Gamma-ray burst

In gamma-ray astronomy, gamma-ray bursts (GRBs) are extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe.[1] Bursts can last from ten milliseconds to several hours.[2][3][4] After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).[5]

The intense radiation of most observed GRBs is thought to be released during a supernova or superluminous supernova as a high-mass star implodes to form a neutron star or a black hole.

A subclass of GRBs (the "short" bursts) appear to originate from the merger of binary neutron stars. The cause of the precursor burst observed in some of these short events may be the development of a resonance between the crust and core of such stars as a result of the massive tidal forces experienced in the seconds leading up to their collision, causing the entire crust of the star to shatter.[6]

The sources of most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime)[7] and extremely rare (a few per galaxy per million years[8]). All observed GRBs have originated from outside the Milky Way galaxy, although a related class of phenomena, soft gamma repeater flares, are associated with magnetars within the Milky Way. It has been hypothesized that a gamma-ray burst in the Milky Way, pointing directly towards the Earth, could cause a mass extinction event.[9]

GRBs were first detected in 1967 by the Vela satellites, which had been designed to detect covert nuclear weapons tests; this was declassified and published in 1973.[10] Following their discovery, hundreds of theoretical models were proposed to explain these bursts, such as collisions between comets and neutron stars.[11] Little information was available to verify these models until the 1997 detection of the first X-ray and optical afterglows and direct measurement of their redshifts using optical spectroscopy, and thus their distances and energy outputs. These discoveries, and subsequent studies of the galaxies and supernovae associated with the bursts, clarified the distance and luminosity of GRBs, definitively placing them in distant galaxies.

Gamma ray burst
Artist's illustration showing the life of a massive star as nuclear fusion converts lighter elements into heavier ones. When fusion no longer generates enough pressure to counteract gravity, the star rapidly collapses to form a black hole. Theoretically, energy may be released during the collapse along the axis of rotation to form a gamma-ray burst.


BATSE 2704
Positions on the sky of all gamma-ray bursts detected during the BATSE mission. The distribution is isotropic, with no concentration towards the plane of the Milky Way, which runs horizontally through the center of the image.

Gamma-ray bursts were first observed in the late 1960s by the U.S. Vela satellites, which were built to detect gamma radiation pulses emitted by nuclear weapons tested in space. The United States suspected that the Soviet Union might attempt to conduct secret nuclear tests after signing the Nuclear Test Ban Treaty in 1963. On July 2, 1967, at 14:19 UTC, the Vela 4 and Vela 3 satellites detected a flash of gamma radiation unlike any known nuclear weapons signature.[12] Uncertain what had happened but not considering the matter particularly urgent, the team at the Los Alamos National Laboratory, led by Ray Klebesadel, filed the data away for investigation. As additional Vela satellites were launched with better instruments, the Los Alamos team continued to find inexplicable gamma-ray bursts in their data. By analyzing the different arrival times of the bursts as detected by different satellites, the team was able to determine rough estimates for the sky positions of sixteen bursts[12] and definitively rule out a terrestrial or solar origin. The discovery was declassified and published in 1973.[10]

Most early theories of gamma-ray bursts posited nearby sources within the Milky Way Galaxy. From 1991, the Compton Gamma Ray Observatory (CGRO) and its Burst and Transient Source Explorer (BATSE) instrument, an extremely sensitive gamma-ray detector, provided data that showed the distribution of GRBs is isotropic—not biased towards any particular direction in space.[13] If the sources were from within our own galaxy they would be strongly concentrated in or near the galactic plane. The absence of any such pattern in the case of GRBs provided strong evidence that gamma-ray bursts must come from beyond the Milky Way.[14][15][16][17] However, some Milky Way models are still consistent with an isotropic distribution.[14][18]

In October 2018, astronomers reported that GRB 150101B, a gamma-ray burst event detected in 2015, may be directly related to the historic GW170817, a gravitational wave event detected in 2017, and associated with the merger of two neutron stars. The similarities between the two events, in terms of gamma ray, optical and x-ray emissions, as well as to the nature of the associated host galaxies, are "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be a kilonova, which may be more common in the universe than previously understood, according to the researchers.[19][20][21][22]

Counterpart objects as candidate sources

For decades after the discovery of GRBs, astronomers searched for a counterpart at other wavelengths: i.e., any astronomical object in positional coincidence with a recently observed burst. Astronomers considered many distinct classes of objects, including white dwarfs, pulsars, supernovae, globular clusters, quasars, Seyfert galaxies, and BL Lac objects.[23] All such searches were unsuccessful,[nb 1] and in a few cases particularly well-localized bursts (those whose positions were determined with what was then a high degree of accuracy) could be clearly shown to have no bright objects of any nature consistent with the position derived from the detecting satellites. This suggested an origin of either very faint stars or extremely distant galaxies.[24][25] Even the most accurate positions contained numerous faint stars and galaxies, and it was widely agreed that final resolution of the origins of cosmic gamma-ray bursts would require both new satellites and faster communication.[26]


The Italian–Dutch satellite BeppoSAX, launched in April 1996, provided the first accurate positions of gamma-ray bursts, allowing follow-up observations and identification of the sources.

Several models for the origin of gamma-ray bursts postulated that the initial burst of gamma rays should be followed by slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas.[27] This fading emission would be called the "afterglow". Early searches for this afterglow were unsuccessful, largely because it is difficult to observe a burst's position at longer wavelengths immediately after the initial burst. The breakthrough came in February 1997 when the satellite BeppoSAX detected a gamma-ray burst (GRB 970228[nb 2]) and when the X-ray camera was pointed towards the direction from which the burst had originated, it detected fading X-ray emission. The William Herschel Telescope identified a fading optical counterpart 20 hours after the burst.[28] Once the GRB faded, deep imaging was able to identify a faint, distant host galaxy at the location of the GRB as pinpointed by the optical afterglow.[29][30]

Because of the very faint luminosity of this galaxy, its exact distance was not measured for several years. Well after then, another major breakthrough occurred with the next event registered by BeppoSAX, GRB 970508. This event was localized within four hours of its discovery, allowing research teams to begin making observations much sooner than any previous burst. The spectrum of the object revealed a redshift of z = 0.835, placing the burst at a distance of roughly 6 billion light years from Earth.[31] This was the first accurate determination of the distance to a GRB, and together with the discovery of the host galaxy of 970228 proved that GRBs occur in extremely distant galaxies.[29][32] Within a few months, the controversy about the distance scale ended: GRBs were extragalactic events originating within faint galaxies at enormous distances. The following year, GRB 980425 was followed within a day by a bright supernova (SN 1998bw), coincident in location, indicating a clear connection between GRBs and the deaths of very massive stars. This burst provided the first strong clue about the nature of the systems that produce GRBs.[33]

Swift spacecraft
NASA's Swift Spacecraft launched in November 2004

BeppoSAX functioned until 2002 and CGRO (with BATSE) was deorbited in 2000. However, the revolution in the study of gamma-ray bursts motivated the development of a number of additional instruments designed specifically to explore the nature of GRBs, especially in the earliest moments following the explosion. The first such mission, HETE-2,[34] was launched in 2000 and functioned until 2006, providing most of the major discoveries during this period. One of the most successful space missions to date, Swift, was launched in 2004 and as of 2018 is still operational.[35][36] Swift is equipped with a very sensitive gamma ray detector as well as on-board X-ray and optical telescopes, which can be rapidly and automatically slewed to observe afterglow emission following a burst. More recently, the Fermi mission was launched carrying the Gamma-Ray Burst Monitor, which detects bursts at a rate of several hundred per year, some of which are bright enough to be observed at extremely high energies with Fermi's Large Area Telescope. Meanwhile, on the ground, numerous optical telescopes have been built or modified to incorporate robotic control software that responds immediately to signals sent through the Gamma-ray Burst Coordinates Network. This allows the telescopes to rapidly repoint towards a GRB, often within seconds of receiving the signal and while the gamma-ray emission itself is still ongoing.[37][38]

New developments since the 2000s include the recognition of short gamma-ray bursts as a separate class (likely from merging neutron stars and not associated with supernovae), the discovery of extended, erratic flaring activity at X-ray wavelengths lasting for many minutes after most GRBs, and the discovery of the most luminous (GRB 080319B) and the former most distant (GRB 090423) objects in the universe.[39][40] The most distant known GRB, GRB 090429B, is now the most distant known object in the universe.


GRB BATSE 12lightcurves
Gamma-ray burst light curves

The light curves of gamma-ray bursts are extremely diverse and complex.[41] No two gamma-ray burst light curves are identical,[42] with large variation observed in almost every property: the duration of observable emission can vary from milliseconds to tens of minutes, there can be a single peak or several individual subpulses, and individual peaks can be symmetric or with fast brightening and very slow fading. Some bursts are preceded by a "precursor" event, a weak burst that is then followed (after seconds to minutes of no emission at all) by the much more intense "true" bursting episode.[43] The light curves of some events have extremely chaotic and complicated profiles with almost no discernible patterns.[26]

Although some light curves can be roughly reproduced using certain simplified models,[44] little progress has been made in understanding the full diversity observed. Many classification schemes have been proposed, but these are often based solely on differences in the appearance of light curves and may not always reflect a true physical difference in the progenitors of the explosions. However, plots of the distribution of the observed duration[nb 3] for a large number of gamma-ray bursts show a clear bimodality, suggesting the existence of two separate populations: a "short" population with an average duration of about 0.3 seconds and a "long" population with an average duration of about 30 seconds.[45] Both distributions are very broad with a significant overlap region in which the identity of a given event is not clear from duration alone. Additional classes beyond this two-tiered system have been proposed on both observational and theoretical grounds.[46][47][48][49]

Short gamma-ray bursts

Hubble captures infrared glow of a kilonova blast
Hubble Space Telescope captures infrared glow of a kilonova blast.[50]

Events with a duration of less than about two seconds are classified as short gamma-ray bursts. These account for about 30% of gamma-ray bursts, but until 2005, no afterglow had been successfully detected from any short event and little was known about their origins.[51] Since then, several dozen short gamma-ray burst afterglows have been detected and localized, several of which are associated with regions of little or no star formation, such as large elliptical galaxies and the central regions of large galaxy clusters.[52][53][54][55] This rules out a link to massive stars, confirming that short events are physically distinct from long events. In addition, there has been no association with supernovae.[56]

The true nature of these objects was initially unknown, and the leading hypothesis was that they originated from the mergers of binary neutron stars[57] or a neutron star with a black hole. Such mergers were theorized to produce kilonovae,[58] and evidence for a kilonova associated with GRB 130603B was seen.[59][60][61] The mean duration of these events of 0.2 seconds suggests (because of causality) a source of very small physical diameter in stellar terms; less than 0.2 light-seconds (about 60,000 km or 37,000 miles—four times the Earth's diameter). The observation of minutes to hours of X-ray flashes after a short gamma-ray burst is consistent with small particles of a primary object like a neutron star initially swallowed by a black hole in less than two seconds, followed by some hours of lesser energy events, as remaining fragments of tidally disrupted neutron star material (no longer neutronium) remain in orbit to spiral into the black hole, over a longer period of time.[51] A small fraction of short gamma-ray bursts are probably produced by giant flares from soft gamma repeaters in nearby galaxies.[62][63]

The origin of short GRBs in kilonovae was confirmed when short GRB 170817A was detected only 1.7 s after the detection of gravitational wave GW170817, which was a signal from the merger of two neutron stars.[64][57]

Long gamma-ray bursts

Most observed events (70%) have a duration of greater than two seconds and are classified as long gamma-ray bursts. Because these events constitute the majority of the population and because they tend to have the brightest afterglows, they have been observed in much greater detail than their short counterparts. Almost every well-studied long gamma-ray burst has been linked to a galaxy with rapid star formation, and in many cases to a core-collapse supernova as well, unambiguously associating long GRBs with the deaths of massive stars.[65] Long GRB afterglow observations, at high redshift, are also consistent with the GRB having originated in star-forming regions.[66]

Ultra-long gamma-ray bursts

These events are at the tail end of the long GRB duration distribution, lasting more than 10,000 seconds. They have been proposed to form a separate class, caused by the collapse of a blue supergiant star,[67] a tidal disruption event[68][69] or a new-born magnetar.[68][70] Only a small number have been identified to date, their primary characteristic being their gamma ray emission duration. The most studied ultra-long events include GRB 101225A and GRB 111209A.[69][71][72] The low detection rate may be a result of low sensitivity of current detectors to long-duration events, rather than a reflection of their true frequency.[69] A 2013 study,[73] on the other hand, shows that the existing evidence for a separate ultra-long GRB population with a new type of progenitor is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion.

Energetics and beaming

GRB080319B illustration NASA
Artist's illustration of a bright gamma-ray burst occurring in a star-forming region. Energy from the explosion is beamed into two narrow, oppositely directed jets.

Gamma-ray bursts are very bright as observed from Earth despite their typically immense distances. An average long GRB has a bolometric flux comparable to a bright star of our galaxy despite a distance of billions of light years (compared to a few tens of light years for most visible stars). Most of this energy is released in gamma rays, although some GRBs have extremely luminous optical counterparts as well. GRB 080319B, for example, was accompanied by an optical counterpart that peaked at a visible magnitude of 5.8,[74] comparable to that of the dimmest naked-eye stars despite the burst's distance of 7.5 billion light years. This combination of brightness and distance implies an extremely energetic source. Assuming the gamma-ray explosion to be spherical, the energy output of GRB 080319B would be within a factor of two of the rest-mass energy of the Sun (the energy which would be released were the Sun to be converted entirely into radiation).[39]

Gamma-ray bursts are thought to be highly focused explosions, with most of the explosion energy collimated into a narrow jet.[75][76] The approximate angular width of the jet (that is, the degree of spread of the beam) can be estimated directly by observing the achromatic "jet breaks" in afterglow light curves: a time after which the slowly decaying afterglow begins to fade rapidly as the jet slows and can no longer beam its radiation as effectively.[77][78] Observations suggest significant variation in the jet angle from between 2 and 20 degrees.[79]

Because their energy is strongly focused, the gamma rays emitted by most bursts are expected to miss the Earth and never be detected. When a gamma-ray burst is pointed towards Earth, the focusing of its energy along a relatively narrow beam causes the burst to appear much brighter than it would have been were its energy emitted spherically. When this effect is taken into account, typical gamma-ray bursts are observed to have a true energy release of about 1044 J, or about 1/2000 of a Solar mass (M) energy equivalent[79]—which is still many times the mass-energy equivalent of the Earth (about 5.5 × 1041 J). This is comparable to the energy released in a bright type Ib/c supernova and within the range of theoretical models. Very bright supernovae have been observed to accompany several of the nearest GRBs.[33] Additional support for focusing of the output of GRBs has come from observations of strong asymmetries in the spectra of nearby type Ic supernova[80] and from radio observations taken long after bursts when their jets are no longer relativistic.[81]

Short (time duration) GRBs appear to come from a lower-redshift (i.e. less distant) population and are less luminous than long GRBs.[82] The degree of beaming in short bursts has not been accurately measured, but as a population they are likely less collimated than long GRBs[83] or possibly not collimated at all in some cases.[84]


Wolf rayet2
Hubble Space Telescope image of Wolf–Rayet star WR 124 and its surrounding nebula. Wolf–Rayet stars are candidates for being progenitors of long-duration GRBs.

Because of the immense distances of most gamma-ray burst sources from Earth, identification of the progenitors, the systems that produce these explosions, is challenging. The association of some long GRBs with supernovae and the fact that their host galaxies are rapidly star-forming offer very strong evidence that long gamma-ray bursts are associated with massive stars. The most widely accepted mechanism for the origin of long-duration GRBs is the collapsar model,[85] in which the core of an extremely massive, low-metallicity, rapidly rotating star collapses into a black hole in the final stages of its evolution. Matter near the star's core rains down towards the center and swirls into a high-density accretion disk. The infall of this material into a black hole drives a pair of relativistic jets out along the rotational axis, which pummel through the stellar envelope and eventually break through the stellar surface and radiate as gamma rays. Some alternative models replace the black hole with a newly formed magnetar,[86][87] although most other aspects of the model (the collapse of the core of a massive star and the formation of relativistic jets) are the same.

The closest analogs within the Milky Way galaxy of the stars producing long gamma-ray bursts are likely the Wolf–Rayet stars, extremely hot and massive stars, which have shed most or all of their hydrogen to radiation pressure. Eta Carinae and WR 104 have been cited as possible future gamma-ray burst progenitors.[88] It is unclear if any star in the Milky Way has the appropriate characteristics to produce a gamma-ray burst.[89]

The massive-star model probably does not explain all types of gamma-ray burst. There is strong evidence that some short-duration gamma-ray bursts occur in systems with no star formation and no massive stars, such as elliptical galaxies and galaxy halos.[82] The favored theory for the origin of most short gamma-ray bursts is the merger of a binary system consisting of two neutron stars. According to this model, the two stars in a binary slowly spiral towards each other because gravitational radiation releases energy[90][91] until tidal forces suddenly rip the neutron stars apart and they collapse into a single black hole. The infall of matter into the new black hole produces an accretion disk and releases a burst of energy, analogous to the collapsar model. Numerous other models have also been proposed to explain short gamma-ray bursts, including the merger of a neutron star and a black hole, the accretion-induced collapse of a neutron star, or the evaporation of primordial black holes.[92][93][94][95]

An alternative explanation proposed by Friedwardt Winterberg is that in the course of a gravitational collapse and in reaching the event horizon of a black hole, all matter disintegrates into a burst of gamma radiation.[96]

Tidal disruption events

This new class of GRB-like events was first discovered through the detection of GRB 110328A by the Swift Gamma-Ray Burst Mission on 28 March 2011. This event had a gamma-ray duration of about 2 days, much longer than even ultra-long GRBs, and was detected in X-rays for many months. It occurred at the center of a small elliptical galaxy at redshift z = 0.3534. There is an ongoing debate as to whether the explosion was the result of stellar collapse or a tidal disruption event accompanied by a relativistic jet, although the latter explanation has become widely favoured.

A tidal disruption event of this sort is when a star interacts with a supermassive black hole, shredding the star, and in some cases creating a relativistic jet which produces bright emission of gamma ray radiation. The event GRB 110328A (also denoted Swift J1644+57) was initially argued to be produced by the disruption of a main sequence star by a black hole of several million times the mass of the Sun,[97][98][99] although it has subsequently been argued that the disruption of a white dwarf by a black hole of mass about 10 thousand times the Sun may be more likely.[100]

Emission mechanisms

The means by which gamma-ray bursts convert energy into radiation remains poorly understood, and as of 2010 there was still no generally accepted model for how this process occurs.[101] Any successful model of GRB emission must explain the physical process for generating gamma-ray emission that matches the observed diversity of light curves, spectra, and other characteristics.[102] Particularly challenging is the need to explain the very high efficiencies that are inferred from some explosions: some gamma-ray bursts may convert as much as half (or more) of the explosion energy into gamma-rays.[103] Early observations of the bright optical counterparts to GRB 990123 and to GRB 080319B, whose optical light curves were extrapolations of the gamma-ray light spectra,[74][104] have suggested that inverse Compton may be the dominant process in some events. In this model, pre-existing low-energy photons are scattered by relativistic electrons within the explosion, augmenting their energy by a large factor and transforming them into gamma-rays.[105]

The nature of the longer-wavelength afterglow emission (ranging from X-ray through radio) that follows gamma-ray bursts is better understood. Any energy released by the explosion not radiated away in the burst itself takes the form of matter or energy moving outward at nearly the speed of light. As this matter collides with the surrounding interstellar gas, it creates a relativistic shock wave that then propagates forward into interstellar space. A second shock wave, the reverse shock, may propagate back into the ejected matter. Extremely energetic electrons within the shock wave are accelerated by strong local magnetic fields and radiate as synchrotron emission across most of the electromagnetic spectrum.[106][107] This model has generally been successful in modeling the behavior of many observed afterglows at late times (generally, hours to days after the explosion), although there are difficulties explaining all features of the afterglow very shortly after the gamma-ray burst has occurred.[108]

Rate of occurrence and potential effects on life

GROND image of the gamma-ray burst GRB 151027B
On 27 October 2015, at 22:40 GMT, the NASA/ASI/UKSA Swift satellite discovered its 1000th gamma-ray burst (GRB).[109]

Gamma ray bursts can have harmful or destructive effects on life. Considering the universe as a whole, the safest environments for life similar to that on Earth are the lowest density regions in the outskirts of large galaxies. Our knowledge of galaxy types and their distribution suggests that life as we know it can only exist in about 10% of all galaxies. Furthermore, galaxies with a redshift, z, higher than 0.5 are unsuitable for life as we know it, because of their higher rate of GRBs and their stellar compactness.[110][111]

All GRBs observed to date have occurred well outside the Milky Way galaxy and have been harmless to Earth. However, if a GRB were to occur within the Milky Way and its emission were beamed straight towards Earth, the effects could be harmful and potentially devastating for the ecosystems. Currently, orbiting satellites detect on average approximately one GRB per day. The closest observed GRB as of March 2014 was GRB 980425, located 40 megaparsecs (130,000,000 ly)[112] away (z=0.0085) in an SBc-type dwarf galaxy.[113] GRB 980425 was far less energetic than the average GRB and was associated with the Type Ib supernova SN 1998bw.[114]

Estimating the exact rate at which GRBs occur is difficult; for a galaxy of approximately the same size as the Milky Way, estimates of the expected rate (for long-duration GRBs) can range from one burst every 10,000 years, to one burst every 1,000,000 years.[115] Only a small percentage of these would be beamed towards Earth. Estimates of rate of occurrence of short-duration GRBs are even more uncertain because of the unknown degree of collimation, but are probably comparable.[116]

Since GRBs are thought to involve beamed emission along two jets in opposing directions, only planets in the path of these jets would be subjected to the high energy gamma radiation.[117]

Although nearby GRBs hitting Earth with a destructive shower of gamma rays are only hypothetical events, high energy processes across the galaxy have been observed to affect the Earth's atmosphere.[118]

Effects on Earth

Earth's atmosphere is very effective at absorbing high energy electromagnetic radiation such as x-rays and gamma rays, so these types of radiation would not reach any dangerous levels at the surface during the burst event itself. The immediate effect on life on Earth from a GRB within a few kiloparsecs would only be a short increase in ultraviolet radiation at ground level, lasting from less than a second to tens of seconds. This ultraviolet radiation could potentially reach dangerous levels depending on the exact nature and distance of the burst, but it seems unlikely to be able to cause a global catastrophe for life on Earth.[119][120]

The long-term effects from a nearby burst are more dangerous. Gamma rays cause chemical reactions in the atmosphere involving oxygen and nitrogen molecules, creating first nitrogen oxide then nitrogen dioxide gas. The nitrogen oxides cause dangerous effects on three levels. First, they deplete ozone, with models showing a possible global reduction of 25–35%, with as much as 75% in certain locations, an effect that would last for years. This reduction is enough to cause a dangerously elevated UV index at the surface. Secondly, the nitrogen oxides cause photochemical smog, which darkens the sky and blocks out parts of the sunlight spectrum. This would affect photosynthesis, but models show only about a 1% reduction of the total sunlight spectrum, lasting a few years. However, the smog could potentially cause a cooling effect on Earth's climate, producing a "cosmic winter" (similar to an impact winter, but without an impact), but only if it occurs simultaneously with a global climate instability. Thirdly, the elevated nitrogen levels in the atmosphere would wash out and produce nitric acid rain. Nitric acid is toxic to a variety of organisms, including amphibian life, but models predict that it would not reach levels that would cause a serious global effect. The nitrates might in fact be of benefit to some plants.[119][120]

All in all, a GRB within a few kiloparsecs, with its energy directed towards Earth, will mostly damage life by raising the UV levels during the burst itself and for a few years thereafter. Models show that the destructive effects of this increase can cause up to 16 times the normal levels of DNA damage. It has proved difficult to assess a reliable evaluation of the consequences of this on the terrestrial ecosystem, because of the uncertainty in biological field and laboratory data.[119][120]

Hypothetical effects on Earth in the past

GRBs close enough to affect life in some way might occur once every five million years or so – around a thousand times since life on Earth began.[121]

The major Ordovician–Silurian extinction events 450 million years ago may have been caused by a GRB. The late Ordovician species of trilobites that spent portions of their lives in the plankton layer near the ocean surface were much harder hit than deep-water dwellers, which tended to remain within quite restricted areas. This is in contrast to the usual pattern of extinction events, wherein species with more widely spread populations typically fare better. A possible explanation is that trilobites remaining in deep water would be more shielded from the increased UV radiation associated with a GRB. Also supportive of this hypothesis is the fact that during the late Ordovician, burrowing bivalve species were less likely to go extinct than bivalves that lived on the surface.[9]

A case has been made that the 774–775 carbon-14 spike was the result of a short GRB,[122][123] though a very strong solar flare is another possibility.[124]

GRB candidates in the Milky Way

No gamma-ray bursts from within our own galaxy, the Milky Way, have been observed,[125] and the question of whether one has ever occurred remains unresolved. In light of evolving understanding of gamma-ray bursts and their progenitors, the scientific literature records a growing number of local, past, and future GRB candidates. Long duration GRBs are related to superluminous supernovae, or hypernovae, and most luminous blue variables (LBVs), and rapidly spinning Wolf–Rayet stars are thought to end their life cycles in core-collapse supernovae with an associated long-duration GRB. Knowledge of GRBs, however, is from metal-poor galaxies of former epochs of the universe's evolution, and it is impossible to directly extrapolate to encompass more evolved galaxies and stellar environments with a higher metallicity, such as the Milky Way.[126][127][128]

WR 104: A nearby GRB candidate

A Wolf–Rayet star in WR 104, about 8,000 light-years (2,500 pc) away, is considered a nearby GRB candidate that could have destructive effects on terrestrial life. It is expected to explode in a core-collapse-supernova at some point within the next 500,000 years and it is possible that this explosion will create a GRB. If that happens, there is a small chance that Earth will be in the path of its gamma ray jet.[129][130][131]

See also


  1. ^ A notable exception is the 5 March event of 1979, an extremely bright burst that was successfully localized to supernova remnant N49 in the Large Magellanic Cloud. This event is now interpreted as a magnetar giant flare, more related to SGR flares than "true" gamma-ray bursts.
  2. ^ GRBs are named after the date on which they are discovered: the first two digits being the year, followed by the two-digit month and two-digit day and a letter with the order they were detected during that day. The letter 'A' is appended to the name for the first burst identified, 'B' for the second, and so on. For bursts before the year 2010 this letter was only appended if more than one burst occurred that day.
  3. ^ The duration of a burst is typically measured by T90, the duration of the period which 90 percent of the burst's energy is emitted. Recently some otherwise "short" GRBs have been shown to be followed by a second, much longer emission episode that when included in the burst light curve results in T90 durations of up to several minutes: these events are only short in the literal sense when this component is excluded.


  1. ^ "Gamma Rays". NASA. Archived from the original on 2012-05-02.
  2. ^ Atkinson, Nancy (2013-04-17). "New Kind of Gamma Ray Burst is Ultra Long-Lasting". Retrieved 2015-05-15.
  3. ^ Gendre, B.; Stratta, G.; Atteia, J. L.; Basa, S.; Boër, M.; Coward, D. M.; Cutini, S.; d'Elia, V.; Howell, E. J; Klotz, A.; Piro, L. (2013). "The Ultra-Long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant?". The Astrophysical Journal. 766 (1): 30. arXiv:1212.2392. Bibcode:2013ApJ...766...30G. doi:10.1088/0004-637X/766/1/30.
  4. ^ Graham, J. F.; Fruchter, A. S. (2013). "The Metal Aversion of LGRBs". The Astrophysical Journal. 774 (2): 119. arXiv:1211.7068. Bibcode:2013ApJ...774..119G. doi:10.1088/0004-637X/774/2/119.
  5. ^ Vedrenne & Atteia 2009
  6. ^ Tsang, David; Read, Jocelyn S.; Hinderer, Tanja; Piro, Anthony L.; Bondarescu, Ruxandra (2012). "Resonant Shattering of Neutron Star Crust". Physical Review Letters. 108. p. 5. arXiv:1110.0467. Bibcode:2012PhRvL.108a1102T. doi:10.1103/PhysRevLett.108.011102.
  7. ^ "Massive star's dying blast caught by rapid-response telescopes". PhysOrg. 26 July 2017. Retrieved 27 July 2017.
  8. ^ Podsiadlowski 2004
  9. ^ a b Melott 2004
  10. ^ a b Klebesadel R.W.; Strong I.B.; Olson R.A. (1973). "Observations of Gamma-Ray Bursts of Cosmic Origin". Astrophysical Journal Letters. 182: L85. Bibcode:1973ApJ...182L..85K. doi:10.1086/181225.
  11. ^ Hurley 2003
  12. ^ a b Schilling 2002, p.12–16
  13. ^ Meegan 1992
  14. ^ a b Vedrenne & Atteia 2009, p. 16–40
  15. ^ Schilling 2002, p.36–37
  16. ^ Paczyński 1999, p. 6
  17. ^ Piran 1992
  18. ^ Lamb 1995
  19. ^ University of Maryland (16 October 2018). "All in the family: Kin of gravitational wave source discovered – New observations suggest that kilonovae – immense cosmic explosions that produce silver, gold and platinum—may be more common than thought". EurekAlert!. Retrieved 17 October 2018.
  20. ^ Troja, E.; et al. (16 October 2018). "A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341". Nature Communications. 9 (4089 (2018)): 4089. doi:10.1038/s41467-018-06558-7. PMC 6191439. PMID 30327476. Retrieved 17 October 2018.
  21. ^ Mohon, Lee (16 October 2018). "GRB 150101B: A Distant Cousin to GW170817". NASA. Retrieved 17 October 2018.
  22. ^ Wall, Mike (17 October 2018). "Powerful Cosmic Flash Is Likely Another Neutron-Star Merger". Retrieved 17 October 2018.
  23. ^ Hurley 1986, p. 33
  24. ^ Pedersen 1987
  25. ^ Hurley 1992
  26. ^ a b Fishman & Meegan 1995
  27. ^ Paczynski 1993
  28. ^ van Paradijs 1997
  29. ^ a b Vedrenne & Atteia 2009, p. 90 – 93
  30. ^ Schilling 2002, p. 102
  31. ^ Reichart 1995
  32. ^ Schilling 2002, p. 118–123
  33. ^ a b Galama 1998
  34. ^ Ricker 2003
  35. ^ McCray 2008
  36. ^ Gehrels 2004
  37. ^ Akerlof 2003
  38. ^ Akerlof 1999
  39. ^ a b Bloom 2009
  40. ^ Reddy 2009
  41. ^ Katz 2002, p. 37
  42. ^ Marani 1997
  43. ^ Lazatti 2005
  44. ^ Simić 2005
  45. ^ Kouveliotou 1994
  46. ^ Horvath 1998
  47. ^ Hakkila 2003
  48. ^ Chattopadhyay 2007
  49. ^ Virgili 2009
  50. ^ "Hubble captures infrared glow of a kilonova blast". Image Gallery. ESA/Hubble. Retrieved 14 August 2013.
  51. ^ a b In a Flash NASA Helps Solve 35-year-old Cosmic Mystery. NASA (2005-10-05) The 30% figure is given here, as well as afterglow discussion.
  52. ^ Bloom 2006
  53. ^ Hjorth 2005
  54. ^ Berger 2007
  55. ^ Gehrels 2005
  56. ^ Zhang 2009
  57. ^ a b Nakar 2007
  58. ^ Metzger, B. D.; Martínez-Pinedo, G.; Darbha, S.; Quataert, E.; et al. (August 2010). "Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei". Monthly Notices of the Royal Astronomical Society. 406 (4): 2650. arXiv:1001.5029. Bibcode:2010MNRAS.406.2650M. doi:10.1111/j.1365-2966.2010.16864.x.
  59. ^ Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. (2013). "A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B". Nature. 500 (7464): 547–9. arXiv:1306.4971. Bibcode:2013Natur.500..547T. doi:10.1038/nature12505. PMID 23912055.
  60. ^ Berger, E.; Fong, W.; Chornock, R. (2013). "ANr-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B". The Astrophysical Journal. 774 (2): L23. arXiv:1306.3960. Bibcode:2013ApJ...774L..23B. doi:10.1088/2041-8205/774/2/L23.
  61. ^ Nicole Gugliucci (7 August 2013). "Kilonova Alert! Hubble Solves Gamma Ray Burst Mystery". Discovery Communications. Retrieved 22 January 2015.
  62. ^ Frederiks 2008
  63. ^ Hurley 2005
  64. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225.
  65. ^ Woosley & Bloom 2006
  66. ^ Pontzen et al. 2010
  67. ^ Gendre, B.; Stratta, G.; Atteia, J. L.; Basa, S.; Boër, M.; Coward, D. M.; Cutini, S.; d'Elia, V.; Howell, E. J; Klotz, A.; Piro, L. (2013). "The Ultra-Long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant?". The Astrophysical Journal. 766 (1): 30. arXiv:1212.2392. Bibcode:2013ApJ...766...30G. doi:10.1088/0004-637X/766/1/30.
  68. ^ a b Greiner, Jochen; Mazzali, Paolo A.; Kann, D. Alexander; Krühler, Thomas; Pian, Elena; Prentice, Simon; Olivares E., Felipe; Rossi, Andrea; Klose, Sylvio; Taubenberger, Stefan; Knust, Fabian; Afonso, Paulo M. J.; Ashall, Chris; Bolmer, Jan; Delvaux, Corentin; Diehl, Roland; Elliott, Jonathan; Filgas, Robert; Fynbo, Johan P. U.; Graham, John F.; Guelbenzu, Ana Nicuesa; Kobayashi, Shiho; Leloudas, Giorgos; Savaglio, Sandra; Schady, Patricia; Schmidl, Sebastian; Schweyer, Tassilo; Sudilovsky, Vladimir; Tanga, Mohit; et al. (2015-07-08). "A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst". Nature. 523 (7559): 189–192. arXiv:1509.03279. Bibcode:2015Natur.523..189G. doi:10.1038/nature14579. PMID 26156372.
  69. ^ a b c Levan, A. J.; Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Perley, D. A.; Schulze, S.; Wynn, G. A.; Chornock, R.; Hjorth, J.; Cenko, S. B.; Fruchter, A. S.; O'Brien, P. T.; Brown, G. C.; Tunnicliffe, R. L.; Malesani, D.; Jakobsson, P.; Watson, D.; Berger, E.; Bersier, D.; Cobb, B. E.; Covino, S.; Cucchiara, A.; de Ugarte Postigo, A.; Fox, D. B.; Gal-Yam, A.; Goldoni, P.; Gorosabel, J.; Kaper, L.; et al. (2014). "A new population of ultra-long duration gamma-ray bursts". The Astrophysical Journal. 781 (1): 13. arXiv:1302.2352. Bibcode:2014ApJ...781...13L. doi:10.1088/0004-637x/781/1/13.
  70. ^ Ioka, Kunihito; Hotokezaka, Kenta; Piran, Tsvi (2016-12-12). "Are Ultra-Long Gamma-Ray Bursts Caused by Blue Supergiant Collapsars, Newborn Magnetars, or White Dwarf Tidal Disruption Events?". The Astrophysical Journal. 833 (1): 110. arXiv:1608.02938. Bibcode:2016ApJ...833..110I. doi:10.3847/1538-4357/833/1/110.
  71. ^ Boer, Michel; Gendre, Bruce; Stratta, Giulia (2013). "Are Ultra-long Gamma-Ray Bursts different?". The Astrophysical Journal. 800 (1): 16. arXiv:1310.4944. Bibcode:2015ApJ...800...16B. doi:10.1088/0004-637X/800/1/16.
  72. ^ Virgili, F. J.; Mundell, C. G.; Pal'Shin, V.; Guidorzi, C.; Margutti, R.; Melandri, A.; Harrison, R.; Kobayashi, S.; Chornock, R.; Henden, A.; Updike, A. C.; Cenko, S. B.; Tanvir, N. R.; Steele, I. A.; Cucchiara, A.; Gomboc, A.; Levan, A.; Cano, Z.; Mottram, C. J.; Clay, N. R.; Bersier, D.; Kopač, D.; Japelj, J.; Filippenko, A. V.; Li, W.; Svinkin, D.; Golenetskii, S.; Hartmann, D. H.; Milne, P. A.; et al. (2013). "Grb 091024A and the Nature of Ultra-Long Gamma-Ray Bursts". The Astrophysical Journal. 778 (1): 54. arXiv:1310.0313. Bibcode:2013ApJ...778...54V. doi:10.1088/0004-637X/778/1/54.
  73. ^ Zhang, Bin-Bin; Zhang, Bing; Murase, Kohta; Connaughton, Valerie; Briggs, Michael S. (2014). "How Long does a Burst Burst?". The Astrophysical Journal. 787 (1): 66. arXiv:1310.2540. Bibcode:2014ApJ...787...66Z. doi:10.1088/0004-637X/787/1/66.
  74. ^ a b Racusin 2008
  75. ^ Rykoff 2009
  76. ^ Abdo 2009
  77. ^ Sari 1999
  78. ^ Burrows 2006
  79. ^ a b Frail 2001
  80. ^ Mazzali 2005
  81. ^ Frail 2000
  82. ^ a b Prochaska 2006
  83. ^ Watson 2006
  84. ^ Grupe 2006
  85. ^ MacFadyen 1999
  86. ^ Zhang, Bing; Mészáros, Peter (2001-05-01). "Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar". The Astrophysical Journal Letters. 552 (1): L35–L38. arXiv:astro-ph/0011133. Bibcode:2001ApJ...552L..35Z. doi:10.1086/320255.
  87. ^ Troja, E.; Cusumano, G.; O'Brien, P. T.; Zhang, B.; Sbarufatti, B.; Mangano, V.; Willingale, R.; Chincarini, G.; Osborne, J. P. (2007-08-01). "Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine". The Astrophysical Journal. 665 (1): 599–607. arXiv:astro-ph/0702220. Bibcode:2007ApJ...665..599T. doi:10.1086/519450.
  88. ^ Plait 2008
  89. ^ Stanek 2006
  90. ^ Abbott 2007
  91. ^ Kochanek 1993
  92. ^ Vietri 1998
  93. ^ MacFadyen 2006
  94. ^ Blinnikov 1984
  95. ^ Cline 1996
  96. ^ Winterberg, Friedwardt (2001 Aug 29). "Gamma-Ray Bursters and Lorentzian Relativity". Z. Naturforsch 56a: 889–892.
  97. ^ Science Daily 2011
  98. ^ Levan 2011
  99. ^ Bloom 2011
  100. ^ Krolick & Piran 11
  101. ^ Stern 2007
  102. ^ Fishman, G. 1995
  103. ^ Fan & Piran 2006
  104. ^ Liang et al. 1999, GRB 990123: The Case for Saturated Comptonization, The Astrophysical Journal, 519:L21-L24, 1999 July 1.
  105. ^ Wozniak 2009
  106. ^ Meszaros 1997
  107. ^ Sari 1998
  108. ^ Nousek 2006
  109. ^ "ESO Telescopes Observe Swift Satellite's 1000th Gamma-ray Burst". Retrieved 9 November 2015.
  110. ^ Piran, Tsvi; Jimenez, Raul (5 December 2014). "Possible Role of Gamma Ray Bursts on Life Extinction in the Universe". Physical Review Letters. 113 (23): 231102. arXiv:1409.2506. Bibcode:2014PhRvL.113w1102P. doi:10.1103/PhysRevLett.113.231102. PMID 25526110.
  111. ^ Schirber, Michael (2014-12-08). "Focus: Gamma-Ray Bursts Determine Potential Locations for Life". Physics. 7: 124.
  112. ^ Soderberg, A. M.; Kulkarni, S. R.; Berger, E.; Fox, D. W.; Sako, M.; Frail, D. A.; Gal-Yam, A.; Moon, D. S.; Cenko, S. B.; Yost, S. A.; Phillips, M. M.; Persson, S. E.; Freedman, W. L.; Wyatt, P.; Jayawardhana, R.; Paulson, D. (2004). "The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425". Nature. 430 (7000): 648–650. arXiv:astro-ph/0408096. Bibcode:2004Natur.430..648S. doi:10.1038/nature02757. PMID 15295592.
  113. ^ Le Floc'h, E.; Charmandaris, V.; Gordon, K.; Forrest, W. J.; Brandl, B.; Schaerer, D.; Dessauges-Zavadsky, M.; Armus, L. (2011). "The first Infrared study of the close environment of a long Gamma-Ray Burst". The Astrophysical Journal. 746 (1): 7. arXiv:1111.1234. Bibcode:2012ApJ...746....7L. doi:10.1088/0004-637X/746/1/7.
  114. ^ Kippen, R.M.; Briggs, M. S.; Kommers, J. M.; Kouveliotou, C.; Hurley, K.; Robinson, C. R.; Van Paradijs, J.; Hartmann, D. H.; Galama, T. J.; Vreeswijk, P. M. (October 1998). "On the Association of Gamma-Ray Bursts with Supernovae". The Astrophysical Journal. 506 (1): L27–L30. arXiv:astro-ph/9806364. Bibcode:1998ApJ...506L..27K. doi:10.1086/311634.
  115. ^ "Gamma-ray burst 'hit Earth in 8th Century'". Rebecca Morelle. BBC. 2013-01-21. Retrieved January 21, 2013.
  116. ^ Guetta and Piran 2006
  117. ^ Welsh, Jennifer (2011-07-10). "Can gamma-ray bursts destroy life on Earth?". MSN. Retrieved October 27, 2011.
  118. ^ "Earth does not exist in splendid isolation" – Energy burst from an X-ray star disturbed Earth's environment
  119. ^ a b c Gamma-Ray Bursts as a Threat to Life on Earth
  120. ^ a b c Effects of Gamma Ray Bursts in Earth's Biosphere doi:10.1007/s10509-009-0211-7
  121. ^ John Scalo, Craig Wheeler in New Scientist print edition, 15 December 2001, p 10.
  122. ^ Pavlov, A.K.; Blinov, A.V.; Konstantinov, A.N.; et al. (2013). "AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst". Mon. Not. R. Astron. Soc. 435 (4): 2878–2884. arXiv:1308.1272. Bibcode:2013MNRAS.435.2878P. doi:10.1093/mnras/stt1468.
  123. ^ Hambaryan, V.V.; Neuhauser, R. (2013). "A Galactic short gamma-ray burst as cause for the 14C peak in AD 774/5". Monthly Notices of the Royal Astronomical Society. 430 (1): 32–36. arXiv:1211.2584. Bibcode:2013MNRAS.430...32H. doi:10.1093/mnras/sts378.
  124. ^ Mekhaldi; et al. (2015). "Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4". Nature Communications. 6: 8611. Bibcode:2015NatCo...6E8611M. doi:10.1038/ncomms9611. PMC 4639793. PMID 26497389.
  125. ^ Lauren Fuge (20 November 2018). "Milky Way star set to go supernova". Cosmos. Retrieved 7 April 2019.
  126. ^ Vink JS (2013). "Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars". Philos Trans Royal Soc A. 371 (1992): 20120237. Bibcode:2013RSPTA.37120237V. doi:10.1098/rsta.2012.0237. PMID 23630373.
  127. ^ M. LIVIO (Ed); Nino Panagia; Kailash Sahu (2001). Supernovae and Gamma-Ray Bursts: The Greatest Explosions Since the Big Bang. Cambridge University Press. p. 135. ISBN 978-0-521-79141-0.CS1 maint: Extra text: authors list (link)
  128. ^ Van Den Heuvel, E. P. J.; Yoon, S.-C. (2007). "Long gamma-ray burst progenitors: Boundary conditions and binary models". Astrophysics and Space Science. 311 (1–3): 177–183. arXiv:0704.0659. Bibcode:2007Ap&SS.311..177V. doi:10.1007/s10509-007-9583-8.
  129. ^ Tuthill, Peter. "WR 104: The prototype Pinwheel Nebula". Retrieved 20 December 2015.
  130. ^ Kluger, Jeffrey (21 December 2012). "The Super-Duper, Planet-Frying, Exploding Star That's Not Going to Hurt Us, So Please Stop Worrying About It". Time Magazine. Retrieved 20 December 2015.
  131. ^ Tuthill, Peter. "WR 104: Technical Questions". Retrieved 20 December 2015.


Further reading

External links

GRB mission sites
GRB follow-up programs
Beethoven Burst (GRB 991216)

GRB 991216, nicknamed the Beethoven Burst by Dr. Brad Schaefer of Yale University, was a gamma-ray burst observed on December 16, 1999, coinciding with the 229th anniversary of Ludwig van Beethoven's birth. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio).

The optical afterglow of the burst reached an apparent magnitude of 18.7, making the Beethoven Burst one of the brightest bursts ever detected, even though it occurred about 10 billion light years from Earth. Frank Marshall, a NASA astrophysicist at the Goddard Space Flight Center, commented that "this was by far the brightest burst we have detected in a long time." The burst's peak flux ranked it as the second most powerful burst that the Burst and Transient Source Experiment (BATSE) had ever detected. The analysis of the observations strengthened the theory that gamma-ray bursts are a result of a hypernova, though other possible progenitors exist, such as the merger of two black holes.

Within four hours of the burst's detection, observations made by BATSE and the Rossi X-ray Timing Explorer were able to determine the burst's position of α = 77.38 ± 0.04, δ = 11.30 ± 0.05. This rapid determination allowed astronomers to conduct follow-up studies using optical and X-ray telescopes. Other instruments which detected GRB 991216 included the Chandra X-ray Observatory, the MDM Observatory, and the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. This was the first use of the Chandra X-ray Observatory for the purpose of gamma-ray burst detection.

Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope (FGST), formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts.Fermi was launched on 11 June 2008 at 16:05 UTC aboard a Delta II 7920-H rocket. The mission is a joint venture of NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and Sweden, becoming the most sensitive gamma-ray telescope on orbit, succeeding INTEGRAL.

GRB 000131

GRB 000131 was a gamma-ray burst (GRB) that was detected on 31 January 2000 at 14:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio).

GRB 011211

GRB 011211 was a gamma-ray burst (GRB) detected on December 11, 2001. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio).

GRB 060218

GRB 060218 (and SN 2006aj) was a gamma-ray burst (abbreviated as GRB) with unusual characteristics never seen before. This GRB was detected by the Swift satellite on February 18, 2006, and its name is derived from the date. It was located in the constellation Aries.

GRB 060218's duration (almost 2000 seconds) and its origin in a galaxy 440 million light years away are far longer and closer, respectively, than typical gamma-ray bursts seen before, and the burst was also considerably dimmer than average despite its close distance.

As of February 2006, the phenomenon was not yet well understood. However, an optical afterglow to the gamma-ray burst has been detected and is brightening, and some scientists believe that the appearance of a supernova (SN 2006aj) may be ongoing.

Four different groups of researchers, led by Sergio Campana, Elena Pian, Alicia Soderberg and Paolo Mazzali respectively, carried out the investigation of the phenomenon and presented their results in Nature on August 31, 2006. They found the strongest evidence yet that supernovae and GRBs might be linked, because GRB 060218 showed signs of both the GRB and the supernova. The exploding star is believed to have had the boundary mass (about 20 Solar masses) for supernovae to leave either a black hole or a neutron star after its explosion.

GRB 080319B

GRB 080319B was a gamma-ray burst (GRB) detected by the Swift satellite at 06:12 UTC on March 19, 2008. The burst set a new record for the farthest object that was observable with the naked eye: it had a peak visual apparent magnitude of 5.8 and remained visible to human eyes for approximately 30 seconds. The magnitude was brighter than 9.0 for approximately 60 seconds.

If viewed from 1 AU away, it would have had a peak apparent magnitude of -67.57 (2.148e+16 times brighter than the Sun's apparent magnitude of -26.74).

GRB 080913

GRB 080913 was a gamma-ray burst (GRB) observed on September 13, 2008. The Swift Gamma-Ray Burst satellite made the detection, with follow-up and additional observations from ground-based observatories and instruments, including the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) and the Very Large Telescope. At 12.8 billion light-years and redshift of 6.7, the burst was the most distant GRB observed until GRB 090423 on April 23, 2009. This stellar explosion occurred around 825 million years after the Big Bang.

GRB 080916C

GRB 080916C is a gamma-ray burst (GRB) that was recorded on September 16, 2008 in the Carina constellation and detected by NASA's Fermi Gamma-ray Space Telescope. It is the most powerful gamma-ray burst ever recorded. The explosion had the energy of approximately 5900 type Ia supernovae, and the gas jets emitting the initial gamma rays moved at a minimum velocity of approximately 299,792,158 m/s (0.999999c), making this blast the most extreme recorded to date.The 16.5-second delay for the highest-energy gamma ray observed in this burst is consistent with some theories of quantum gravity, which state that all forms of light may not travel through space at the same speed. Very-high-energy gamma rays may be slowed down as they propagate through the quantum turbulence of space-time.The explosion took place 12.2 billion light-years (light travel distance) away. That means it occurred 12.2 billion years ago—when the universe was only about 1.5 billion years old. The burst lasted for 23 minutes, almost 700 times as long as the two-second average for high energy GRBs. Follow-up observations were made 32 hours after the blast using the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) on the 2.2 metre telescope at the European Southern Observatory in La Silla, Chile, allowing astronomers to pinpoint the blast's distance to 12.2 billion light years.If all that energy from GRB 080916C could be captured and converted into usable electricity at 100% efficiency, it would produce enough electricity to supply the entire planet earth with 13.5 octillion years of power (according to electricity consumption of 2008).

GRB 090423

GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009 at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, which makes it one of the most distant objects detected to date with a spectroscopic redshift (GN-z11, discovered in 2016, has a redshift of 11).

A gamma-ray burst is an extremely luminous event flash of gamma rays that occurs as the result of an explosion, and is thought to be associated with the formation of a black hole. The burst itself typically only lasts for a few seconds, but gamma-ray bursts frequently produce an "afterglow" at longer wavelengths that can be observed for many hours or even days after the burst. Measurements at these wavelengths, which include X-ray, ultraviolet, optical, infrared, and radio, enable follow up study of the event.

The finite speed of light means that GRB 090423 is also the earliest object ever detected for which a spectroscopic redshift has been measured. The universe was only 630 million years old when the light from GRB 090423 was emitted, and its detection confirms that massive stars were born and dying even very early on in the life of the universe. GRB 090423 and similar events provide a unique means of studying the early universe, as few other objects of that era are bright enough to be seen with today's telescopes.

GRB 160625B

GRB 160625B is a gamma-ray burst (GRB) detected by NASA's Fermi Gamma-ray Space Telescope on 25 June 2016 and, three minutes later, by the Large Area Telescope. This was followed by a bright prompt optical flash, during which variable linear polarization was measured This is the first time that these observations are made when the GRB is still bright and active. The source of the GRB was a possible black hole, within the Delphinus constellation, about 9 billion light-years (light travel distance) away (a redshift of z = 1.406).

GRB 970508

GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB (after GRB 970228) with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.

A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio).

GRB 970508 was detected by the Gamma Ray Burst Monitor on the Italian–Dutch X-ray astronomy satellite BeppoSAX. Astronomer Mark Metzger determined that GRB 970508 occurred at least 6 billion light years from Earth; this was the first measurement of the distance to a gamma-ray burst.

Until this burst, astronomers had not reached a consensus regarding how far away GRBs occur from Earth. Some supported the idea that GRBs occur within the Milky Way, but are visibly faint because they are not highly energetic. Others concluded that GRBs occur in other galaxies at cosmological distances and are extremely energetic. Although the possibility of multiple types of GRBs meant that the two theories were not mutually exclusive, the distance measurement unequivocally placed the source of the GRB outside the Milky Way, effectively ending the debate.

GRB 970508 was also the first burst with an observed radio frequency afterglow. By analyzing the fluctuating strength of the radio signals, astronomer Dale Frail calculated that the source of the radio waves had expanded almost at the speed of light. This provided strong evidence that GRBs are relativistically expanding explosions.

GRB 980425

GRB 980425 was a gamma-ray burst (GRB) that was detected on 25 April 1998 at 21:49 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio). GRB 980425 occurred at approximately the same time as SN 1998bw, providing the first evidence that gamma-ray bursts and supernovae are related.

Gamma-Ray Burst Optical/Near-Infrared Detector

The Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) is an imaging instrument used to investigate Gamma-Ray Burst afterglows and for doing follow-up observations on exoplanets using transit photometry. It is operated at the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in the southern part of the Atacama desert, about 600 kilometres north of Santiago de Chile and at an altitude of 2,400 metres.

Gamma-ray Burst Coordinates Network

The gamma-ray burst coordinates network (GCN) is a system that distributes information about the location of a gamma-ray burst (GRB), called notices, when a burst is detected by various spacecraft. The GCN also automatically receives and distributes messages, called circulars, about follow-up observations to interested individuals and institutions. Follow-up observations may be made by ground-based and space-based optical, radio, and X-ray observatories.

GCN has its origins in the BATSE coordinates distribution network (BACODINE). The Burst And Transient Source Experiment (BATSE) was a scientific instrument on the Compton Gamma-Ray Observatory (CGRO), and BACODINE monitored the BATSE real-time telemetry from CGRO. The first function of BACODINE was calculating the right ascension (RA) and declination (dec) locations for GRBs that it detected, and distributing those locations to sites around the world in real-time. Since the de-orbiting of the CGRO, this function of BACODINE is no longer operational. The second function of BACODINE was collecting right ascension and declination locations of GRBs detected by spacecraft other than CGRO, and then distributing that information. With this functionality, the original BACODINE name was changed to the more general name GCN.

Gamma-ray burst progenitors

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.There are at least two different types of progenitors (sources) of GRBs: one responsible for the long-duration, soft-spectrum bursts and one (or possibly more) responsible for short-duration, hard-spectrum bursts. The progenitors of long GRBs are believed to be massive, low-metallicity stars exploding due to the collapse of their cores. The progenitors of short GRBs are thought to arise from mergers of compact binary systems like neutron stars, which was confirmed by the GW170817 observation of a neutron star merger and a kilonova.


IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun) is a Japan Aerospace Exploration Agency (JAXA) experimental spacecraft. The spacecraft was launched on 20 May 2010, aboard an H-IIA rocket, together with the Akatsuki (Venus Climate Orbiter) probe and four other small spacecraft. IKAROS is the first spacecraft to successfully demonstrate solar sail technology in interplanetary space.On 8 December 2010, IKAROS passed by Venus at about 80,800 km (50,200 mi) distance, completing the planned mission successfully, and entered its extended operation phase.


A kilonova (also called a macronova or r-process supernova) is a transient astronomical event that occurs in a compact binary system when two neutron stars or a neutron star and a black hole merge into each other. Kilonovae are thought to emit short gamma-ray bursts and strong electromagnetic radiation due to the radioactive decay of heavy r-process nuclei that are produced and ejected fairly isotropically during the merger process.The term kilonova was introduced by Metzger et al. in 2010 to characterize the peak brightness, which they showed reaches 1000 times that of a classical nova. They are ​1⁄10 to ​1⁄100 the brightness of a typical supernova, the self-detonation of a massive star.The first kilonova to be found was detected as a short gamma-ray burst, sGRB 130603B, by instruments on board the Swift Gamma-Ray Burst Explorer and KONUS/WIND spacecrafts and then observed using the Hubble Space Telescope.In October 2018, astronomers reported that GRB 150101B, a gamma-ray burst event detected in 2015, may be analogous to the historic GW170817, a gravitational wave event detected in 2017, and associated with the merger of two neutron stars. The similarities between the two events, in terms of gamma ray, optical and x-ray emissions, as well as to the nature of the associated host galaxies, are considered "striking", and this remarkable resemblance suggests the two separate and independent events may both be the result of the merger of neutron stars, and both may be a hitherto-unknown class of kilonova transients. Kilonova events, therefore, may be more diverse and common in the universe than previously understood, according to the researchers.

Neil Gehrels Swift Observatory

The Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Mission, is a NASA space telescope designed to detect gamma-ray bursts (GRBs). It was launched on November 20, 2004, aboard a Delta II rocket. Headed by principal investigator Neil Gehrels, NASA Goddard Space Flight Center, the mission was developed in a joint partnership between Goddard and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorers program (MIDEX).

WR 104

WR 104 is a triple star system located about 7,500 light-years (2,300 pc) from Earth. The primary star is a Wolf-Rayet star, abbreviated as WR, with a B0.5 main sequence star in close orbit and another more distant fainter companion.

The WR star is surrounded by a distinctive spiral Wolf–Rayet nebula, often referred to as a pinwheel nebula. The rotational axis of the binary system, and likely of the two closest stars, is directed approximately towards Earth. Within the next few hundred thousand years, the Wolf-Rayet star is predicted to probably become a core-collapse-supernova with a small chance of producing a long duration gamma-ray burst.

The possibility of a supernova explosion from WR 104 having destructive consequence for life on Earth stirred interest in the mass media and several popular science articles have been issued in the press since 2008. Some articles decide to reject the catastrophic scenario, while others leave it as an open question. Scientists currently believe the odds of WR 104 posing a risk to be small.

Single pulsars
Binary pulsars

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.