A fuel is any material that can be made to react with other substances so that it releases energy as heat energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy such as nuclear energy (via nuclear fission and nuclear fusion).

The heat energy released by reactions of fuels is converted into mechanical energy via a heat engine. Other times the heat itself is valued for warmth, cooking, or industrial processes, as well as the illumination that comes with combustion. Fuels are also used in the cells of organisms in a process known as cellular respiration, where organic molecules are oxidized to release usable energy. Hydrocarbons and related oxygen-containing molecules are by far the most common source of fuel used by humans, but other substances, including radioactive metals, are also utilized.

Fuels are contrasted with other substances or devices storing potential energy, such as those that directly release electrical energy (such as batteries and capacitors) or mechanical energy (such as flywheels, springs, compressed air, or water in a reservoir).

Buying fuelwood.jpeg
Wood is one of the first fuels used by humans.[1]


The first known use of fuel was the combustion of wood or sticks by Homo erectus nearly two million years ago.[2] Throughout most of human history fuels derived from plants or animal fat were only used by humans. Charcoal, a wood derivative, has been used since at least 6,000 BCE for melting metals. It was only supplanted by coke, derived from coal, as European forests started to become depleted around the 18th century. Charcoal briquettes are now commonly used as a fuel for barbecue cooking.[3]

Coal was first used as a fuel around 1000 BCE in China. With the energy in the form of chemical energy that could be released through combustion,[4] but the concept development of the steam engine in the United Kingdom in 1769, coal came into more common use as a power source. Coal was later used to drive ships and locomotives. By the 19th century, gas extracted from coal was being used for street lighting in London. In the 20th and 21st centuries, the primary use of coal is to generate electricity, providing 40% of the world's electrical power supply in 2005.[5]

Fossil fuels were rapidly adopted during the Industrial Revolution, because they were more concentrated and flexible than traditional energy sources, such as water power. They have become a pivotal part of our contemporary society, with most countries in the world burning fossil fuels in order to produce power.

Currently the trend has been towards renewable fuels, such as biofuels like alcohols.


Chemical fuels are substances that release energy by reacting with substances around them, most notably by the process of combustion. Most of the chemical energy released in combustion was not stored in the chemical bonds of the fuel, but in the weak double bond of molecular oxygen.[6]

Chemical fuels are divided in two ways. First, by their physical properties, as a solid, liquid or gas. Secondly, on the basis of their occurrence: primary (natural fuel) and secondary (artificial fuel). Thus, a general classification of chemical fuels is:

General types of chemical fuels
Primary (natural) Secondary (artificial)
Solid fuels wood, coal, peat, dung, etc. coke, charcoal
Liquid fuels petroleum diesel, gasoline, kerosene, LPG, coal tar, naphtha, ethanol
Gaseous fuels natural gas hydrogen, propane, methane, coal gas, water gas, blast furnace gas, coke oven gas, CNG

Solid fuel

Coal anthracite
Coal is an important solid fuel

Solid fuel refers to various types of solid material that are used as fuel to produce energy and provide heating, usually released through combustion. Solid fuels include wood , charcoal, peat, coal, hexamine fuel tablets, and pellets made from wood (see wood pellets), corn, wheat, rye and other grains. Solid-fuel rocket technology also uses solid fuel (see solid propellants). Solid fuels have been used by humanity for many years to create fire. Coal was the fuel source which enabled the industrial revolution, from firing furnaces, to running steam engines. Wood was also extensively used to run steam locomotives. Both peat and coal are still used in electricity generation today. The use of some solid fuels (e.g. coal) is restricted or prohibited in some urban areas, due to unsafe levels of toxic emissions. The use of other solid fuels as wood is decreasing as heating technology and the availability of good quality fuel improves. In some areas, smokeless coal is often the only solid fuel used. In Ireland, peat briquettes are used as smokeless fuel. They are also used to start a coal fire.

Liquid fuels

Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable instead of the fluid.

Most liquid fuels in widespread use are derived from the fossilized remains of dead plants and animals by exposure to heat and pressure inside the Earth's crust. However, there are several types, such as hydrogen fuel (for automotive uses), ethanol, jet fuel and bio-diesel which are all categorized as a liquid fuel. Emulsified fuels of oil-in-water such as orimulsion have been developed a way to make heavy oil fractions usable as liquid fuels. Many liquid fuels play a primary role in transportation and the economy.

Some common properties of liquid fuels are that they are easy to transport, and that can be handled easily. Also they are relatively easy to use for all engineering applications, and home use. Fuels like kerosene are rationed in some countries, for example available in government subsidized shops in India for home use.

Conventional diesel is similar to gasoline in that it is a mixture of aliphatic hydrocarbons extracted from petroleum. Kerosene is used in kerosene lamps and as a fuel for cooking, heating, and small engines. Natural gas, composed chiefly of methane, can only exist as a liquid at very low temperatures (regardless of pressure), which limits its direct use as a liquid fuel in most applications. LP gas is a mixture of propane and butane, both of which are easily compressible gases under standard atmospheric conditions. It offers many of the advantages of compressed natural gas (CNG), but is denser than air, does not burn as cleanly, and is much more easily compressed. Commonly used for cooking and space heating, LP gas and compressed propane are seeing increased use in motorized vehicles; propane is the third most commonly used motor fuel globally.

Fuel gas

Propane tank 20lb
A 20-pound (9.1 kg) propane cylinder

Fuel gas is any one of a number of fuels that are gaseous under ordinary conditions. Many fuel gases are composed of hydrocarbons (such as methane or propane), hydrogen, carbon monoxide, or mixtures thereof. Such gases are sources of potential heat energy or light energy that can be readily transmitted and distributed through pipes from the point of origin directly to the place of consumption. Fuel gas is contrasted with liquid fuels and from solid fuels, though some fuel gases are liquefied for storage or transport. While their gaseous nature can be advantageous, avoiding the difficulty of transporting solid fuel and the dangers of spillage inherent in liquid fuels, it can also be dangerous. It is possible for a fuel gas to be undetected and collect in certain areas, leading to the risk of a gas explosion. For this reason, odorizers are added to most fuel gases so that they may be detected by a distinct smell. The most common type of fuel gas in current use is natural gas.


Biofuel can be broadly defined as solid, liquid, or gas fuel consisting of, or derived from biomass. Biomass can also be used directly for heating or power—known as biomass fuel. Biofuel can be produced from any carbon source that can be replenished rapidly e.g. plants. Many different plants and plant-derived materials are used for biofuel manufacture.

Perhaps the earliest fuel employed by humans is wood. Evidence shows controlled fire was used up to 1.5 million years ago at Swartkrans, South Africa. It is unknown which hominid species first used fire, as both Australopithecus and an early species of Homo were present at the sites.[7] As a fuel, wood has remained in use up until the present day, although it has been superseded for many purposes by other sources. Wood has an energy density of 10–20 MJ/kg.[8]

Recently biofuels have been developed for use in automotive transport (for example Bioethanol and Biodiesel), but there is widespread public debate about how carbon efficient these fuels are.

Fossil fuels

Extraction of oil
Extraction of petroleum

Fossil fuels are hydrocarbons, primarily coal and petroleum (liquid petroleum or natural gas), formed from the fossilized remains of ancient plants and animals[9] by exposure to high heat and pressure in the absence of oxygen in the Earth's crust over hundreds of millions of years.[10] Commonly, the term fossil fuel also includes hydrocarbon-containing natural resources that are not derived entirely from biological sources, such as tar sands. These latter sources are properly known as mineral fuels.

Fossil fuels contain high percentages of carbon and include coal, petroleum, and natural gas.[11] They range from volatile materials with low carbon:hydrogen ratios like methane, to liquid petroleum to nonvolatile materials composed of almost pure carbon, like anthracite coal. Methane can be found in hydrocarbon fields, alone, associated with oil, or in the form of methane clathrates. Fossil fuels formed from the fossilized remains of dead plants[9] by exposure to heat and pressure in the Earth's crust over millions of years.[12] This biogenic theory was first introduced by German scholar Georg Agricola in 1556 and later by Mikhail Lomonosov in the 18th century.

It was estimated by the Energy Information Administration that in 2007 primary sources of energy consisted of petroleum 36.0%, coal 27.4%, natural gas 23.0%, amounting to an 86.4% share for fossil fuels in primary energy consumption in the world.[13] Non-fossil sources in 2006 included hydroelectric 6.3%, nuclear 8.5%, and others (geothermal, solar, tidal, wind, wood, waste) amounting to 0.9%.[14] World energy consumption was growing about 2.3% per year.

Fossil fuels are non-renewable resources because they take millions of years to form, and reserves are being depleted much faster than new ones are being made. So we must conserve these fuels and use them judiciously. The production and use of fossil fuels raise environmental concerns. A global movement toward the generation of renewable energy is therefore under way to help meet increased energy needs. The burning of fossil fuels produces around 21.3 billion tonnes (21.3 gigatonnes) of carbon dioxide (CO2) per year, but it is estimated that natural processes can only absorb about half of that amount, so there is a net increase of 10.65 billion tonnes of atmospheric carbon dioxide per year (one tonne of atmospheric carbon is equivalent to 44/12 or 3.7 tonnes of carbon dioxide).[15] Carbon dioxide is one of the greenhouse gases that enhances radiative forcing and contributes to global warming, causing the average surface temperature of the Earth to rise in response, which the vast majority of climate scientists agree will cause major adverse effects. Fuels are a source of energy.


The amount of energy from different types of fuel depends on the stoichiometric ratio, the chemically correct air and fuel ratio to ensure complete combustion of fuel, and its specific energy, the energy per unit mass.

Energy capacities of common types of fuel
Fuel Specific energy (MJ/kg) AFR stoich. FAR stoich. Energy @ λ=1 (MJ/kg(Air))
Diesel 48 14.5 : 1 0.069 : 1 3.310
Ethanol 26.4 9 : 1 0.111 : 1 2.933
Gasoline 46.4 14.7 : 1 0.068 : 1 3.156
Hydrogen 142 34.3 : 1 0.029 : 1 4.140
Kerosene 46 15.6 : 1 0.064 : 1 2.949
LPG 46.4 17.2 : 1 0.058 : 1 2.698
Methanol 19.7 6.47 : 1 0.155 : 1 3.045
Nitromethane 11.63 1.7 : 1 0.588 : 1 6.841

MJ ≈ 0.28 kWh ≈ 0.37 HPh.


CANDU fuel bundles
CANDU fuel bundles Two CANDU ("CANada Deuterium Uranium") fuel bundles, each about 50 cm long and 10 cm in diameter

Nuclear fuel is any material that is consumed to derive nuclear energy. Technically speaking, all matter can be a nuclear fuel because any element under the right conditions will release nuclear energy, but the materials commonly referred to as nuclear fuels are those that will produce energy without being placed under extreme duress. Nuclear fuel is a material that can be 'burned' by nuclear fission or fusion to derive nuclear energy. Nuclear fuel can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials.

Most nuclear fuels contain heavy fissile elements that are capable of nuclear fission. When these fuels are struck by neutrons, they are in turn capable of emitting neutrons when they break apart. This makes possible a self-sustaining chain reaction that releases energy with a controlled rate in a nuclear reactor or with a very rapid uncontrolled rate in a nuclear weapon.

The most common fissile nuclear fuels are uranium-235 (235U) and plutonium-239 (239Pu). The actions of mining, refining, purifying, using, and ultimately disposing of nuclear fuel together make up the nuclear fuel cycle. Not all types of nuclear fuels create power from nuclear fission. Plutonium-238 and some other elements are used to produce small amounts of nuclear power by radioactive decay in radioisotope thermoelectric generators and other types of atomic batteries. Also, light nuclides such as tritium (3H) can be used as fuel for nuclear fusion. Nuclear fuel has the highest energy density of all practical fuel sources.


Nuclear fuel pellets.jpeg
Nuclear fuel pellets are used to release nuclear energy

The most common type of nuclear fuel used by humans is heavy fissile elements that can be made to undergo nuclear fission chain reactions in a nuclear fission reactor; nuclear fuel can refer to the material or to physical objects (for example fuel bundles composed of fuel rods) composed of the fuel material, perhaps mixed with structural, neutron moderating, or neutron reflecting materials. The most common fissile nuclear fuels are 235U and 239Pu, and the actions of mining, refining, purifying, using, and ultimately disposing of these elements together make up the nuclear fuel cycle, which is important for its relevance to nuclear power generation and nuclear weapons.


Fuels that produce energy by the process of nuclear fusion are currently not utilized by humans but are the main source of fuel for stars. Fusion fuels tend to be light elements such as hydrogen which will combine easily. Energy is required to start fusion by raising temperature so high all materials would turn into plasma, and allow nuclei to collide and stick together with each other before repelling due to electric charge. This process is called fusion and it can give out energy.

In stars that undergo nuclear fusion, fuel consists of atomic nuclei that can release energy by the absorption of a proton or neutron. In most stars the fuel is provided by hydrogen, which can combine to form helium through the proton-proton chain reaction or by the CNO cycle. When the hydrogen fuel is exhausted, nuclear fusion can continue with progressively heavier elements, although the net energy released is lower because of the smaller difference in nuclear binding energy. Once iron-56 or nickel-56 nuclei are produced, no further energy can be obtained by nuclear fusion as these have the highest nuclear binding energies. The elements then on use up energy instead of giving off energy when fused. Therefore, fusion stops and the star dies. In attempts by humans, fusion is only carried out with hydrogen (isotope of 2 and 3) to form helium-4 as this reaction gives out the most net energy. Electric confinement (ITER), inertial confinement(heating by laser) and heating by strong electric currents are the popular methods used. .[16]

Liquid fuels for transportation

Most transportation fuels are liquids, because vehicles usually require high energy density. This occurs naturally in liquids and solids. High energy density can also be provided by an internal combustion engine. These engines require clean-burning fuels. The fuels that are easiest to burn cleanly are typically liquids and gases. Thus, liquids meet the requirements of being both energy-dense and clean-burning. In addition, liquids (and gases) can be pumped, which means handling is easily mechanized, and thus less laborious.

See also


  1. ^ Schobert, Harold (2013-01-17). Chemistry of Fossil Fuels and Biofuels. Cambridge University Press. ISBN 9780521114004.
  2. ^ Leakey, Richard (1994). Origin of Humankind. Basic Books. ISBN 0-465-03135-8.
  3. ^ Hall, Loretta (2007). "Charcoal Briquette". How Products Are Made. Retrieved 2007-10-01.
  4. ^ Public Domain One or more of the preceding sentences incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). "Fuel". Encyclopædia Britannica. 11 (11th ed.). Cambridge University Press. pp. 274–286.
  5. ^ "History of Coal Use". World Coal Institute. Archived from the original on 7 October 2006. Retrieved 10 August 2006.
  6. ^ Schmidt-Rohr, K (2015). "Why Combustions Are Always Exothermic, Yielding About 418 kJ per Mole of O2". J. Chem. Educ. 92 (12): 2094–2099. Bibcode:2015JChEd..92.2094S. doi:10.1021/acs.jchemed.5b00333.
  7. ^ Rincon, Paul (22 March 2004). "Bones hint at first use of fire". BBC News. Retrieved 2007-09-11.
  8. ^ Elert, Glenn (2007). "Chemical Potential Energy". The Physics Hypertextbook. Retrieved 2007-09-11.
  9. ^ a b Dr. Irene Novaczek. "Canada's Fossil Fuel Dependency". Elements. Retrieved 2007-01-18.
  10. ^ "Fossil fuel". EPA. Archived from the original on 12 March 2007. Retrieved 2007-01-18.
  11. ^ "Fossil fuel". Archived from the original on 10 May 2012.
  12. ^ "Fossil fuel". EPA. Archived from the original on 12 March 2007. Retrieved 2007-01-18.
  13. ^ "U.S. EIA International Energy Statistics". Retrieved 2010-01-12.
  14. ^ "International Energy Annual 2006". Archived from the original on 5 February 2009. Retrieved 8 February 2009.
  15. ^ "US Department of Energy on greenhouse gases". Retrieved 2007-09-09.
  16. ^ Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". American Journal of Physics. 63 (7): 653–658. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828.


  • Ratcliff, Brian; et al. (2000). Chemistry 1. Cambridge University press. ISBN 0-521-78778-5.

Further reading


Ammonia is a compound of nitrogen and hydrogen with the formula NH3. The simplest pnictogen hydride, ammonia is a colourless gas with a characteristic pungent smell. It is a common nitrogenous waste, particularly among aquatic organisms, and it contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceutical products and is used in many commercial cleaning products. It is mainly collected by downward displacement of both air and water. Ammonia is named for the Ammonians, worshipers of the Egyptian god Amun, who used ammonium chloride in their rituals.Although common in nature and in wide use, ammonia is both caustic and hazardous in its concentrated form. It is classified as an extremely hazardous substance in the United States, and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.The global industrial production of ammonia in 2014 was 176 million tonnes, a 16% increase over the 2006 global industrial production of 152 million tonnes. Industrial ammonia is sold either as ammonia liquor (usually 28% ammonia in water) or as pressurized or refrigerated anhydrous liquid ammonia transported in tank cars or cylinders.NH3 boils at −33.34 °C (−28.012 °F) at a pressure of one atmosphere, so the liquid must be stored under pressure or at low temperature. Household ammonia or ammonium hydroxide is a solution of NH3 in water. The concentration of such solutions is measured in units of the Baumé scale (density), with 26 degrees baumé (about 30% (by weight) ammonia at 15.5 °C or 59.9 °F) being the typical high-concentration commercial product.


A biofuel is a fuel that is produced through contemporary biological processes, such as agriculture and anaerobic digestion, rather than a fuel produced by geological processes such as those involved in the formation of fossil fuels, such as coal and petroleum, from prehistoric biological matter. If the source biomatter can regrow quickly, the resulting fuel is said to be a form of renewable energy.

Biofuels can be derived directly from plants (i.e. energy crops), or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis. Other renewable biofuels are made through the use or conversion of biomass (referring to recently living organisms, most often referring to plants or plant-derived materials). This biomass can be converted to convenient energy-containing substances in three different ways: thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in solid, liquid, or gas form. This new biomass can also be used directly for biofuels.

Biofuels are in theory carbon-neutral because the carbon dioxide that is absorbed by the plants is equal to the carbon dioxide that is released when the fuel is burned. However, in practice, whether or not a biofuel is carbon-neutral also depends greatly on whether the land which is used to grow the biofuel (with 1st and 2nd generation biofuel) needed to be cleared of carbon-holding vegetation or not.

Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form (E100), but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. Current plant design does not provide for converting the lignin portion of plant raw materials to fuel components by fermentation.

Biodiesel can be used as a fuel for vehicles in its pure form (B100), but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.

In 2010, worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009, and biofuels provided 2.7% of the world's fuels for road transport. Global ethanol fuel production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for about 90% of global production. The world's largest biodiesel producer is the European Union, accounting for 53% of all biodiesel production in 2010. As of 2011, mandates for blending biofuels exist in 31 countries at the national level and in 29 states or provinces. The International Energy Agency has a goal for biofuels to meet more than a quarter of world demand for transportation fuels by 2050 to reduce dependence on petroleum and coal. The production of biofuels also led into a flourishing automotive industry, where by 2010, 79% of all cars produced in Brazil were made with a hybrid fuel system of bioethanol and gasoline.There are various social, economic, environmental and technical issues relating to biofuels production and use, which have been debated in the popular media and scientific journals.


A carburetor (American English) or carburettor (British English) is a device that mixes air and fuel for internal combustion engines in the proper air–fuel ratio for combustion. It is sometimes colloquially shortened to carb in the UK and North America or carby in Australia. To carburate or carburet (and thus carburation or carburetion, respectively) means to mix the air and fuel or to equip (an engine) with a carburetor for that purpose.

Carburetors have largely been supplanted in the automotive and, to a lesser extent, aviation industries by fuel injection. They are still common on small engines for lawn mowers, rototillers and other equipment.


Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements; chiefly hydrogen, sulfur, oxygen, and nitrogen.

Coal is formed if dead plant matter decays into peat and over millions of years the heat and pressure of deep burial converts the peat into coal.As a fossil fuel burned for heat, coal supplies about a quarter of the world's primary energy and two-fifths of its electricity. Some iron and steel making and other industrial processes burn coal.

The extraction and use of coal causes many premature deaths and much illness. Coal damages the environment; including by climate change as it is the largest anthropogenic source of carbon dioxide, 14 Gt in 2016 which is 40% of the total fossil fuel emissions. As part of the worldwide energy transition many countries have stopped using or use less coal.

The largest consumer and importer of coal is China. And China mines almost half the world's coal, followed by India with about a tenth. Australia accounts for about a third of world coal exports followed by Indonesia and Russia.

Diesel engine

The diesel engine (also known as a compression-ignition or CI engine), named after Rudolf Diesel, is an internal combustion engine in which ignition of the fuel, which is injected into the combustion chamber, is caused by the elevated temperature of the air in the cylinder due to the mechanical compression (adiabatic compression). Diesel engines work by compressing only the air. This increases the air temperature inside the cylinder to such a high degree that atomised diesel fuel injected into the combustion chamber ignites spontaneously. This contrasts with spark-ignition engines such as a petrol engine (gasoline engine) or gas engine (using a gaseous fuel as opposed to petrol), which use a spark plug to ignite an air-fuel mixture. In diesel engines, glow plugs (combustion chamber pre-warmers) may be used to aid starting in cold weather, or when the engine uses a lower compression-ratio, or both. The original diesel engine operates on the "constant pressure" cycle of gradual combustion and produces no audible knock.

The diesel engine has the highest thermal efficiency (engine efficiency) of any practical internal or external combustion engine due to its very high expansion ratio and inherent lean burn which enables heat dissipation by the excess air. A small efficiency loss is also avoided compared to two-stroke non-direct-injection gasoline engines since unburned fuel is not present at valve overlap and therefore no fuel goes directly from the intake/injection to the exhaust. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) can have a thermal efficiency that exceeds 50%; it can reach up to as high as 55%.Diesel engines may be designed as either two-stroke or four-stroke cycles. They were originally used as a more efficient replacement for stationary steam engines. Since the 1910s they have been used in submarines and ships. Use in locomotives, trucks, heavy equipment and electricity generation plants followed later. In the 1930s, they slowly began to be used in a few automobiles. Since the 1970s, the use of diesel engines in larger on-road and off-road vehicles in the US increased. According to the British Society of Motor Manufacturing and Traders, the EU average for diesel cars accounts for 50% of the total sold, including 70% in France and 38% in the UK.The world's largest diesel engines put in service are 14-cylinder, two-stroke watercraft Diesel engines; they produce a peak power of almost 100 MW.

Diesel fuel

Diesel fuel in general is any liquid fuel used in diesel engines, whose fuel ignition takes place, without any spark, as a result of compression of the inlet air mixture and then injection of fuel. (Glow plugs, grid heaters and block heaters help achieve high temperatures for combustion during engine startup in cold weather.) Diesel engines have found broad use as a result of higher thermodynamic efficiency and thus fuel efficiency. This is particularly noted where diesel engines are run at part-load; as their air supply is not throttled as in a petrol engine, their efficiency still remains very high.

The most common type of diesel fuel is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2016, almost all of the petroleum-based diesel fuel available in the UK, mainland Europe, and North America is of a ULSD type. In the UK, diesel fuel for on-road use is commonly abbreviated DERV, standing for diesel-engined road vehicle, which carries a tax premium over equivalent fuel for non-road use. In Australia, diesel fuel is also known as distillate, and in Indonesia, it is known as Solar, a trademarked name by the local oil company Pertamina.


Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is a chemical compound, a simple alcohol with the chemical formula C2H5OH. Its formula can be also written as CH3−CH2−OH or C2H5−OH (an ethyl group linked to a hydroxyl group), and is often abbreviated as EtOH. Ethanol is a volatile, flammable, colorless liquid with a slight characteristic odor. It is a psychoactive substance and is the principal type of alcohol found in alcoholic drinks.

Ethanol is naturally produced by the fermentation of sugars by yeasts or via petrochemical processes, and is most commonly consumed as a popular recreational drug. It also has medical applications as an antiseptic and disinfectant. The compound is widely used as a chemical solvent, either for scientific chemical testing or in synthesis of other organic compounds, and is a vital substance used across many different kinds of manufacturing industries. Ethanol is also used as a clean-burning fuel source.

Fossil fuel

A fossil fuel is a fuel formed by natural processes, such as anaerobic decomposition of buried dead organisms, containing energy originating in ancient photosynthesis.

The age of the organisms and their resulting fossil fuels is typically millions of years, and sometimes exceeds 650 million years.

Fossil fuels contain high percentages of carbon and include petroleum, coal, and natural gas.

Other commonly used derivatives include kerosene and propane.

Fossil fuels range from volatile materials with low carbon to hydrogen ratios like methane, to liquids like petroleum, to nonvolatile materials composed of almost pure carbon, like anthracite coal.

Methane can be found in hydrocarbon fields either alone, associated with oil, or in the form of methane clathrates.

The theory that fossil fuels formed from the fossilized remains of dead plants by exposure to heat and pressure in the Earth's crust over millions of years was first introduced by Andreas Libavius "in his 1597 Alchemia [Alchymia]" and later by Mikhail Lomonosov "as early as 1757 and certainly by 1763". The first use of the term "fossil fuel" was by the German chemist Caspar Neumann, in English translation in 1759.In 2017 the world's primary energy sources consisted of petroleum (34%), coal (28%), natural gas (23%), amounting to an 85% share for fossil fuels in primary energy consumption in the world.

Non-fossil sources in 2006 included nuclear (8.5%), hydroelectric (6.3%), and others (geothermal, solar, tidal, wind, wood, waste) amounting to 0.9%.

World energy consumption was growing at about 2.3% per year. In 2015 about 18% of worldwide consumption was from renewable sources.Although fossil fuels are continually being formed via natural processes, they are generally considered to be non-renewable resources because they take millions of years to form and the known viable reserves are being depleted much faster than new ones are being made.The use of fossil fuels raises serious environmental concerns.

The burning of fossil fuels produces around 21.3 billion tonnes (21.3 gigatonnes) of carbon dioxide (CO2) per year.

It is estimated that natural processes can only absorb about half of that amount, so there is a net increase of 10.65 billion tonnes of atmospheric carbon dioxide per year.

Carbon dioxide is a greenhouse gas that increases radiative forcing and contributes to global warming.

A global movement towards the generation of low-carbon renewable energy is underway to help reduce global greenhouse gas emissions.

Four-stroke engine

A four-stroke (also four-cycle) engine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing vacuum pressure into the cylinder through its downward motion. The piston is moving down as air is being sucked in by the downward motion against the piston.

Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.

Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. (the end of the compression stroke) the compressed air-fuel mixture is ignited by a spark plug (in a gasoline engine) or by heat generated by high compression (diesel engines), forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.

Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust valve.These four strokes can be remembered by the colloquial phrase, "Suck, Squeeze, Bang, Blow".

Fuel cell

A fuel cell is an electrochemical cell that converts the potential energy from a fuel into electricity through an electrochemical reaction of hydrogen fuel with oxygen or another oxidizing agent. Fuel cells are different from batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy comes from chemicals already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.

The first fuel cells were invented in 1838. The first commercial use of fuel cells came more than a century later in NASA space programs to generate power for satellites and space capsules. Since then, fuel cells have been used in many other applications. Fuel cells are used for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. They are also used to power fuel cell vehicles, including forklifts, automobiles, buses, boats, motorcycles and submarines.

There are many types of fuel cells, but they all consist of an anode, a cathode, and an electrolyte that allows positively charged hydrogen ions (protons) to move between the two sides of the fuel cell. At the anode a catalyst causes the fuel to undergo oxidation reactions that generate protons (positively charged hydrogen ions) and electrons. The protons flow from the anode to the cathode through the electrolyte after the reaction. At the same time, electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity. At the cathode, another catalyst causes hydrogen ions, electrons, and oxygen to react, forming water. Fuel cells are classified by the type of electrolyte they use and by the difference in startup time ranging from 1 second for proton exchange membrane fuel cells (PEM fuel cells, or PEMFC) to 10 minutes for solid oxide fuel cells (SOFC). A related technology is flow batteries, in which the fuel can be regenerated by recharging. Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to create sufficient voltage to meet an application's requirements. In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions. The energy efficiency of a fuel cell is generally between 40–60%; however, if waste heat is captured in a cogeneration scheme, efficiencies up to 85% can be obtained.

The fuel cell market is growing, and in 2013 Pike Research estimated that the stationary fuel cell market will reach 50 GW by 2020.

Fuel injection

Fuel injection is the introduction of fuel in an internal combustion engine, most commonly automotive engines, by the means of an injector.

All diesel engines use fuel injection by design. Petrol engines can use gasoline direct injection, where the fuel is directly delivered into the combustion chamber, or indirect injection where the fuel is mixed with air before the intake stroke.

On petrol engines, fuel injection replaced carburetors from the 1980s onward. The primary difference between carburetors and fuel injection is that fuel injection atomizes the fuel through a small nozzle under high pressure, while a carburetor relies on suction created by intake air accelerated through a Venturi tube to draw the fuel into the airstream.

Fuel oil

Fuel oil (also known as heavy oil, marine fuel or furnace oil) is a fraction obtained from petroleum distillation, either as a distillate or a residue. In general terms, fuel oil is any liquid fuel that is burned in a furnace or boiler for the generation of heat or used in an engine for the generation of power, except oils having a flash point of approximately 42 °C (108 °F) and oils burned in cotton or wool-wick burners. Fuel oil is made of long hydrocarbon chains, particularly alkanes, cycloalkanes and aromatics. The term fuel oil is also used in a stricter sense to refer only to the heaviest commercial fuel that can be obtained from crude oil, i.e., heavier than gasoline and naphtha.

Small molecules like those in propane, naphtha, gasoline for cars, and jet fuel have relatively low boiling points, and they are removed at the start of the fractional distillation process. Heavier petroleum products like Diesel and lubricating oil are much less volatile and distill out more slowly, while bunker oil is literally the bottom of the barrel; in oil distilling, the only things denser than bunker fuel are carbon black feedstock and bituminous residue (asphalt), which is used for paving roads and sealing roofs.


Gasoline, gas (American English) or petrol (British English) is a colorless petroleum-derived flammable liquid that is used primarily as a fuel in spark-ignited internal combustion engines. It consists mostly of organic compounds obtained by the fractional distillation of petroleum, enhanced with a variety of additives. On average, a 42-U.S.-gallon (160-liter) barrel of crude oil yields about 19 U.S. gallons (72 liters) of gasoline after processing in an oil refinery, though this varies based on the crude oil assay.

The characteristic of a particular gasoline blend to resist igniting too early (which causes knocking and reduces efficiency in reciprocating engines) is measured by its octane rating. Gasoline is produced in several grades of octane rating. Tetraethyllead and other lead compounds are no longer used in most areas to increase octane rating. Other chemicals are frequently added to gasoline to improve chemical stability and performance characteristics, control corrosiveness and provide fuel system cleaning. Gasoline may contain oxygen-containing chemicals such as ethanol, MTBE or ETBE to improve combustion.

Gasoline used in internal combustion engines can have significant effects on the local environment, and is also a contributor to global human carbon dioxide emissions. Gasoline can also enter the environment uncombusted, both as liquid and as vapor, from leakage and handling during production, transport and delivery (e.g., from storage tanks, from spills, etc.). As an example of efforts to control such leakage, many underground storage tanks are required to have extensive measures in place to detect and prevent such leaks. Gasoline contains benzene and other known carcinogens.

Internal combustion engine

An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy.

The first commercially successful internal combustion engine was created by Étienne Lenoir around 1859 and the first modern internal combustion engine was created in 1876 by Nikolaus Otto (see Otto engine).

The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the six-stroke piston engine and the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described. Firearms are also a form of internal combustion engine.In contrast, in external combustion engines, such as steam or Stirling engines, energy is delivered to a working fluid not consisting of, mixed with, or contaminated by combustion products. Working fluids can be air, hot water, pressurized water or even liquid sodium, heated in a boiler. ICEs are usually powered by energy-dense fuels such as gasoline or diesel fuel, liquids derived from fossil fuels. While there are many stationary applications, most ICEs are used in mobile applications and are the dominant power supply for vehicles such as cars, aircraft, and boats.

Typically an ICE is fed with fossil fuels like natural gas or petroleum products such as gasoline, diesel fuel or fuel oil. There is a growing usage of renewable fuels like biodiesel for CI (compression ignition) engines and bioethanol or methanol for SI (spark ignition) engines. Hydrogen is sometimes used, and can be obtained from either fossil fuels or renewable energy.

Jet fuel

Jet fuel, aviation turbine fuel (ATF), or avtur, is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial aviation are Jet A and Jet A-1, which are produced to a standardized international specification. The only other jet fuel commonly used in civilian turbine-engine powered aviation is Jet B, which is used for its enhanced cold-weather performance.

Jet fuel is a mixture of a large number of different hydrocarbons. Because the exact composition of jet fuel varies widely based on petroleum source, it is impossible to define jet fuel as a ratio of specific hydrocarbons. Jet fuel is therefore defined as a performance specification rather than a chemical compound. Furthermore, the range of molecular mass between hydrocarbons (or different carbon numbers) is defined by the requirements for the product, such as the freezing point or smoke point. Kerosene-type jet fuel (including Jet A and Jet A-1) has a carbon number distribution between about 8 and 16 (carbon atoms per molecule); wide-cut or naphtha-type jet fuel (including Jet B), between about 5 and 15.


Kerosene, also known as paraffin, lamp oil, and coal oil (an obsolete term), is a combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in industry as well as households. Its name derives from Greek: κηρός (keros) meaning wax, and was registered as a trademark by Canadian geologist and inventor Abraham Gesner in 1854 before evolving into a genericized trademark. It is sometimes spelled kerosine in scientific and industrial usage. The term kerosene is common in much of Argentina, Australia, Canada, India, New Zealand, and the United States, while the term paraffin (or a closely related variant) is used in Chile, eastern Africa, South Africa, Norway, and in the United Kingdom. The term lamp oil, or the equivalent in the local languages, is common in the majority of Asia. Liquid paraffin (called mineral oil in the US) is a more viscous and highly refined product which is used as a laxative. Paraffin wax is a waxy solid extracted from petroleum.

Kerosene is widely used to power jet engines of aircraft (jet fuel) and some rocket engines and is also commonly used as a cooking and lighting fuel and for fire toys such as poi. In parts of Asia, kerosene is sometimes used as fuel for small outboard motors or even motorcycles. World total kerosene consumption for all purposes is equivalent to about 1.2 million barrels (50 million U.S. gallons; 42 million imperial gallons; 190 million liters) per day.To prevent confusion between kerosene and the much more flammable and volatile gasoline, some jurisdictions regulate markings or colorings for containers used to store or dispense kerosene. For example, in the United States, Pennsylvania requires that portable containers used at retail service stations for kerosene be colored blue, as opposed to red (for gasoline) or yellow (for diesel fuel).


Methane (US: or UK: ) is a chemical compound with the chemical formula CH4 (one atom of carbon and four atoms of hydrogen). It is a group-14 hydride and the simplest alkane, and is the main constituent of natural gas. The relative abundance of methane on Earth makes it an attractive fuel, though capturing and storing it poses challenges due to its gaseous state under normal conditions for temperature and pressure.

Natural methane is found both below ground and under the sea floor. When it reaches the surface and the atmosphere, it is known as atmospheric methane. The Earth's atmospheric methane concentration has increased by about 150% since 1750, and it accounts for 20% of the total radiative forcing from all of the long-lived and globally mixed greenhouse gases.

Nuclear power

Nuclear power is the use of nuclear reactions that release nuclear energy to generate heat, which most frequently is then used in steam turbines to produce electricity in a nuclear power plant. As a nuclear technology, nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions.

Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium.

Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators.

Generating electricity from fusion power remains at the focus of international research.

This article mostly deals with nuclear fission power for electricity generation.

Civilian nuclear power supplied 2,488 terawatt hours (TWh) of electricity in 2017, equivalent to about 10% of global electricity generation.

As of April 2018, there are 449 civilian fission reactors in the world, with a combined electrical capacity of 394 gigawatt (GW).

As of 2018, there are 58 power reactors under construction and 154 reactors planned, with a combined capacity of 63 GW and 157 GW, respectively. As of January 2019, 337 more reactors were proposed.

Most reactors under construction are generation III reactors in Asia.Nuclear power is classified as a low greenhouse gas energy supply technology, along with renewable energy, by the Intergovernmental Panel on Climate Change. Since its commercialization in the 1970s, nuclear power has prevented about 1.84 million air pollution-related deaths and the emission of about 64 billion tonnes of carbon dioxide equivalent that would have otherwise resulted from the burning of fossil fuels.There is a debate about nuclear power.

Proponents, such as the World Nuclear Association and Environmentalists for Nuclear Energy, contend that nuclear power is a safe, sustainable energy source that reduces carbon emissions.

Opponents, such as Greenpeace and NIRS, contend that nuclear power poses many threats to people and the environment.

Accidents in nuclear power plants include the Chernobyl disaster in the Soviet Union in 1986, the Fukushima Daiichi nuclear disaster in Japan in 2011, and the more contained Three Mile Island accident in the United States in 1979.

There have also been some nuclear submarine accidents.

Nuclear reactors have caused the lowest number of fatalities per unit of energy generated when compared to fossil fuels and hydropower.

Coal, petroleum, natural gas and hydroelectricity each have caused a greater number of fatalities per unit of energy, due to air pollution and accidents.Collaboration on research and development towards greater efficiency, safety and recycling of spent fuel in future generation IV reactors presently includes Euratom and the co-operation of more than 10 permanent member countries globally.


Petroleum () is a naturally occurring, yellowish-black liquid found in geological formations beneath the Earth's surface. It is commonly refined into various types of fuels. Components of petroleum are separated using a technique called fractional distillation, i.e. separation of a liquid mixture into fractions differing in boiling point by means of distillation, typically using a fractionating column.

It consists of naturally occurring hydrocarbons of various molecular weights and may contain miscellaneous organic compounds. The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that are made up of refined crude oil. A fossil fuel, petroleum is formed when large quantities of dead organisms, mostly zooplankton and algae, are buried underneath sedimentary rock and subjected to both intense heat and pressure.

Petroleum has mostly been recovered by oil drilling (natural petroleum springs are rare). Drilling is carried out after studies of structural geology (at the reservoir scale), sedimentary basin analysis, and reservoir characterisation (mainly in terms of the porosity and permeability of geologic reservoir structures) have been completed. It is refined and separated, most easily by distillation, into a large number of consumer products, from gasoline (petrol) and kerosene to asphalt and chemical reagents used to make plastics, pesticides and pharmaceuticals. Petroleum is used in manufacturing a wide variety of materials, and it is estimated that the world consumes about 95 million barrels each day.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.