Fractional crystallization (chemistry)

In chemistry, fractional crystallization is a method of refining substances based on differences in solubility. It fractionates via differences in crystallization (forming of crystals). If a mixture of two or more substances in solution are allowed to crystallize, for example by allowing the temperature of the solution to decrease or increase, the precipitate will contain more of the least soluble substance. The proportion of components in the precipitate will depend on their solubility products. If the solubility products are very similar, a cascade process will be needed to effectuate a complete separation. This technique is often used in chemical engineering to obtain very pure substances, or to recover saleable products from waste solutions.

Crystallization
Process-of-Crystallization-200px
Concepts
Crystallization · Crystal growth
Recrystallization · Seed crystal
Protocrystalline · Single crystal
Methods and technology
Boules
Bridgman–Stockbarger technique
Crystal bar process
Czochralski process
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos process
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil process
Zone melting
Fundamentals
Nucleation · Crystal
Crystal structure · Solid

See also

References

Crystallization

Crystallization is the (natural or artificial) process by which a solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some of the ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, and in the case of liquid crystals, time of fluid evaporation.

Crystallization occurs in two major steps. The first is nucleation, the appearance of a crystalline phase from either a supercooled liquid or a supersaturated solvent. The second step is known as crystal growth, which is the increase in the size of particles and leads to a crystal state. An important feature of this step is that loose particles form layers at the crystal's surface lodge themselves into open inconsistencies such as pores, cracks, etc.

The majority of minerals and organic molecules crystallize easily, and the resulting crystals are generally of good quality, i.e. without visible defects. However, larger biochemical particles, like proteins, are often difficult to crystallize. The ease with which molecules will crystallize strongly depends on the intensity of either atomic forces (in the case of mineral substances), intermolecular forces (organic and biochemical substances) or intramolecular forces (biochemical substances).

Crystallization is also a chemical solid–liquid separation technique, in which mass transfer of a solute from the liquid solution to a pure solid crystalline phase occurs. In chemical engineering, crystallization occurs in a crystallizer. Crystallization is therefore related to precipitation, although the result is not amorphous or disordered, but a crystal.

Fractional crystallization

Fractional crystallization may refer to:

Fractional crystallization (chemistry), a process to separate different solutes from a solution

Fractional crystallization (geology), a natural process occurring in igneous rocks during which precipitation of minerals takes place

Fractional crystallization (geology)

Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within the Earth's crust and mantle. It is one of the main processes of magmatic differentiation. Fractional crystallization is the removal and segregation from a melt of mineral precipitates; except in special cases, removal of the crystals changes the composition of the magma. In essence, fractional crystallization is the removal of early formed crystals from an originally homogeneous magma (for example, by gravity settling) so that these crystals are prevented from further reaction with the residual melt. The composition of the remaining melt becomes relatively depleted in some components and enriched in others, resulting in the precipitation of a sequence of different minerals.Fractional crystallization in silicate melts (magmas) is complex compared to crystallization in chemical systems at constant pressure and composition, because changes in pressure and composition can have dramatic effects on magma evolution. Addition and loss of water, carbon dioxide, hydrogen, and oxygen are among the compositional changes that must be considered. For example, the partial pressure (fugacity) of water in silicate melts can be of prime importance, as in near-solidus crystallization of magmas of granite composition. The crystallization sequence of oxide minerals such as magnetite and ulvospinel is sensitive to the oxygen fugacity of melts, and separation of the oxide phases can be an important control of silica concentration in the evolving magma, and may be important in andesite genesis.

Experiments have provided many examples of the complexities that control which mineral is crystallized first as the melt cools down past the liquidus.

One example concerns crystallization of melts that form mafic and ultramafic rocks. MgO and SiO2 concentrations in melts are among the variables that determine whether forsterite olivine or enstatite pyroxene is precipitated, but the water content and pressure are also important. In some compositions, at high pressures without water crystallization of enstatite is favored, but in the presence of water at high pressures, olivine is favored.

Granitic magmas provide additional examples of how melts of generally similar composition and temperature, but at different pressure, may crystallize different minerals. Pressure determines the maximum water content of a magma of granite composition. High-temperature fractional crystallization of relatively water-poor granite magmas may produce single-alkali-feldspar granite, and lower-temperature crystallization of relatively water-rich magma may produce two-feldspar granite.

During the process of fractional crystallization, melts become enriched in incompatible elements. Hence, knowledge of the crystallization sequence is critical in understanding how melt compositions evolve. Textures of rocks provide insights, as documented in the early 1900s by Bowen's reaction series. An example of such texture, related to fractioned crystallization, is intergranular (also known as intercumulus) textures that develop wherever a mineral crystallizes later than the surrounding matrix, hence filling the left-over interstitial space. A variety of Cr, Fe, and Ti oxides show such textures, like intergranular chromite in a siliceous matrix. Experimentally-determined phase diagrams for simple mixtures provide insights into general principles. Numerical calculations with special software have become increasingly able to simulate natural processes accurately.

Fractional freezing

Fractional freezing is a process used in process engineering and chemistry to separate substances with different melting points. It can be done by partial melting of a solid, for example in zone refining of silicon or metals, or by partial crystallization of a liquid, as in freeze distillation, also called normal freezing or progressive freezing. The initial sample is thus fractionated (separated into fractions).

Partial crystallization can also be achieved by adding a dilute solvent to the mixture, and cooling and concentrating the mixture by evaporating the solvent, a process called solution crystallization. Fractional freezing is generally used to produce ultra-pure solids, or to concentrate heat-sensitive liquids.

Recrystallization (chemistry)

In chemistry, recrystallization is a technique used to purify chemicals. By dissolving both impurities and a compound in an appropriate solvent, either the desired compound or impurities can be removed from the solution, leaving the other behind. It is named for the crystals often formed when the compound precipitates out. Alternatively, recrystallization can refer to the natural growth of larger ice crystals at the expense of smaller ones.

Single crystal

A single crystal or monocrystalline solid is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries. The absence of the defects associated with grain boundaries can give monocrystals unique properties, particularly mechanical, optical and electrical, which can also be anisotropic, depending on the type of crystallographic structure. These properties, in addition to making them precious in some gems, are industrially used in technological applications, especially in optics and electronics.

Because entropic effects favour the presence of some imperfections in the microstructure of solids, such as impurities, inhomogeneous strain and crystallographic defects such as dislocations, perfect single crystals of meaningful size are exceedingly rare in nature, and are also difficult to produce in the laboratory, though they can be made under controlled conditions. On the other hand, imperfect single crystals can reach enormous sizes in nature: several mineral species such as beryl, gypsum and feldspars are known to have produced crystals several metres across.

The opposite of a single crystal is an amorphous structure where the atomic position is limited to short range order only. In between the two extremes exist polycrystalline, which is made up of a number of smaller crystals known as crystallites, and paracrystalline phases.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.