Germination is the process by which an organism grows from a seed or similar structure. The most common example of germination is the sprouting of a seedling from a seed of an angiosperm or gymnosperm. In addition, the growth of a sporeling from a spore, such as the spores of hyphae from fungal spores, is also germination. Thus, in a general sense, germination can be thought of as anything expanding into greater being from a small existence or germ.

Most seeds do not need sunlight to germinate but some seeds such as sunflower seeds, mustard seeds and blosnian seeds need sunlight to successfully germinate. Experiments were carried out to prove this.

Sunflower seedlings
Sunflower seedling, three days after germination


Horticulture Tray3
A seed tray used in horticulture for sowing and taking plant cuttings and growing plugs
Germination glass (glass sprouter jar) with a plastic sieve-lid
Raapstelen gekiemde zaden (Brassica campestris germinating seeds)
Brassica campestris germinating seeds

Germination is usually the growth of a plant contained within a seed; it results in the formation of the seedling, it is also the process of reactivation of metabolic machinery of the seed resulting in the emergence of radicle and plumule. The seed of a vascular plant is a small package produced in a fruit or cone after the union of male and female reproductive cells. All fully developed seeds contain an embryo and, in most plant species some store of food reserves, wrapped in a seed coat. Some plants produce varying numbers of seeds that lack embryos; these are called dormant seeds which never germinate. Dormant seeds are ripe seeds that do not germinate because they are subject to external environmental conditions that prevent the initiation of metabolic processes and cell growth. Under proper conditions, the seed begins to germinate and the embryonic tissues resume growth, developing towards a seedling.

Seed Germination

-Step 1- Water imbibition, the uptake of water, results in rupture of seed coat.
-Step 2-The imbibition of the seed coat results in emergence of the radicle (1) and the plumule(2), the cotyledons get unfolded(3).
-Step 3-This marks the final step in the germination of the seed where the cotyledons are expanded which are the true leaves/peasNote- Temperature must be kept at an optimum level.

Seed germination depends on both internal and external conditions. The most important external factors include right temperature, water, oxygen or air and sometimes light or darkness.[1] Various plants require different variables for successful seed germination. Often this depends on the individual seed variety and is closely linked to the ecological conditions of a plant's natural habitat. For some seeds, their future germination response is affected by environmental conditions during seed formation; most often these responses are types of seed dormancy.

  • Water is required for germination. Mature seeds are often extremely dry and need to take in significant amounts of water, relative to the dry weight of the seed, before cellular metabolism and growth can resume. Most seeds need enough water to moisten the seeds but not enough to soak them. The uptake of water by seeds is called imbibition, which leads to the swelling and the breaking of the seed coat. When seeds are formed, most plants store a food reserve with the seed, such as starch, proteins, or oils. This food reserve provides nourishment to the growing embryo. When the seed imbibes water, hydrolytic enzymes are activated which break down these stored food resources into metabolically useful chemicals.[1] After the seedling emerges from the seed coat and starts growing roots and leaves, the seedling's food reserves are typically exhausted; at this point photosynthesis provides the energy needed for continued growth and the seedling now requires a continuous supply of water, nutrients, and light.
  • Oxygen is required by the germinating seed for metabolism.[2] Oxygen is used in aerobic respiration, the main source of the seedling's energy until it grows leaves.[1] Oxygen is an atmospheric gas that is found in soil pore spaces; if a seed is buried too deeply within the soil or the soil is waterlogged, the seed can be oxygen starved. Some seeds have impermeable seed coats that prevent oxygen from entering the seed, causing a type of physical dormancy which is broken when the seed coat is worn away enough to allow gas exchange and water uptake from the environment.
  • Temperature affects cellular metabolic and growth rates. Seeds from different species and even seeds from the same plant germinate over a wide range of temperatures. Seeds often have a temperature range within which they will germinate, and they will not do so above or below this range. Many seeds germinate at temperatures slightly above 60-75 F (16-24 C) [room-temperature in centrally heated houses], while others germinate just above freezing and others germinate only in response to alternations in temperature between warm and cool. Some seeds germinate when the soil is cool 28-40 F (-2 - 4 C), and some when the soil is warm 76-90 F (24-32 C). Some seeds require exposure to cold temperatures (vernalization) to break dormancy. Some seeds in a dormant state will not germinate even if conditions are favorable. Seeds that are dependent on temperature to end dormancy have a type of physiological dormancy. For example, seeds requiring the cold of winter are inhibited from germinating until they take in water in the fall and experience cooler temperatures. Cold stratification is a process that induces the dormancy breaking prior to light emission that promotes germination .[3] Four degrees Celsius is cool enough to end dormancy for most cool dormant seeds, but some groups, especially within the family Ranunculaceae and others, need conditions cooler than -5 C. Some seeds will only germinate after hot temperatures during a forest fire which cracks their seed coats; this is a type of physical dormancy.

Most common annual vegetables have optimal germination temperatures between 75-90 F (24-32 C), though many species (e.g. radishes or spinach) can germinate at significantly lower temperatures, as low as 40 F (4 C), thus allowing them to be grown from seeds in cooler climates. Suboptimal temperatures lead to lower success rates and longer germination periods.

  • Light or darkness can be an environmental trigger for germination and is a type of physiological dormancy. Most seeds are not affected by light or darkness, but many seeds, including species found in forest settings, will not germinate until an opening in the canopy allows sufficient light for growth of the seedling.[1]

Scarification mimics natural processes that weaken the seed coat before germination. In nature, some seeds require particular conditions to germinate, such as the heat of a fire (e.g., many Australian native plants), or soaking in a body of water for a long period of time. Others need to be passed through an animal's digestive tract to weaken the seed coat enough to allow the seedling to emerge.[1]

Sjb whiskey malt
Malted (germinated) barley grains


Some live seeds are dormant and need more time, and/or need to be subjected to specific environmental conditions before they will germinate. Seed dormancy can originate in different parts of the seed, for example, within the embryo; in other cases the seed coat is involved. Dormancy breaking often involves changes in membranes, initiated by dormancy-breaking signals. This generally occurs only within hydrated seeds.[4] Factors affecting seed dormancy include the presence of certain plant hormones, notably abscisic acid, which inhibits germination, and gibberellin, which ends seed dormancy. In brewing, barley seeds are treated with gibberellin to ensure uniform seed germination for the production of barley malt.[1]

Seedling establishment

In some definitions, the appearance of the radicle marks the end of germination and the beginning of "establishment", a period that utilizes the food reserves stored in the seed. Germination and establishment as an independent organism are critical phases in the life of a plant when they are the most vulnerable to injury, disease, and water stress.[1] The germination index can be used as an indicator of phytotoxicity in soils. The mortality between dispersal of seeds and completion of establishment can be so high that many species have adapted to produce large numbers of seeds.

Germination rate and germination capacity

Seedling of Eucalyptus
Germination of seedlings raised from seeds of eucalyptus after 3 days of sowing.

In agriculture and gardening, the germination rate describes how many seeds of a particular plant species, variety or seedlot are likely to germinate over a given period. It is a measure of germination time course and is usually expressed as a percentage, e.g., an 85% germination rate indicates that about 85 out of 100 seeds will probably germinate under proper conditions over the germination period given. The germination rate is useful for calculating the seed requirements for a given area or desired number of plants. In seed physiologists and seed scientists "germination rate" is the reciprocal of time taken for the process of germination to complete starting from time of sowing. On the other hand, the number of seed able to complete germination in a population (i.e. seed lot) is referred as germination capacity.

Repair of DNA damage

Seed quality deteriorates with age, and this is associated with accumulation of genome damage.[5] During germination, repair processes are activated to deal with accumulated DNA damage.[6] In particular, single- and double-strand breaks in DNA can be repaired.[7] The DNA damage checkpoint kinase ATM has a major role in integrating progression through germination with repair responses to the DNA damages accumulated by the aged seed.[8]

Dicot germination

The part of the plant that first emerges from the seed is the embryonic root, termed the radicle or primary root. It allows the seedling to become anchored in the ground and start absorbing water. After the root absorbs water, an embryonic shoot emerges from the seed. This shoot comprises three main parts: the cotyledons (seed leaves), the section of shoot below the cotyledons (hypocotyl), and the section of shoot above the cotyledons (epicotyl). The way the shoot emerges differs among plant groups.[1]


In epigeal germination (or epigeous germination), the hypocotyl elongates and forms a hook, pulling rather than pushing the cotyledons and apical meristem through the soil. Once it reaches the surface, it straightens and pulls the cotyledons and shoot tip of the growing seedlings into the air. Beans, tamarind and papaya are examples of plants that germinate this way.[1]


Germination can also be done by hypogeal germination (or hypogeous germination), where the epicotyl elongates and forms the hook. In this type of germination, the cotyledons stay underground where they eventually decompose. Peas, gram and mango, for example, germinate this way.[9]

Monocot germination

In monocot seeds, the embryo's radicle and cotyledon are covered by a coleorhiza and coleoptile, respectively. The coleorhiza is the first part to grow out of the seed, followed by the radicle. The coleoptile is then pushed up through the ground until it reaches the surface. There, it stops elongating and the first leaves emerge.[1]

Precocious germination

When a seed germinates without undergoing all four stages of seed development, i.e., globular, heart shape, torpedo shape, and cotyledonary stage, it is known as precocious germination.

Pollen germination

Another germination event during the life cycle of gymnosperms and flowering plants is the germination of a pollen grain after pollination. Like seeds, pollen grains are severely dehydrated before being released to facilitate their dispersal from one plant to another. They consist of a protective coat containing several cells (up to 8 in gymnosperms, 2-3 in flowering plants). One of these cells is a tube cell. Once the pollen grain lands on the stigma of a receptive flower (or a female cone in gymnosperms), it takes up water and germinates. Pollen germination is facilitated by hydration on the stigma, as well as by the structure and physiology of the stigma and style.[1] Pollen can also be induced to germinate in vitro (in a petri dish or test tube).[10][11]

During germination, the tube cell elongates into a pollen tube. In the flower, the pollen tube then grows towards the ovule where it discharges the sperm produced in the pollen grain for fertilization. The germinated pollen grain with its two sperm cells is the mature male microgametophyte of these plants.[1]


Since most plants carry both male and female reproductive organs in their flowers, there is a high risk of self-pollination and thus inbreeding. Some plants use the control of pollen germination as a way to prevent this self-pollination. Germination and growth of the pollen tube involve molecular signaling between stigma and pollen. In self-incompatibility in plants, the stigma of certain plants can molecularly recognize pollen from the same plant and prevent it from germinating.[12]

Spore germination

Germination can also refer to the emergence of cells from resting spores and the growth of sporeling hyphae or thalli from spores in fungi, algae and some plants.

Conidia are asexual reproductive (reproduction without the fusing of gametes) spores of fungi which germinate under specific conditions. A variety of cells can be formed from the germinating conidia. The most common are germ tubes which grow and develop into hyphae. Another type of cell is a conidial anastomosis tube (CAT); these differ from germ tubes in that they are thinner, shorter, lack branches, exhibit determinate growth and home toward each other. Each cell is of a tubular shape, but the conidial anastomosis tube forms a bridge that allows fusion between conidia.[13][14]

Resting spores

In resting spores, germination involves cracking the thick cell wall of the dormant spore. For example, in zygomycetes the thick-walled zygosporangium cracks open and the zygospore inside gives rise to the emerging sporangiophore. In slime molds, germination refers to the emergence of amoeboid cells from the hardened spore. After cracking the spore coat, further development involves cell division, but not necessarily the development of a multicellular organism (for example in the free-living amoebas of slime molds).[1]

Ferns and mosses

In plants such as bryophytes, ferns, and a few others, spores germinate into independent gametophytes. In the bryophytes (e.g., mosses and liverworts), spores germinate into protonemata, similar to fungal hyphae, from which the gametophyte grows. In ferns, the gametophytes are small, heart-shaped prothalli that can often be found underneath a spore-shedding adult plant.[1]

See also


  1. ^ a b c d e f g h i j k l m n Raven, Peter H.; Ray F. Evert; Susan E. Eichhorn (2005). Biology of Plants, 7th Edition. New York: W.H. Freeman and Company Publishers. pp. 504–508. ISBN 978-0-7167-1007-3.
  2. ^ Siegel, S. M.; Rosen, L. A. (1962). "Effects of Reduced Oxygen Tension on Germination and Seedling Growth". Physiologia Plantarum. 15 (3): 437–444. doi:10.1111/j.1399-3054.1962.tb08047.x.
  3. ^ Baskin and Baskin, Carol C. and Jerry M. (2014). Variation in Seed Dormancy and Germination within and between Individuals and Populations of a Species. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination. Burlington: Elsevier Science. pp. Pages 5–35. ISBN 9780124166837.
  4. ^ Derek Bewley, J.; Black, Michael; Halmer, Peter (2006). The encyclopedia of seeds: science, technology and uses Cabi Series. CABI. p. 203. ISBN 978-0-85199-723-0. Retrieved 2009-08-28.
  5. ^ Waterworth WM, Bray CM, West CE (2015). "The importance of safeguarding genome integrity in germination and seed longevity". J. Exp. Bot. 66 (12): 3549–58. doi:10.1093/jxb/erv080. PMID 25750428.
  6. ^ Koppen G, Verschaeve L (2001). "The alkaline single-cell gel electrophoresis/comet assay: a way to study DNA repair in radicle cells of germinating Vicia faba". Folia Biol. (Praha). 47 (2): 50–4. PMID 11321247.
  7. ^ Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010). "A plant DNA ligase is an important determinant of seed longevity". Plant J. 63 (5): 848–60. doi:10.1111/j.1365-313X.2010.04285.x. PMID 20584150.
  8. ^ Waterworth WM, Footitt S, Bray CM, Finch-Savage WE, West CE (2016). "DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds". Proc. Natl. Acad. Sci. U.S.A. 113 (34): 9647–52. doi:10.1073/pnas.1608829113. PMC 5003248. PMID 27503884.
  9. ^ Sadhu, M.K. (1989). Plant propagation. New Age International. p. 61. ISBN 978-81-224-0065-6.
  10. ^ Martin FW (1972). "In Vitro Measurement of Pollen Tube Growth Inhibition". Plant Physiol. 49 (6): 924–925. doi:10.1104/pp.49.6.924. PMC 366081. PMID 16658085.
  11. ^ Pfahler PL (1981). "In vitro germination characteristics of maize pollen to detect biological activity of environmental pollutants". Environ. Health Perspect. 37: 125–32. doi:10.2307/3429260. JSTOR 3429260. PMC 1568653. PMID 7460877.
  12. ^ Takayama S, Isogai A (2005). "Self-incompatibility in plants". Annu Rev Plant Biol. 56 (1): 467–89. doi:10.1146/annurev.arplant.56.032604.144249. PMID 15862104.
  13. ^ Roca, M.; Davide, L.C.; Davide, L.M.; Mendes-Costa, M.C.; Schwan, R.F.; Wheals, A. (2004). "Conidial anastomoses fusions between Colletotrichum species". Mycological Research. 108 (11): 1320–1326. CiteSeerX doi:10.1017/S0953756204000838.
  14. ^ Roca, M.G.; Arlt, J.; Jeffree, C.E.; Read, N.D. (2005). "Cell biology of conidial anastomosis tubes in Neurospora crassa". Eukaryotic Cell. 4 (5): 911–919. doi:10.1128/EC.4.5.911-919.2005. PMC 1140100. PMID 15879525.

External links

  • Sowing Seeds A survey of seed sowing techniques.
  • Seed Germination: Theory and Practice, Norman C. Deno, 139 Lenor Dr., State College PA 16801, USA. An extensive study of the germination rates of a huge variety of seeds under different experimental conditions, including temperature variation and chemical environment.
  • Rajjou, L; Duval, M; Gallardo, K; Catusse, J; Bally, J; Job, C; Job, D (2012). "Seed germination and vigor". Annu Rev Plant Biol. 63: 507–33. doi:10.1146/annurev-arplant-042811-105550. PMID 22136565.
  • Germination time-lapse ≈1 minute HD video of mung bean seeds germinating over 10 days. Hosted on YouTube.
Annual plant

An annual plant is a plant that completes its life cycle, from germination to the production of seeds, within one year, and then dies. Summer annuals germinate during spring or early summer and mature by autumn of the same year. Winter annuals germinate during the autumn and mature during the spring or summer of the following calendar year.One seed-to-seed life cycle for an annual can occur in as little as a month in some species, though most last several months. Oilseed rapa can go from seed-to-seed in about five weeks under a bank of fluorescent lamps. This style of growing is often used in classrooms for education. Many desert annuals are therophytes, because their seed-to-seed life cycle is only weeks and they spend most of the year as seeds to survive dry conditions.


The chickpea or chick pea (Cicer arietinum) is an annual legume of the family Fabaceae, subfamily Faboideae. Its different types are variously known as gram or Bengal gram, garbanzo or garbanzo bean, and Egyptian pea. Chickpea seeds are high in protein. It is one of the earliest cultivated legumes and 7500-year-old remains have been found in the Middle East.Chickpea is a key ingredient in hummus, chana masala, and can be ground into flour and made into falafel. It is also used in salads, soups and stews, curry and other meal products like channa. The chickpea is important in Indian and Middle Eastern cuisine and in 2016, India produced 64% of the world's total chickpeas.


A conidium (plural conidia), sometimes termed an asexual chlamydospore or chlamydoconidium (plural chlamydoconidia), is an asexual, non-motile spore of a fungus. The name comes from the Greek word for dust, κόνις kónis. They are also called mitospores due to the way they are generated through the cellular process of mitosis. The two new haploid cells are genetically identical to the haploid parent, and can develop into new organisms if conditions are favorable, and serve in biological dispersal.

Asexual reproduction in ascomycetes (the phylum Ascomycota) is by the formation of conidia, which are borne on specialized stalks called conidiophores. The morphology of these specialized conidiophores is often distinctive between species and, before the development of molecular techniques at the end of the 20th century, was widely used for identification of (e.g. Metarhizium) species.

The terms microconidia and macroconidia are sometimes used.


A cotyledon (; "seed leaf" from Latin cotyledon, from Greek: κοτυληδών kotylēdōn, gen.: κοτυληδόνος kotylēdonos, from κοτύλη kotýlē "cup, bowl") is a significant part of the embryo within the seed of a plant, and is defined as "the embryonic leaf in seed-bearing plants, one or more of which are the first leaves to appear from a germinating seed." The number of cotyledons present is one characteristic used by botanists to classify the flowering plants (angiosperms). Species with one cotyledon are called monocotyledonous ("monocots"). Plants with two embryonic leaves are termed dicotyledonous ("dicots").

In the case of dicot seedlings whose cotyledons are photosynthetic, the cotyledons are functionally similar to leaves. However, true leaves and cotyledons are developmentally distinct. Cotyledons are formed during embryogenesis, along with the root and shoot meristems, and are therefore present in the seed prior to germination. True leaves, however, are formed post-embryonically (i.e. after germination) from the shoot apical meristem, which is responsible for generating subsequent aerial portions of the plant.

The cotyledon of grasses and many other monocotyledons is a highly modified leaf composed of a scutellum and a coleoptile. The scutellum is a tissue within the seed that is specialized to absorb stored food from the adjacent endosperm. The coleoptile is a protective cap that covers the plumule (precursor to the stem and leaves of the plant).

Gymnosperm seedlings also have cotyledons, and these are often variable in number (multicotyledonous), with from 2 to 24 cotyledons forming a whorl at the top of the hypocotyl (the embryonic stem) surrounding the plumule. Within each species, there is often still some variation in cotyledon numbers, e.g. Monterey pine (Pinus radiata) seedlings have 5–9, and Jeffrey pine (Pinus jeffreyi) 7–13 (Mirov 1967), but other species are more fixed, with e.g. Mediterranean cypress always having just two cotyledons. The highest number reported is for big-cone pinyon (Pinus maximartinezii), with 24 (Farjon & Styles 1997).

The cotyledons may be ephemeral, lasting only days after emergence, or persistent, enduring at least a year on the plant. The cotyledons contain (or in the case of gymnosperms and monocotyledons, have access to) the stored food reserves of the seed. As these reserves are used up, the cotyledons may turn green and begin photosynthesis, or may wither as the first true leaves take over food production for the seedling.

Hypogeal germination

Hypogeal germination (from Ancient Greek ὑπόγειος [hupógeios] 'below ground', from ὑπό [hupó] 'below' and γῆ [gê] 'earth, ground') is a botanical term indicating that the germination of a plant takes place below the ground. An example of a plant with hypogeal germination is the pea (Pisum sativum). The opposite of hypogeal is epigeal (above-ground germination).

Juvenile (organism)

A juvenile is an individual organism that has not yet reached its adult form, sexual maturity or size. Juveniles sometimes look very different from the adult form, particularly in colour. In many organisms the juvenile has a different name from the adult (see also List of animal names).

Some organisms reach sexual maturity in a short metamorphosis, such as eclosion in many insects. For others, the transition from juvenile to fully mature is a more prolonged process—puberty, for example. In such cases, juveniles during this transformation are sometimes called subadults.

Many invertebrates, on reaching the adult stage, are fully mature and their development and growth stops. Their juveniles are larvae or nymphs.

In vertebrates and some invertebrates (e.g. spiders), larval forms (e.g. tadpoles) are usually considered a development stage of their own, and "juvenile" refers to a post-larval stage that is not fully grown and not sexually mature. In amniotes and most plants, the embryo represents the larval stage. Here, a "juvenile" is an individual in the time between hatching/birth/germination and reaching maturity.

List of natural phenomena

Types of natural phenomena include:

Weather, fog, thunder, tornadoes; biological processes, decomposition, germination; physical processes, wave propagation, erosion; tidal flow, and natural disasters such as electromagnetic pulses, volcanic eruptions, and earthquakes.

Malting process

The malting process converts raw grain into malt. The malt is mainly used for brewing or whisky making, but can also be used to make malt vinegar or malt extract. Various grains are used for malting; the most common are barley, sorghum, wheat and rye. There are a number of different types of equipment that can be used to produce the malt. A traditional floor malting germinates the grains in a thin layer on a solid floor, and the grain is manually raked and turned to keep the grains loose and aerated. In a modern malt house the process is more automated, and the grain is germinated on a floor that is slotted to allow air to be forced through the grain bed. Large mechanical turners e.g. Saladin box, keep the much thicker bed loose with higher productivity and better energy efficiency.

Parasitic plant

A parasitic plant is a plant that derives some or all of its nutritional requirement from another living plant. They make up about 1% of angiosperms and are in almost every biome in the world. All parasitic plants have modified roots, called haustoria, which penetrates the host plants, connecting them to the conductive system – either the xylem, the phloem, or both. For example, plants like Striga or Rhinanthus connect only to the xylem, via xylem bridges (xylem-feeding). Alternately, plants like Cuscuta and Orobanche connect only to the phloem of the host (phloem-feeding). This provides them with the ability to extract water and nutrients from the host. Parasitic plants are classified depending on where the parasitic plant latches onto the host and the amount of nutrients it requires. Some parasitic plants are able to locate their host plants by detecting chemicals in the air or soil given off by host shoots or roots, respectively. About 4,500 species of parasitic plant in approximately 20 families of flowering plants are known.

Plant hormone

Plant hormones (also known as phytohormones) are signal molecules produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of growth and development, from embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and through to reproductive development. Unlike in animals (in which hormone production is restricted to specialized glands) each plant cell is capable of producing hormones. The term 'phytohormone' was coined by Went and Thimann and used in the title of their book in 1937.Phytohormones are found across the plant kingdom, and even in algae, where they have similar functions to those seen in higher plants. Some phytohormones also occur in microorganisms, such as unicellular fungi and bacteria, however in these cases they do not play a hormonal role and can better be regarded as secondary metabolites.


A seed is an embryonic plant enclosed in a protective outer covering

. The formation of the seed is part of the process of reproduction in seed plants, the spermatophytes, including the gymnosperm and angiosperm plants.

Seeds are the product of the ripened ovule, after fertilization by pollen and some growth within the mother plant. The embryo is developed from the zygote and the seed coat from the integuments of the ovule.

Seeds have been an important development in the reproduction and success of gymnosperm and angiosperm plants, relative to more primitive plants such as ferns, mosses and liverworts, which do not have seeds and use water-dependent means to propagate themselves. Seed plants now dominate biological niches on land, from forests to grasslands both in hot and cold climates.

The term "seed" also has a general meaning that antedates the above – anything that can be sown, e.g. "seed" potatoes, "seeds" of corn or sunflower "seeds". In the case of sunflower and corn "seeds", what is sown is the seed enclosed in a shell or husk, whereas the potato is a tuber.

Many structures commonly referred to as "seeds" are actually dry fruits. Plants producing berries are called baccate. Sunflower seeds are sometimes sold commercially while still enclosed within the hard wall of the fruit, which must be split open to reach the seed. Different groups of plants have other modifications, the so-called stone fruits (such as the peach) have a hardened fruit layer (the endocarp) fused to and surrounding the actual seed. Nuts are the one-seeded, hard-shelled fruit of some plants with an indehiscent seed, such as an acorn or hazelnut.

Seed dormancy

A dormant seed is one that is unable to germinate in a specified period of time under a combination of environmental factors that are normally suitable for the germination of the non-dormant seed. Dormancy is a mechanism to prevent germination during unsuitable ecological conditions, when the probability of seedling survival is low.One important function of most seeds is delayed germination, which allows time for dispersal and prevents germination of all the seeds at the same time. The staggering of germination safeguards some seeds and seedlings from suffering damage or death from short periods of bad weather or from transient herbivores; it also allows some seeds to germinate when competition from other plants for light and water might be less intense. Another form of delayed seed germination is seed quiescence, which is different from true seed dormancy and occurs when a seed fails to germinate because the external environmental conditions are too dry or warm or cold for germination. Many species of plants have seeds that delay germination for many months or years, and some seeds can remain in the soil seed bank for more than 50 years before germination. Some seeds have a very long viability period, and the oldest documented germinating seed was nearly 2000 years old based on radiocarbon dating.


A seedling is a young plant sporophyte developing out of a plant embryo from a seed. Seedling development starts with germination of the seed. A typical young seedling consists of three main parts: the radicle (embryonic root), the hypocotyl (embryonic shoot), and the cotyledons (seed leaves). The two classes of flowering plants (angiosperms) are distinguished by their numbers of seed leaves: monocotyledons (monocots) have one blade-shaped cotyledon, whereas dicotyledons (dicots) possess two round cotyledons. Gymnosperms are more varied. For example, pine seedlings have up to eight cotyledons. The seedlings of some flowering plants have no cotyledons at all. These are said to be acotyledons.

The plumule is the part of a seed embryo that develops into the shoot bearing the first true leaves of a plant. In most seeds, for example the sunflower, the plumule is a small conical structure without any leaf structure. Growth of the plumule does not occur until the cotyledons have grown above ground. This is epigeal germination. However, in seeds such as the broad bean, a leaf structure is visible on the plumule in the seed. These seeds develop by the plumule growing up through the soil with the cotyledons remaining below the surface. This is known as hypogeal germination.

Sexual maturity

Sexual maturity is the capability of an organism to reproduce. It may be considered synonymous with adulthood, but, in humans, puberty encompasses the process of sexual maturation and adulthood is based on cultural definitions.Most multicellular organisms are unable to sexually reproduce at birth (or germination), and depending on the species, it may be days, weeks, or years until their bodies are able to do so. Also, certain cues may cause the organism to become sexually mature. They may be external, such as drought, or internal, such as percentage of body fat (such internal cues are not to be confused with hormones which directly produce sexual maturity).

Sexual maturity is brought about by a maturing of the reproductive organs and the production of gametes. It may also be accompanied by a growth spurt or other physical changes which distinguish the immature organism from its adult form. These are termed secondary sex characteristics, and often represent an increase in sexual dimorphism. For example, before puberty, human children have flat chests, but adult females have generally larger breasts than adult males. However, there are exceptions such as obesity and hormone imbalances such as gynecomastia.

After sexual maturity is achieved, it is possible for some organisms to become infertile, or even to change their sex. Some organisms are hermaphrodites and may or may not be able to produce viable offspring. Also, while in many organisms sexual maturity is strongly linked to age, many other factors are involved, and it is possible for some to display most or all of the characteristics of the adult form without being sexually mature. Conversely it is also possible for the "immature" form of an organism to reproduce. This is called progenesis, in which sexual development occurs faster than other physiological development (in contrast, the term neoteny refers to when non-sexual development is slowed - but the result is the same, the retention of juvenile characteristics into adulthood).


Shrubland, scrubland, scrub, brush, or bush is a plant community characterised by vegetation dominated by shrubs, often also including grasses, herbs, and geophytes. Shrubland may either occur naturally or be the result of human activity. It may be the mature vegetation type in a particular region and remain stable over time, or a transitional community that occurs temporarily as the result of a disturbance, such as fire. A stable state may be maintained by regular natural disturbance such as fire or browsing. Shrubland may be unsuitable for human habitation because of the danger of fire. The term "shrubland" was coined in 1903.Shrubland species generally show a wide range of adaptations to fire, such as heavy seed production, lignotubers, and fire-induced germination.


Sprouting is the natural germination process by which seeds or spores put out shoots, plants produce new leaves or buds, or other newly developing parts experience further growth.

In the field of nutrition, the term signifies the practice of germinating seeds, to be eaten raw or cooked.

The term can also be used for hair growth, and in a figurative sense it can mean something appearing suddenly.

Stratification (seeds)

In horticulture, stratification is a process of treating seeds to simulate natural conditions that the seeds must experience before germination can occur. Many seed species have an embryonic dormancy phase, and generally will not sprout until this dormancy is broken.The term stratification can be traced back to at least 1664 in Sylva, or A Discourse of Forest-Trees and the Propagation of Timber, where seeds were layered (stratified) between layers of moist soil and exposing these strata to winter conditions. Thus, stratification became the process by which seeds were artificially exposed to conditions to encourage subsequent germination.


A taproot is a large, central, and dominant root from which other roots sprout laterally. Typically a taproot is somewhat straight and very thick, is tapering in shape, and grows directly downward. In some plants, such as the carrot, the taproot is a storage organ so well developed that it has been cultivated as a vegetable.

The taproot system contrasts with the adventitious or fibrous root system of plants with many branched roots, but many plants that grow a taproot during germination go on to develop branching root structures, although some that rely on the main root for storage may retain the dominant taproot for centuries, for example Welwitschia'.

Tooth gemination

Tooth gemination is a dental phenomenon that appears to be two teeth developed from one. There is one main crown with a cleft in it that, within the incisal third of the crown, looks like two teeth, though it is not two teeth. The number of the teeth in the arch will be normal.

Plant groups
Plant morphology
Plant growth and habit
Plant taxonomy
  • Lists
  • Related topics

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.