 24 September 2016.
  40. ^ Yoon, Carol Kaesuk (23 April 2002). "Looking Back at the Days of the Locust". New York Times. Archived from the original on 3 April 2015. Retrieved 31 March 2015.
  41. ^ Lockwood, Jeffrey A. (2004). Locust: the Devastating Rise and Mysterious Disappearance of the Insect that Shaped the American Frontier (1st ed.). Basic Books. p. 21. ISBN 0-7382-0894-9.ffol
  42. ^ a b Capinera, 2008. pp 1181–1183
  43. ^ a b Capinera, 2008. pp. 1709–1710
  44. ^ Branson, David H. (2003). "Effects of a parasite mite on life-history variation in two grasshopper species". Evolutionary Ecology Research. 5 (3): 397–409. ISSN 1522-0613.
  45. ^ Capinera, John (2014). "Grasshopper nematode: Mermis nigrescens". Featured Creatures. IFAS, University of Florida. Archived from the original on 2 April 2015. Retrieved 28 March 2015.
  46. ^ Thomas, F.; Schmidt-Rhaesa, A.; Martin, G.; Manu, C.; Durand, P. Renaud, F. (May 2002). "Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?". Journal of Evolutionary Biology. 15 (3): 356–361. doi:10.1046/j.1420-9101.2002.00410.x.CS1 maint: Multiple names: authors list (link)
  47. ^ Schmidt-Rhaesa, Andreas; Biron, David G.; Joly, Cécile; Thomas, Frédéric (2005). "Host–parasite relations and seasonal occurrence of Paragordius tricuspidatus and Spinochordodes tellinii (Nematomorpha) in Southern France". Zoologischer Anzeiger. 244 (1): 51–57. doi:10.1016/j.jcz.2005.04.002.
  48. ^ "CSIRO ScienceImage 1367 Locusts attacked by the fungus Metarhizium". CSIRO. Archived from the original on 2 April 2015. Retrieved 1 April 2015.
  49. ^ a b c Capinera, 2008. pp. 1229–1230
  50. ^ Valovage, W.D.; Nelson, D.R. (1990). "Host Range and Recorded Distribution of Entomophaga grylli (Zygomycetes: Entomophthorales), a Fungal Pathogen of Grasshoppers (Orthoptera: Acrididae), in North Dakota". Journal of the Kansas Entomological Society. 63 (3): 454–458. JSTOR 25085205.
  51. ^ Cott, pp. 25–26
  52. ^ Hogue, C.L. (1993). Latin American Insects and Entomology. University of California Press. p. 167. ISBN 978-0520078499.
  53. ^ Cott, p. 378
  54. ^ Cott, p. 291
  55. ^ McGovern, George M.; Mitchell, Joseph C.; Knisley, C. Barry (1984). "Field Experiments on Prey Selection by the Whiptail Lizard, Cnemidophorus inornatus, in Arizona". Journal of Herpetology. 18 (3): 347–349. doi:10.2307/1564093. JSTOR 1564093.
  56. ^ Hingston, R.W.G. (1927). "The liquid-squirting habit of oriental grasshoppers". Transactions of the Entomological Society of London. 75: 65–69. doi:10.1111/j.1365-2311.1927.tb00060.x.
  57. ^ "Flowers in a Vase with Shells and Insects". The National Gallery. Archived from the original on 2 April 2015. Retrieved 31 March 2015.
  58. ^ "Flowers in a Vase". The National Gallery. Archived from the original on 2 April 2015. Retrieved 31 March 2015.
  59. ^ "The National Gallery Podcast: Episode Nineteen". The National Gallery. May 2008. Archived from the original on 2 April 2015. Retrieved 31 March 2015. Betsy Wieseman: Well, there are two caterpillars that I can see. I particularly like the one right in the foreground that's just dangling from his thread and looking to land somewhere. It's this wonderful little suggestion of movement. There's a grasshopper on the table that looks about ready to spring to the other side and then nestled up between the rose and the peony is a wonderful spider and an ant on the petals of the rose.
  60. ^ Senn, Bryan (2007). A Year of Fear: A Day-by-Day Guide to 366 Horror Films. McFarland. p. 109. ISBN 978-0-7864-3196-0. Archived from the original on 27 November 2017.
  61. ^ Parihar, Parth (4 January 2014). "A Bug's Life: Colonial Allegory". Princeton Buffer. Archived from the original on 2 April 2015. Retrieved 30 March 2015.
  62. ^ a b Hazard, Mary E. (2000). Elizabethan Silent Language. University of Nebraska Press. p. 9. ISBN 0-8032-2397-8. Archived from the original on 27 November 2017. research into Elizabethan wordplay reveals the proprietary nature of Gresham's grasshopper.
  63. ^ a b c Roche, Paul (2005). Aristophanes: The Complete Plays: A New Translation by Paul Roche. New American Library. p. 176. ISBN 978-0-451-21409-6.
  64. ^ Connell, Tim (9 January 1998). "The City's golden grasshopper". Times Higher Education Supplement. Archived from the original on 29 November 2016. Retrieved 31 March 2015.
  65. ^ a b Klein, Barrett A. (2012). "The Curious Connection Between Insects and Dreams". Insects. 3: 1–17. doi:10.3390/insects3010001.
  66. ^ Aman, Paul; Frederich, Michel; Uyttenbroeck, Roel; Hatt, Séverin; Malik, Priyanka; Lebecque, Simon; Hamaidia, Malik; Miazek, Krystian; Goffin, Dorothée; Willems, Luc; Deleu, Magali; Fauconnier, Marie-Laure; Richel, Aurore; De Pauw, Edwin; Blecker, Christophe; Arnaud, Monty; Francis, Frédéric; Haubruge, Eric; Danthine, Sabine (2016). "Grasshoppers as a food source? A review". Biotechnologie, Agronomie, Société et Environnement. 20: 337–352. ISSN 1370-6233. Archived from the original on 31 May 2016.
  67. ^ Kennedy, Diana (2011). Oaxaca al Gusto: An Infinite Gastronomy. University of Texas Press. p. 754. ISBN 978-0-292-77389-9. Archived from the original on 27 November 2017.
  68. ^ "Dōnghuámén Night Market". Lonely Planet. Archived from the original on 11 March 2015. Retrieved 5 May 2015. the bustling night market near Wangfujing Dajie is a veritable food zoo: lamb, beef and chicken skewers, corn on the cob, smelly dòufu (tofu), cicadas, grasshoppers, kidneys, quail eggs, snake, squid
  69. ^ "Walang Goreng Khas Gunung Kidul" (in Indonesian). UMKM Jogja. Archived from the original on 6 March 2016. Retrieved 30 March 2015.
  70. ^ Margolin, Malcolm; Harney, Michael (illus.). The Ohlone Way: Indian Life in the San Francisco–Monterey Bay Area. Heyday. p. 54. ISBN 978-1-59714-219-9. Archived from the original on 27 November 2017.
  71. ^ Mark 1:6; Matthew 3:4
  72. ^ Brock, Sebastian. "St John the Baptist's diet – according to some early Eastern Christian sources". St John's College, Oxford. Archived from the original on 26 April 2015. Retrieved 4 May 2015.
  73. ^ Kelhoffer, James A. (2004). "Did John The Baptist Eat Like A Former Essene? Locust-Eating In The Ancient Near East And At Qumran". Dead Sea Discoveries. 11 (3): 293–314. doi:10.1163/1568517042643756. JSTOR 4193332. There is no reason, however, to question the plausibility of Mark 1:6c, that John regularly ate these foods while in the wilderness.
  74. ^ a b Capinera, 2008. pp. 1710–1712
  75. ^ "Nosema Locustae (117001) Fact Sheet" (PDF). U.S. Environmental Protection Agency. October 2000. Archived (PDF) from the original on 17 August 2016. Retrieved 6 August 2016.
  76. ^ "Rice grasshopper (Oxya chinensis)". Plantwise. Archived from the original on 25 May 2017. Retrieved 16 December 2015.
  77. ^ a b "Control". Locusts in Caucasus and Central Asia. Food and Agriculture Organization of the United Nations. Archived from the original on 4 April 2015. Retrieved 2 April 2015.
  78. ^ Lomer, C.J.; Bateman, R.P.; Johnson, D.L.; Langewald, J.; Thomas, M. (2001). "Biological Control of Locusts and Grasshoppers". Annual Review of Entomology. 46: 667–702. doi:10.1146/annurev.ento.46.1.667. PMID 11112183.
  79. ^ Dollinger, André (January 2010) [2002]. "Insects". Reshafim. Archived from the original on 1 April 2015. Retrieved 30 March 2015.
  80. ^ Sopher, H. (1994). "Somerset Maugham's "The Ant and the Grasshopper": The Literary Implications of Its Multilayered Structure". Studies in Short Fiction. 31 (1 (Winter 1994)): 109–. Archived from the original on 2 April 2015. Retrieved 30 March 2015.
  81. ^ Loehlin, James N. (2010). The Cambridge Introduction to Chekhov. Cambridge University Press. pp. 80–83. ISBN 978-1-139-49352-9.
  82. ^ Greenspun, Roger (28 May 1970). "Movie Review: The Grasshopper (1969)". The New York Times. Archived from the original on 2 April 2015. Retrieved 1 April 2015.
  83. ^ a b "Aeronca L-3B Grasshopper". The Museum of Flight. Archived from the original on 27 November 2017. Retrieved 11 December 2016.
  84. ^ Chen, C. Peter. "L-4 Grasshopper". World War II Database. Lava Development. Archived from the original on 25 May 2017. Retrieved 11 December 2016.
  85. ^ "Piper L-4 Grasshopper Light Observation Aircraft (1941)". Military Factory. Archived from the original on 1 January 2017. Retrieved 11 December 2016.
  86. ^ Crowley, T.E. (1982). The Beam Engine. Senecio. pp. 95–96. ISBN 0-906831-02-4.
  87. ^ "Grasshopper Beam Engine". Animated Engines. Archived from the original on 10 December 2016. Retrieved 11 December 2016.
  88. ^ Dickinson, H.W. (1939). A short history of the steam engine. Cambridge University Press. p. 108.


External links

Aeronca L-3

The Aeronca L-3 group of observation and liaison aircraft were used by the United States Army Air Corps in World War II. The L-3 series were adapted from Aeronca's pre-war Tandem Trainer and Chief models.


The Caelifera are a suborder of orthopteran insects. They include the grasshoppers and grasshopper-like insects, as well as other superfamilies classified with them: the ground-hoppers (Tetrigoidea) and pygmy mole crickets (Tridactyloidea). The latter should not be confused with the mole crickets (Gryllotalpidae), which belong to the other Orthopteran sub-order Ensifera.

Common grasshopper warbler

The common grasshopper warbler (Locustella naevia) is a species of Old World warbler in the grass warbler genus Locustella. It breeds across much of temperate Europe and western Asia. It is migratory, wintering in north and west Africa. The genus name Locustella is from Latin and is a diminutive of locusta, "grasshopper". Like the English name, this refers to the characteristic insect-like song of the common grasshopper warbler and some others in this genus. The specific naevia is Latin for "spotted ".This small passerine bird is found in short dense vegetation, often close to water. It is a medium-sized warbler about 13 cm (5 in) long. The adult has a streaked brown back and whitish grey underparts which are unstreaked except on the undertail coverts. The sexes are identical, as with most warblers, but young birds are yellower below. Like most warblers, it is insectivorous. Four to seven eggs are laid in a nest on or near the ground in thick vegetation or in a tussock of grass.

This is a species which skulks in the undergrowth, creeping through bushes and low foliage, and which is very difficult to see except sometimes when singing from a prominent position. The song, which gives this species its name, is a monotonous mechanical insect-like reeling, often given at dawn or dusk.

East London Harbour 0-4-0VB

The East London Harbour 0-4-0VB of 1873 was a South African steam locomotive from the pre-Union era in the Cape of Good Hope.

In 1847, the government of the Cape of Good Hope established harbour boards at its three major ports, Table Bay, Port Elizabeth and East London. While railway lines were laid at all these harbours, trains were for the most part initially hauled by oxen or mules.The first steam locomotive to see service at East London Harbour was a 7 ft 1⁄4 in (2,140 mm) Brunel gauge engine which was obtained for work on breakwater construction in 1873 and placed in service in 1874. It was a 0-4-0 vertical boiler engine, similar in general appearance to the American Grasshopper type. Four of them were acquired between 1873 and 1880.

Grass warbler

The grass warblers are small passerine birds belonging to the genus Locustella. Formerly placed in the paraphyletic "Old World warbler" assemblage, they are now considered the northernmost representatives of a largely Gondwanan family, the Locustellidae. The genus name Locustella is from Latin and is a diminutive of locusta, "grasshopper". Like the English name, this refers to the insect-like song of some species.These are rather drab brownish "warblers" usually associated with fairly open grassland, shrubs or marshes. Some are streaked, others plain, all are difficult to view. They are insectivorous.

The most characteristic feature of this group is that the song of several species is a mechanical insect-like reeling which gives rise to the group's scientific name.

Species breeding in temperate regions are strongly migratory.

The species are:

Russet bush warbler, Locustella mandelli

Dalat bush warbler, Locustella idonea

Sichuan bush warbler, Locustella chengi

Javan bush warbler, Locustella montis

Taiwan bush warbler, Locustella alishanensis

Bamboo warbler, Locustella alfredi

West Himalayan bush warbler, Locustella kashmirensis

Spotted bush warbler, Locustella thoracica

Baikal bush warbler, Locustella davidi

Chestnut-backed bush warbler, Locustella castanea

Long-tailed bush warbler, Locustella caudata

Long-billed bush warbler, Locustella major

Chinese bush warbler, Locustella tacsanowskia

Brown bush warbler, Locustella luteoventris

Benguet bush warbler, Locustella seebohmi

Friendly bush warbler, Locustella accentor

Savi's warbler, Locustella luscinoides

Lanceolated warbler, Locustella lanceolata

River warbler Locustella fluviatilis

Common grasshopper warbler, Locustella naevia

A fossil acrocoracoid from the Late Miocene (about 11 mya) of Rudabánya (NE Hungary) is quite similar to this bone in the present genus. Given its rather early age (most Passerida genera are not known until the Pliocene), it is not too certain that it is correctly placed here, but it is highly likely to belong to the Locustellidae, or the Sylvioidea at the least. As the grasshopper warblers are the only known locustellid warblers from Europe, it is still fairly likely that the bone piece belongs to a basal Locustella.

Grasshopper (cocktail)

A Grasshopper is a sweet, mint-flavored, after-dinner drink. The name of the drink derives from its green color, which comes from crème de menthe. A bar in the French Quarter of New Orleans, Louisiana, Tujague's, claims the drink was invented in 1918 by its owner, Philip Guichet. The drink gained popularity during the 1950s and 1960s throughout the American South.

Grasshopper Club Zürich

Grasshopper Club Zürich, commonly referred to as simply GC, GCZ, or Grasshoppers, is a multisports club based in Zürich, Switzerland. The oldest and best known department of the club is its football team. With 27 titles, Grasshopper holds the records for winning the most national championship titles and for the most successes in the Swiss Cup tournament, 19 victories in the competition. The club is the oldest football team in Zürich and maintains a substantial rivalry with FC Zürich.The origin of Grasshopper's name is unknown, although the most common explanation refers to its early players' energetic post-goal celebrations and that their style of play was nimble and energetic.After a number of appearances in European Cups and the UEFA Champions League, Grasshopper has become one of Switzerland's most recognizable football clubs. Today, in addition to its main football squad, the club has competitive professional and youth teams in rowing, ice hockey, handball, lawn tennis, court tennis, field hockey, curling, basketball, rugby, squash, floorball and beach soccer.

Grasshopper Manufacture

Grasshopper Manufacture Inc. (株式会社グラスホッパー・マニファクチュア, Kabushiki Gaisha Gurasuhoppā Manifakuchua) is a Japanese video game developer.

Grasshopper mouse

Grasshopper mice are rodents of the North American genus Onychomys. Grasshopper mice feed on insects and other arthropods.

List of Swiss football champions

The following list of Swiss football champions lists all past winners of the top-tier football competitions for clubs in Switzerland. It includes all winners of the present-day Swiss Super League as well as the predecessor leagues played in the country. Swiss champions have been officially determined since the 1898–1899 season.


Mearns's grasshopper mouse

Mearns's grasshopper mouse or the Chihuahuan grasshopper mouse (Onychomys arenicola) is a grasshopper mouse found in southwestern New Mexico, West Texas, and north-central Mexico. They are similar to Onychomys torridus, but differ in karyotype and size. This mouse is smaller in every regard except for the nasal length of the skull.They are found in semiarid habitat, prairie, and scrub. They feed largely on insects and other invertebrates, including scorpions. They also feed on small muroid rodents and pocket mice.

Northern grasshopper mouse

The northern grasshopper mouse (Onychomys leucogaster) is a North American carnivorous rodent of the family Cricetidae. It ranges over much of the western part of the continent, from central Saskatchewan and central Washington to Tamaulipas in northeast Mexico.

Piper J-3 Cub

The Piper J-3 Cub is an American light aircraft that was built between 1937 and 1947 by Piper Aircraft. The aircraft has a simple, lightweight design which gives it good low-speed handling properties and short-field performance. The Cub is Piper Aircraft's most-produced model, with nearly 20,000 built in the United States. Its simplicity, affordability and popularity invokes comparisons to the Ford Model T automobile.

The aircraft is a high-wing, strut-braced monoplane with a large-area rectangular wing. It is most often powered by an air-cooled, flat-4 piston engine driving a fixed-pitch propeller. Its fuselage is a welded steel frame covered in fabric, seating two people in tandem.

The Cub was originally intended as a trainer and had great popularity in this role and as a general aviation aircraft. Due to its performance, it was well suited for a variety of military uses such as reconnaissance, liaison and ground control. It was produced in large numbers during World War II as the L-4 Grasshopper. Many Cubs are still flying today. Notably, Cubs are highly prized as bush aircraft.

The aircraft's standard chrome yellow paint has come to be known as "Cub Yellow" or "Lock Haven Yellow".

Swiss Cup

The Swiss Cup (German: Schweizer Cup; French: Coupe de Suisse; Italian: Coppa Svizzera; Romansh: Cuppa Svizra) is a football cup tournament that has been organised annually since 1926 by the Swiss Football Association. The winner is allowed to take part in the UEFA Europa League.

Swiss Super League

The Swiss Super League (known as the Raiffeisen Super League for sponsorship reasons) is a professional league in the top tier of the Swiss football league system and has been played in its current format since the 2003–04 season. As of February 2019 the Swiss Super League is ranked 16th in Europe according to UEFA's ranking of league coefficients, which is based upon Swiss team performances in European competitions.

Taylorcraft L-2

The Taylorcraft L-2 Grasshopper is an American observation and liaison aircraft built by Taylorcraft for the United States Army Air Forces in World War II.

In 1941 the United States Army Air Forces ordered four Taylorcraft Ds with the designation YO-57. They were evaluated in the summer of 1941 during maneuvers in Louisiana and Texas where they were used for support purposes such as light transport and courier. General Innis P. Swift, commander of the 1st Cavalry Division, coined the 'grasshopper' name after witnessing a bumpy landing. This led to a production order under the designation O-57 Grasshopper. In March 1942, the designation was changed to L-2 Grasshopper.

In World War II, the AAF began using the L-2 in much the same manner as the observation balloon was used in France during World War I—spotting enemy troop and supply concentrations and directing artillery fire on them. It was also used for other types of liaison and transport duties and short-range reconnaissance which required airplanes that could land and take off in minimum distances from unprepared landing strips.

Postwar, a number of L-2s were converted for civilian use and are operated by private pilot owners in the United States as the Model DCO-65. Several are still airworthy in 2011.

The L-2 series meet the standards for Light Sport Aircraft (other than the L-2M, which has a gross weight rating 5 pounds over the 1,320-lb limit), thus can be flown by pilots holding the Sport Pilot Certificate.


Insects in the family Tettigoniidae are commonly called katydids (in Australia, South Africa, the United States), or bush crickets (in the British Isles). They have previously been known as long-horned grasshoppers. More than 6,400 species are known. Part of the suborder Ensifera, the Tettigoniidae are the only extant (living) family in the superfamily Tettigonioidea.

They are primarily nocturnal in habit with strident mating calls. Many katydids exhibit mimicry and camouflage, commonly with shapes and colors similar to leaves.

The Ant and the Grasshopper

The Ant and the Grasshopper, alternatively titled The Grasshopper and the Ant (or Ants), is one of Aesop's Fables, numbered 373 in the Perry Index. The fable describes how a hungry grasshopper begs for food from an ant when winter comes and is refused. The situation sums up moral lessons about the virtues of hard work and planning for the future.Even in Classical times, however, the advice was mistrusted and an alternative story represented the ant's industry as mean and self-serving. Jean de la Fontaine's delicately ironical retelling in French later widened the debate to cover the themes of compassion and charity. Since the 18th century the grasshopper has been seen as the type of the artist and the question of the place of culture in society has also been included. Argument over the fable's ambivalent meaning has generally been conducted through adaptation or reinterpretation of the fable in literature, arts, and music.

The Man in the High Castle

The Man in the High Castle (1962) is an alternate history novel by American writer Philip K. Dick. Set in 1962, fifteen years after an alternative ending to World War II, the novel concerns intrigues between the victorious Axis Powers—primarily, Imperial Japan and Nazi Germany—as they rule over the former United States, as well as daily life under the resulting totalitarian rule. The Man in the High Castle won the Hugo Award for Best Novel in 1963. Beginning in 2015, the book was adapted as a multi-season TV series, with Dick's daughter, Isa Dick Hackett, serving as one of the show's producers.

Reported inspirations include Ward Moore's alternate Civil War history, Bring the Jubilee (1953), various classic World War II histories, and the I Ching (referred to in the novel). The novel features a "novel within the novel" comprising an alternate history within this alternate history wherein the Allies defeat the Axis (though in a manner distinct from the actual historical outcome).

Extant Orthoptera families
of insects
in culture

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.