GAM-63 RASCAL

The GAM-63 RASCAL was a supersonic air-to-surface missile that was developed by the Bell Aircraft Company. The RASCAL was the United States Air Force's first nuclear armed standoff missile. The RASCAL was initially designated the ASM-A-2, then re-designated the B-63 in 1951 and finally re-designated the GAM-63 in 1955. The name RASCAL was the acronym for RAdar SCAnning Link, the missile's guidance system.[1] The RASCAL project was cancelled in September 1958.

GAM-63 RASCAL
Bell XGAM-63 Rascal USAF
TypeAir-to-surface missile
Service history
In service30 October 1957 (planned)
Production history
ManufacturerBell Aircraft
Unit cost$2,262,000
Produced1952
Specifications
Mass18,200 lb (8,255 kg)
Length31 ft 11.5 in (9.74 m)
Diameter4 ft (1.22 m)
WarheadW-27 nuclear
Detonation
mechanism
Airburst or surface

Wingspan16 ft 8.3 in (5.09 m)
PropellantBell XLR-67-BA-1 liquid propellant rocket engine with 10,440 lbf (46.4kN) of thrust
Operational
range
100 miles (161 km)
Flight ceiling65,000 ft (19,812 m)
Speed1,950 mph (3,138 km/h)
Guidance
system
Command guidance with radar imaging (GAM-63) Inertial guidance/Command with radar imaging (GAM-63A)
Launch
platform
B-36, B-50, and B-47

Development

During World War II, Nazi Germany air-launched 1,176 V-1 missiles from Heinkel He 111 bombers. The United States Army Air Forces (USAAF) studied this weapon system. Testing was conducted in the United States using B-17 bombers and the JB-2 Loon, a locally produced copy of the V-1. Successful testing of this combination led to the release of requirements to the aerospace industry for an air-to-surface missile on 15 July 1945.[2]

In March 1946 the USAAF began work on Project Mastiff, a nuclear armed air-to-surface drone or self-controlled air-to-surface missile. Northrop Corporation, Bell, and Republic Aviation were invited by the USAAF to submit proposals for Mastiff.[3] Bell was awarded a feasibility study contract by the USAAF on 1 April 1946. Bell studied the feasibility of developing a subsonic "pilot-less" bomber carrying a substantial payload over a distance of 300 miles (480 km).[4]

After 18 months of study, Bell concluded that rocket propulsion was not capable of providing the performance needed to boost the missile the AAF wanted to a range of 300 miles.[4] The range requirement was reduced to 100 miles (160 km) (160.9 km) but other technical problems surfaced.[4]

The USAAF started Project MX-776. As a risk reduction measure, Project MX-776 was divided into two sub projects. The MX-776A development developed the RTV-A-4 Shrike later re-designated the X-9 as a testbed for the RASCAL that would be developed under project MX-776B. 22 X-9 missiles were launched between April 1949 and January 1953.[2]

Design

In May 1947, the USAAF awarded the Bell Aircraft Company a contract for the construction of a supersonic air-to-surface missile[2] compatible with the B-29 Superfortress, the B-36 bomber, and the B-50 Superfortress bomber. The missile was to have a range of 100 miles.,[1][5][6] Bell's development effort was led by Walter R. Dornberger.[7]

The RASCAL design used the X-9's canard aerodynamic configuration and a rocket engine derived from the X-9's rocket-propulsion system.[4] The RASCAL was larger than the X-9 with a fuselage that was 9 feet (2.7 m) longer and 2 feet (0.61 m) larger in diameter. The RASCAL's flight controls included forward and rear surfaces. Forward surfaces include fixed horizontal stabilizers and movable dorsal and ventral surfaces. Rear surfaces include wings with ailerons and fixed dorsal and ventral stabilizers. The aft lower stabilizer could be folded for ground handling.

The RASCAL was powered by a XLR67-BA-1 rocket engine also developed by Bell. The XLR-67 provided 10,440 pounds-force (46.4 kN)[8] of thrust using three vertical in-line thrust chambers. All three thrust chambers of the XLR67 were operated during the missile's boost phase which could last up to two minutes. At the conclusion of the boost phase the upper and lower chambers of the XLR-67 were shut down and thrust was sustained by the center chamber alone.[1] Fuel for the XLR-67 included 600 US gallons (2,300 l) of white fuming nitric acid oxidizer and 293 US gallons (1,110 l) of JP-4 jet fuel.[1] The oxidizer was stored in a series of tube bundles instead of a spherical storage tank. It is believed this configuration was chosen because it weighed less than a spherical tank of the same volume.[9] Propellant was provided to the thrust chambers by a turbine driven propellant pump. A gas generator powered the propellant pump. The propellants were glow plug ignited. Bell contracted with Purdue University for the glow plug ignition system. Aerojet provided the pump drive assemblies.[9]

The GAM-63 used a command guidance control system where the RASCAL was remotely controlled by the bombardier in the launching bomber. The RASCAL guidance system was developed jointly by Bell, Federal Communications/Radio Corporation of America (RCA) and Texas Instruments.[1] The initial version of the control system provided an accuracy or circular error probable (CEP) of 3,000 feet (910 m). Adequate for a missile equipped with a nuclear weapon.

Bell XGAM-63 Rascal being carried by a DB-47B (modified B-47B) bomber
Rascal being carried by a modified B-47B

The bomber carrying the missile was modified with an additional antenna and equipment at the bombardier's position needed to guide the RASCAL. During the flight to the launch point, the bombardier transferred wind and navigation data periodically to the missile. Prior to launch the bombardier tuned a video relay receiver, altitude phasing, and adjusted the terminal guidance tracking indicator. Missile control surfaces were also checked to make sure they were functional.[1]

Prior to the bomber taking off, the RASCAL was pre-programmed for a given flight path. The bomber flew along a heading towards the target. A computer in the RASCAL tracked the aircraft heading and azimuth to the target and automatically dropped the missile at the launch point. After launch, a lanyard connecting the RASCAL to the bomber was used to start the missile's rocket engine. In the event the lanyard failed an automatic timer would count down and start the engine. The RASCAL was air-launched above 40,000 feet (12,000 m).[1]

After launch, the bomber turned away from the target. The missile would climb from the launch altitude to 50,000 feet (15,000 m). Video providing radar imaging of the target would be transmitted back to the bomber. As the missile approached the target the detail in the radar video transmitted from the missile improved. The missile began a terminal dive about 20 miles from the target.[10] The command guidance system did not send a directional signal and was not encrypted which made it susceptible to detection and jamming.[1]

An inertial guidance system developed by Bell was used in the later GAM-63A version of the RASCAL. This improved guidance system decreased the CEP of RASCAL to 1,500 feet (457 m).[2] This system received reference information from the bomber prior to launch.[1] The accuracy claims of the inertial guidance system have been questioned by sources.,[1][2] This system could also be used to guide the missile throughout its flight to the target.[1]

The RASCAL's forward section was interchangeable for different targets. Using this capability the RASCAL could be equipped with nuclear, biological, chemical, blast, or incendiary warheads.[3] The requirements for biological and chemical warheads were dropped at the end of 1953.[3] On 5 December 1949, requirements for the RASCAL called for a nuclear warhead weighing between 3,000 pounds (1,400 kg) and 5,000 pounds (2,300 kg).[3] The RASCAL warhead compartment accommodated a cylinder 3.8 feet (1.2 m) in diameter and 6.25 feet (1.91 m) in length. The USAF also wanted the ability to use the RASCAL as a standard gravity bomb if the missile could not be readied for launch.[3]

In January 1950, Bell began to study what nuclear warheads were available for RASCAL.[3] The W-5 Nuclear Warhead was initially considered. On 20 August 1950 the Special Weapons Development Board (SWDB) authorized a W-5/RASCAL integration effort.[3] The Atomic Energy Commission (AEC) was responsible for developing the fuzing system for the RASCAL warhead. No provision was made for surface burst at this time.[3] In April 1952 fuze development was shifted to Bell which resulted because it was USAF policy to make airframe contractors responsible for nuclear weapons fuzing since this system needed to be integrated with the missile's guidance system.[3] Bell developed two complete fuzing systems, airburst or surface burst.[3] Then in March 1956 the W-5/RASCAL program was canceled.[3]

In July 1955, the W-27 Nuclear Warhead was considered as a replacement for the W-5 for the RASCAL.[11] USAF requirements for the W-27 called for a 2,800 lb (1,300 kg) nuclear warhead with either electronic countermeasures equipment, infrared countermeasures equipment, or extra fuel to increase the range of the RASCAL...[3] A design for the adaption kit between the W-27 and the RASCAL was completed in January 1957 before the RASCAL was canceled.[3]

Three bombers were originally considered as RASCAL launch platforms. The B-29 was removed from front line service while the RASCAL was in development.[2] In March 1952, the USAF then turned to the B-36 and B-47 as RASCAL missile carriers.[4] The B-36 was assigned first priority for the RASCAL.[4] The USAF Strategic Air Command did not agree with the decision to use the B-47 to carry the RASCAL. SAC wished to substitute the B-47 with the B-50 proposing to field a single squadron each of RASCAL equipped B-50s and B-36s. It was determined that RASCAL-carrying B-50s would need to be based outside the United States because the B-50 would have less range while carrying the RASCAL.[1] The decision to eliminate the B-50 as a RASCAL carrier was not reached until June 1956.[1] A single B-50 was used as a launch platform in support of the RASCAL test program until 1955. A cradle lowered the RASCAL from the B-50's bomb bay before launch. The first powered RASCAL was launched from the test B-50 on 30 September 1952 at White Sands Missile Range, New Mexico in the United States[1]

In May 1953, 12 DB-36H "director-bombers" were ordered from Convair.[1] Each bomber would be equipped to carry a single RASCAL missile. The RASCAL occupied both of the B-36's aft bomb bays where it was carried semi-submerged. A portion of the missile was located inside the aircraft and a portion of the missile hung below the aircraft. One forward bomb bay was used to hold equipment required by the RASCAL's guidance system. The retractable antenna for the command guidance system was installed in the rear of the aircraft.

The first YDB-36H was flown on 3 July 1953. Six captive carry flights were flown between 31 July 1953 and 16 August 1953.[1] The addition of the missile to the B-36 did not increase drag or change the handling characteristics of the bomber.[1] An un-powered RASCAL was dropped from a YDB-36H on 25 August 1953. On 21 December 1954, a DB-36H was delivered to the Air Force for use in the RASCAL test program at Holloman Air Force Base, New Mexico in the United States.[1] By June 1955, at least two missiles had been launched from the B-36 and Convair had completed manufacturing modification kits for the 12 planned aircraft. Two kits had been installed on B-36 aircraft when the USAF decided to carry the RASCAL only on the B-47 bomber.[1]

Before the end of 1952, Boeing received a contract from the USAF to modify two B-47Bs into prototype RASCAL missile carriers. A removable missile support strut was installed on the right side of the B-47. Extra internal structure was installed to support the loads of the strut and missile. While carrying the RASCAL, the B-47 could not carry other weapons.[1] The guidance equipment for RASCAL was added to the B-47 bomb bay. The retractable antenna needed by RASCAL was added to the rear fuselage.[1] Both aircraft were sent to Holloman Air Force Base to support the RASCAL test program. After completion of the two DB-47B prototypes, the delays in the RASCAL's development effectively placed the DB-47 modification effort on hold until March 1955.[4] Then in June 1955, Boeing received a contract to modify 30 DB-47Bs to carry the RASCAL.

The Strategic Air Command was concerned that externally mounting the RASCAL and the associated internal equipment needed to support the missile would seriously degrade the performance of the bomber. The performance impact was great enough to make the B-47/RASCAL combination of questionable value.[4] SAC also argued the B-47/RASCAL combination might never work well. Since the equipment being added to the B-47 to guide the missile added more complexity to the already complex B-47.[4] Then the modification costs required to carry the RASCAL added nearly US$1 million to the cost of every B-47.[4] To SAC these costs seemed premature considering the state of the RASCAL's development at that time.[4] Finally SAC considered it unwise to commit aircraft and to start training crews before the missile's development had been completed.[4]

The USAF then decided to use the B-47E as a RASCAL missile carrier. Boeing was contracted to convert two B-47E into YDB-47E aircraft. The first YDB-47E flew in January 1954.[4] The first successful RASCAL launch from a DB-47E occurred in July 1955.[1]

RASCAL Test Launches at White Sands Missile Range

1951 1954 1955 1956 1957 1958
2 1 14 8 21 1

Operational history

In early 1956, the USAF limited DB-47E production to just two aircraft.[4] In May 1957 the USAF decided to field only one instead of two DB-47 squadrons equipped with the RASCAL missile.[4] Strategic Air Command leadership believed the RASCAL was already obsolete.,[1][4] By December 1957, the USAF 445th Bomb Squadron of the USAF 321st Bomb Wing was training with the RASCAL. The first production RASCAL was accepted at Pinecastle Air Force Base on 30 October 1957.[1] Funding shortages would prevent facilities from being built at Pinecastle Air Force Base until 1959. In August 1958 a review of the previous 6 months RASCAL testing revealed that out of 65 scheduled test launches only one launch was a success. More than half of the test launches were canceled and most of the others were failures.[4]

On 29 September 1958 the USAF terminated the RASCAL program.,[1][4]

The AGM-28 Hound Dog replaced the GAM-63 program. The first flight tests of the Hound Dog were in April 1959, and the first operational Hound Dog was delivered to the USAF in December 1959. The first Hound Dog equipped SAC squadron reached initial operational capability in July 1960. The Hound Dog offered a weapon with nearly five times the range of the RASCAL, without command guidance, and without hazardous fuels to contend with.

Variants

  • ASM-A-2 - RASCAL designation under the USAF 1947 to 1951 designation system.
  • B-63 - RASCAL designation under the USAF 1951 to 1955 designation system.
  • XGAM-63 - 75 Prototype RASCALs (Serial Numbers 53-8195 through 53-8269)[1]
  • GAM-63A - 58 Production RASCALs (Serial Numbers 56-4469 through 56-4506)[1]

Operator

Survivors

See also

Aircraft of comparable role, configuration and era

Related lists

References

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Jenkins, Dennis R. (July 1, 2006). Little RASCAL: the first stand-off weapon". Airpower, p. 44
  2. ^ a b c d e f Gibson, James N. (1996). Nuclear Weapons of the United States - An Illustrated History. Schiffer Publishing. ISBN 0-7643-0063-6.
  3. ^ a b c d e f g h i j k l m Hansen, Chuck (1988). U.S. Nuclear Weapons - The Secret History. Aerofax, Arlington Texas. ISBN 0-517-56740-7
  4. ^ a b c d e f g h i j k l m n o p q r Knaack, Marcelle Size (1988). Encyclopedia of U.S. Air Force Aircraft and Missile Systems Volume II - Post-World War II Bombers 1945-1973. Office of Air Force History, USAF, Washington D.C. ISBN 0-912799-59-5
  5. ^ Mark Wade, RASCAL, [1], retrieved on December 6, 2007.
  6. ^ Aeronautical Systems Division History Office Website Development to Combat - Additional Technical Developments Chapter 7, "Archived copy". Archived from the original on 2010-01-09. Retrieved 2007-12-27.CS1 maint: archived copy as title (link), retrieved on December 6, 2007.
  7. ^ Time Magazine Website. Changes of the week Nov 25, 1957, [2], retrieved on December 29, 2007.
  8. ^ National Museum of the United States Air Force Website. BELL XGAM-63 RASCAL [3] retrieved on December 26, 2007.
  9. ^ a b Emresman, C.M. and Boorady Fredrick A. (2007). Bell Aircraft Company from a Modest Beginning to a Major Aerospace Innovator. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 8–11 July 2007, Cincinnati, OH
  10. ^ National Museum of the Air Force Website YDB-47E, [4], retrieved on November 22, 2007.
  11. ^ Federation of American Scientists Website, Complete List of all U.S. Nuclear Weapons, [5], retrieved on December 8, 2007.
  12. ^ http://www.facebook.com/pages/American-Legion-Post-170-Midwest-City-OK/404232636306095?ref=stream
  13. ^ http://mattsworldowonders.blogspot.com/2013/08/the-goddard-rocket.html

External links

6555th Aerospace Test Group

The 6555th Aerospace Test Group is an inactive United States Air Force unit. It was last assigned to the Eastern Space and Missile Center and stationed at Patrick AFB, Florida. It was inactivated on 1 October 1990.

Prior to the activation of the Air Force Space Command, the unit was responsible for the development of USAF missiles, both tactical surface-to-surface; CIM-10 Bomarc Interceptor; SM-62 Snark Intercontinental Cruise Missile; Intercontinental ballistic missile and heavy launch rockets used for military for satellite deployment. The unit played a key role in the civilian NASA Project Mercury, Project Gemini and Project Apollo manned space programs along with military Space Shuttle flights.

The mission of the unit today is performed by the 45th Space Wing (no direct lineage).

Air Force Missile Development Center

The Air Force Missile Development Center and its predecessors were Cold War units that conducted and supported numerous missile tests using facilities at Holloman Air Force Base, where the center was the host unit ("Holloman" and "Development Center" were sometimes colloquially used to identify military installations in the Tularosa Basin.)

Bell Aircraft

The Bell Aircraft Corporation was an aircraft manufacturer of the United States, a builder of several types of fighter aircraft for World War II but most famous for the Bell X-1, the first supersonic aircraft, and for the development and production of many important civilian and military helicopters. Bell also developed the Reaction Control System for the Mercury Spacecraft, North American X-15, and Bell Rocket Belt. The company was purchased in 1960 by Textron, and lives on today as Bell Helicopter.

Bell X-9 Shrike

The Bell X-9 Shrike was a prototype surface-to-air, liquid-fueled guided missile designed by Bell Aircraft as a testbed for the nuclear-armed GAM-63 RASCAL. It is named after the bird shrike.

Thirty-one X-9 rockets were delivered, flying from April 1949 to January 1953. The program was used to gather aerodynamic and stability data, and to test guidance and propulsion systems.

None of the missiles survived testing. The only known remaining fragment of an X-9 is part of a vertical stabilizer, at the Larry Bell Museum in Mentone, Indiana.

Boeing B-47 Stratojet

The Boeing B-47 Stratojet (company Model 450) is a retired American long-range, six-engined, turbojet-powered strategic bomber designed to fly at high subsonic speed and at high altitude to avoid enemy interceptor aircraft. The primary mission of the B-47 was as a nuclear bomber capable of striking targets within the Soviet Union.

Development of the B-47 can be traced back to a requirement expressed by the United States Army Air Forces (USAAF) in 1943 for a reconnaissance bomber that harnessed newly developed jet propulsion. Another key innovation adopted during the development process was the swept wing, drawing upon captured German research. With its engines carried in nacelles underneath the wing, the B-47 represented a major innovation in post-World War II combat jet design, and contributed to the development of modern jet airliners. Suitably impressed, in April 1946, the USAAF ordered two prototypes, designated "XB-47"; on 17 December 1947, the first prototype performed its maiden flight. Facing off competition such as the North American XB-45, Convair XB-46 and Martin XB-48, a formal contract for 10 B-47A bombers was signed on 3 September 1948. This would be soon followed by much larger contracts.

During 1951, the B-47 entered operational service with the United States Air Force's Strategic Air Command (SAC), quickly becoming a mainstay of its bomber strength by the late 1950s. Over 2,000 were manufactured to meet the Air Force's extensive demands, driven by the tensions of the Cold War. The B-47 was in service as a strategic bomber until 1965, at which point it had largely been supplanted by more capable aircraft, such as the Boeing B-52 Stratofortress. However, the B-47 was also adapted to perform a number of other roles and functions, including photographic reconnaissance, electronic intelligence, and weather reconnaissance. While never seeing combat as a bomber, reconnaissance RB-47s would occasionally come under fire near to or within Soviet air space. The type remained in service as a reconnaissance aircraft until 1969; a handful served as flying testbeds up until 1977.

Boeing B-50 Superfortress

The Boeing B-50 Superfortress is an American strategic bomber. A post–World War II revision of the Boeing B-29 Superfortress, it was fitted with more powerful Pratt & Whitney R-4360 radial engines, stronger structure, a taller tail fin, and other improvements. It was the last piston-engined bomber built by Boeing for the United States Air Force, and was further refined into Boeing's final such design, the B-54. Not as well known as its direct predecessor, the B-50 was in USAF service for nearly 20 years.

After its primary service with SAC ended, B-50 airframes were modified into aerial tankers for Tactical Air Command (KB-50) and as weather reconnaissance aircraft (WB-50) for the Air Weather Service. Both the tanker and hurricane hunter versions were retired in March 1965 due to metal fatigue and corrosion found in the wreckage of KB-50J, 48-065, which crashed on 14 October 1964.

Castle Air Museum

Castle Air Museum is a military aviation museum located in Atwater, California, United States adjacent to Castle Airport, a former United States Air Force Strategic Air Command base which was closed in 1995, after the end of the Cold War. It is one of the largest aerospace museums displaying vintage aircraft in the western United States.

History of Eglin Air Force Base

Eglin Air Force Base, a United States Air Force base located southwest of Valparaiso, Florida, was established in 1935 as the Valparaiso Bombing and Gunnery Base. It is named in honor of Lieutenant Colonel Frederick I. Eglin (1891–1937), who was killed in a crash of his Northrop A-17 pursuit aircraft on a flight from Langley to Maxwell Field, Alabama.

Eglin is the home of the Air Armament Center (AAC) and is one of three product centers in the Air Force Materiel Command (AFMC).

List of X-planes

The X-planes are a series of experimental United States aircraft and rockets, used to test and evaluate new technologies and aerodynamic concepts. They have an X designator, which indicates the research mission within the US system of aircraft designations.

Most of the X-planes have been operated by the National Advisory Committee for Aeronautics (NACA) or, later, the National Aeronautics and Space Administration (NASA), often in conjunction with the United States Air Force. The majority of X-plane testing has occurred at Edwards Air Force Base.Some of the X-planes have been well publicized, while others, such as the X-16, have been developed in secrecy. The first, the Bell X-1, became well known in 1947 after it became the first aircraft to break the sound barrier in level flight. Later X-planes supported important research in a multitude of aerodynamic and technical fields, but only the North American X-15 rocket plane of the early 1960s achieved comparable fame to that of the X-1. X-planes 8, 9, 11, 12, and 17 were actually missiles used to test new types of engines, and some other vehicles were un-manned (some were remotely flown, some were partially or fully autonomous).

Most X-planes are not expected to go into full-scale production; one exception was the Lockheed Martin X-35, which competed against the Boeing X-32 during the Joint Strike Fighter Program, and has entered production as the F-35.Not all US experimental aircraft have been designated as X-planes; some received US Navy designations before 1962, while others have been known only by manufacturers' designations, non-'X'-series designations, or classified codenames.

List of missiles by country

This list of missiles by country displays the names of missiles in order of the country where they originate (were developed), with the countries listed alphabetically and annotated with their continent (and defence alliance, if applicable). In cases where multiple nations have developed or produced a missile, it is listed under each significantly participating nation. Within the lists of each country, missiles are ordered by designation and/or calling name (the latter being especially relevant for Russian/Soviet missiles). In some cases multiple listings are used, in order to provide cross-references for easier navigation.

This is not a list of missiles in operational service by a particular country; nor a list of military rockets. Anti-tank missiles are listed elsewhere

For an alphabetical list by missile name, see the list of missiles.

McCoy Air Force Base

McCoy AFB (1940–1947, 1951–1975) is a former U.S. Air Force installation located 10 miles (16 km) southeast of Orlando, Florida. It was a training base during World War II. From 1951 to 1975, it was a front line Strategic Air Command (SAC) base during the Cold War and Vietnam War. It was Orlando's biggest employer and economic backbone prior to the opening of Walt Disney World in 1971.

With McCoy's closure as an active USAF facility in 1975, the site was redeveloped and is known today as Orlando International Airport, which continues to carry the base's original FAA LID airport code of MCO (i.e., McCoy) and ICAO airport code of KMCO.

Over the course of its existence the installation had several names, including Orlando Army Air Field #2, Pinecastle Army Airfield, and Pinecastle Air Force Base.

North American X-10

The North American X-10 (model RTV-A-5) was an unmanned technology demonstrator, developed by North American Aviation. It was a subscale reusable design that included many of the design features of the SM-64 Navaho missile. The X-10 was similar to the development of Bell's X-9 Shrike project, which was based on features of the GAM-63 RASCAL.

Weapon system

Weapon System was a United States Armed Forces military designation scheme for experimental weapons (e.g., WS-220) before they received an official name — e.g., under a military aircraft designation system. The new designator reflected the increasing complexity of weapons that required separate development of auxiliary systems or components.

In November 1949, the Air Force decided to build the Convair F-102 Delta Dagger around a fire-control system. This was "the real beginning of the weapon system approach [and the] aircraft would be integrated into the weapon system "as a whole from the beginning, so the characteristics of each component were compatible with the others".Around February 1950, an Air Research and Development Command "study prepared by Maj Gen Gordon P. Saville...recommended that a 'systems approach' to new weapons be adopted [whereby] development of a weapon "system" required development of support equipment as well as the actual hardware itself."The earliest WS designation was the 1954 WS-117L.US weapon programs were often begun as numbered government specifications such as an Advanced Development Objective (e.g., ADO-40) or a General Operational Requirement (e.g., GOR.80), although some programs were initially identified by contractor numbers (e.g., CL-282).1Other weapons-programs designators included MX, for military experimental. The first Skunk Works program, dubbed MX-813, produced the Convair XF-92 in 1946),

1955–1962 United States Air Force rocket and missile designations
Air-to-air missiles
Other types
Undesignated types
USAAS/USAAC/USAAF/USAF bomber designations, Army/Air Force and Tri-Service systems
Original sequences
(1924–1930)
Main sequence
(1930–1962)
Long-range Bomber
(1935–1936)
Non-sequential
Tri-Service sequence
(1962–current)
United States Air Force rocket and missile designations 1947–1951
Air-launched
Ground-launched
Test vehicles

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.