The grade (also called slope, incline, gradient, mainfall, pitch or rise) of a physical feature, landform or constructed line refers to the tangent of the angle of that surface to the horizontal. It is a special case of the slope, where zero indicates horizontality. A larger number indicates higher or steeper degree of "tilt". Often slope is calculated as a ratio of "rise" to "run", or as a fraction ("rise over run") in which run is the horizontal distance (not the distance along the slope) and rise is the vertical distance.

The grades or slopes of existing physical features such as canyons and hillsides, stream and river banks and beds are often described. Grades are typically specified for new linear constructions (such as roads, landscape grading, roof pitches, railroads, aqueducts, and pedestrian or bicycle circulation routes). The grade may refer to the longitudinal slope or the perpendicular cross slope.

d = run
Δh = rise
l = slope length
α = angle of inclination

## Nomenclature

Illustration of grades (percentages), angles in degrees and ratio.

There are several ways to express slope:

1. as an angle of inclination to the horizontal. (This is the angle α opposite the "rise" side of a triangle with a right angle between vertical rise and horizontal run.)
2. as a percentage, the formula for which is ${\displaystyle 100{\frac {\text{rise}}{\text{run}}}}$ which could also be expressed as the tangent of the angle of inclination times 100. In the U.S., this percentage "grade" is the most commonly used unit for communicating slopes in transportation (streets, roads, highways and rail tracks), surveying, construction, and civil engineering.
3. as a per mille figure, the formula for which is ${\displaystyle 1000{\frac {\text{rise}}{\text{run}}}}$ which could also be expressed as the tangent of the angle of inclination times 1000. This is commonly used in Europe to denote the incline of a railway.
4. as a ratio of one part rise to so many parts run. For example, a slope that has a rise of 5 feet for every 100 feet of run would have a slope ratio of 1 in 20. (The word "in" is normally used rather than the mathematical ratio notation of "1:20"). This is generally the method used to describe railway grades in Australia and the UK. It is used for roads in Hong Kong, and was used for roads in the UK until the 1970s.
5. as a ratio of many parts run to one part rise, which is the inverse of the previous expression (depending on the country and the industry standards). For example, "slopes are expressed as ratios such as 4:1. This means that for every 4 units (feet or meters) of horizontal distance there is a 1-unit (foot or meter) vertical change either up or down."[1]

Any of these may be used. Grade is usually expressed as a percentage, but this is easily converted to the angle α from horizontal or the other expressions.

Slope may still be expressed when the horizontal run is not known: the rise can be divided by the hypotenuse (the slope length). This is not the usual way to specify slope; it follows the sine function rather than the tangent function, so it calls a 45-degree slope a 71-percent grade instead of a 100-percent. But in practice the usual way to calculate slope is to measure the distance along the slope and the vertical rise, and calculate the horizontal run from that. When the angle of inclination is small, using the slope length rather than the horizontal displacement (i.e., using the sine of the angle rather than the tangent) makes only an insignificant difference. Railway gradients are usually expressed in terms of the rise in relation to the distance along the track as a practical measure. In cases where the difference between sin and tan is significant, the tangent is used. In any case, the following identity holds for all inclinations up to 90 degrees: ${\displaystyle \tan {\alpha }={\frac {\sin {\alpha }}{\sqrt {1-\sin ^{2}{\alpha }}}}}$.

### Equations

Grades are related using the following equations with symbols from the figure at top.

#### Tangent as a ratio

${\displaystyle \tan {\alpha }={\frac {\Delta h}{d}}}$

This ratio can also be expressed as a percentage by multiplying by 100.

#### Angle from a tangent gradient

${\displaystyle \alpha =\arctan {\frac {\Delta h}{d}}}$

If the tangent is expressed as a percentage, the angle can be determined as:

${\displaystyle \alpha =\arctan {\frac {\%\,{\text{slope}}}{100}}}$

If the angle is expressed as a ratio (1 in n) then:

${\displaystyle \alpha =\arctan {\frac {1}{n}}}$

In vehicular engineering, various land-based designs (automobiles, sport utility vehicles, trucks, trains, etc.) are rated for their ability to ascend terrain. Trains typically rate much lower than automobiles. The highest grade a vehicle can ascend while maintaining a particular speed is sometimes termed that vehicle's "gradeability" (or, less often, "grade ability"). The lateral slopes of a highway geometry are sometimes called fills or cuts where these techniques have been used to create them.

In the United States, maximum grade for Federally funded highways is specified in a design table based on terrain and design speeds,[3] with up to 6% generally allowed in mountainous areas and hilly urban areas with exceptions for up to 7% grades on mountainous roads with speed limits below 60 mph (95 km/h).

The steepest roads in the world are Baldwin Street in Dunedin, New Zealand, Ffordd Pen Llech in Harlech, Wales[4] and Canton Avenue in Pittsburgh, Pennsylvania.[5] The Guinness World Record lists Baldwin Street as the steepest street in the world, with a 35% grade (19°,1 in 3 slope UK) overall and disputed 38% grade (21°) at its steepest section. The Pittsburgh Department of Engineering and Construction recorded a grade of 37% (20°) for Canton Avenue.[6] The street has formed part of a bicycle race since 1983.[7]

The San Francisco Municipal Railway operates bus service among the city's hills. The steepest grade for bus operations is 23.1% by the 67-Bernal Heights on Alabama Street between Ripley and Esmeralda Streets.[8]

10% slope warning sign, Netherlands

7% descent warning sign, Finland

25% ascent warning sign, Wales

30% descent warning sign, over 1500 m. La Route des Crêtes, Cassis, France

A trolleybus climbing an 18% grade in Seattle

ascent of German Bundesstraße 10

## Environmental design

Grade, pitch, and slope are important components in landscape design, garden design, landscape architecture, and architecture; for engineering and aesthetic design factors. Drainage, slope stability, circulation of people and vehicles, complying with building codes, and design integration are all aspects of slope considerations in environmental design.

## Railways

Grade indicator near Bellville, Western Cape, South Africa, showing 1:150 and 1:88 grades.

Gradients can be expressed as an angle, as feet per mile, feet per chain, 1 in n, x% or y per mille. Since surveyors like round figures, the method of expression can affect the gradients selected.

A 1371-metre long stretch of railroad with a 20 (2%) slope, Czech Republic

The steepest railway lines that do not use a rack system include:

### Compensation for curvature

Gradients on sharp curves are effectively a bit steeper than the same gradient on straight track, so to compensate for this and make the ruling grade uniform throughout, the gradient on those sharp curves should be reduced slightly.

### Continuous brakes

In the era before trains were provided with continuous brakes, whether air brakes or vacuum brakes, steep gradients were a serious problem, and it was difficult to stop safely if the line was on a steep grade. In an extreme example, the Inspector insisted that Rudgwick railway station in West Sussex be regraded before he would allow it to open. This required the gradient through the platform to be eased from 1 in 80 to 1 in 130.

## References

1. ^ page 71, "SLOPES EXPRESSED AS RATIOS AND DEGREES" in Site Engineering For Landscape Architects 6th Edition. (c)2013, Steven Strom, Kurt Nathan, & Jake Woland. Wiley Publishing. ISBN 978-1118090862
2. ^ "Traffic signs - The Highway Code - Guidance - GOV.UK". www.gov.uk. Retrieved 2016-03-26.
3. ^ Staff (2001). A Policy on Geometric Design of Highways and Streets (PDF) (4th ed.). Washington, DC: American Association of State Highway and Transportation Officials. pp. 507 (design speed), 510 (Exhibit 8–1: Maximum Grades for Rural and Urban Freeways). ISBN 1-56051-156-7. Retrieved April 11, 2014.
4. ^
5. ^ Kiwi climb: Hoofing up the world's steepest street – CNN.com
6. ^ Here: In Beechview
7. ^ The Steepest Road On Earth Takes No Prisoners | Autopia | WIRED
8. ^ a b "General Information". San Francisco Metropolitan Transportation Agency. Retrieved September 20, 2016.
9. ^ "Top five funicular railways". Sydney Morning Herald.
10. ^ "A WONDERFUL RAILWAY". The Register. Adelaide: National Library of Australia. 2 March 1920. p. 5. Retrieved 13 February 2013.
11. ^ "The New Pöstlingberg Railway" (PDF). Linz Linien GmbH. 2009. Archived from the original (PDF) on 2011-07-22. Retrieved 2011-01-06.
12. ^ "Return of the (modern) streetcar - Portland leads the way" (October 2001). Light Rail Transit Association. Tramways & Urban Transit. Retrieved 15 December 2018.