Foundational Model of Anatomy

The Foundational Model of Anatomy Ontology (FMA) is a reference ontology for the domain of anatomy. It is a symbolic representation of the canonical, phenotypic structure of an organism; a spatial-structural ontology of anatomical entities and relations which form the physical organization of an organism at all salient levels of granularity.

FMA is developed and maintained by the Structural Informatics Group at the University of Washington.


FMA ontology contains approximately 75,000 classes and over 120,000 terms, over 2.1 million relationship instances from over 168 relationship types.[1]


  1. ^ About FMA – Contents – The Foundational Model of Anatomy (retrieved 2012-11-06).

See also

External links


Anatomography is an interactive website which supports generating anatomical diagrams and animations of the human body. The Anatomography website is maintained by the DBCLS (Database Center for Life Science) non-profit research institute located at the University of Tokyo. Anatomical diagrams generated by Anatomography, and 3D polygon data used on the website (called BodyParts3D), are freely available under the Creative Commons Attribution-ShareAlike license.


Endothelium refers to cells that line the interior surface of blood vessels and lymphatic vessels, forming an interface between circulating blood or lymph in the lumen and the rest of the vessel wall. It is a thin layer of simple, or single-layered, squamous cells called endothelial cells. Endothelial cells in direct contact with blood are called vascular endothelial cells, whereas those in direct contact with lymph are known as lymphatic endothelial cells.

Vascular endothelial cells line the entire circulatory system, from the heart to the smallest capillaries. These cells have unique functions in vascular biology. These functions include fluid filtration, such as in the glomerulus of the kidney, blood vessel tone, hemostasis, neutrophil recruitment, and hormone trafficking. Endothelium of the interior surfaces of the heart chambers is called endocardium.


A joint or articulation (or articular surface) is the connection made between bones in the body which link the skeletal system into a functional whole. They are constructed to allow for different degrees and types of movement. Some joints, such as the knee, elbow, and shoulder, are self-lubricating, almost frictionless, and are able to withstand compression and maintain heavy loads while still executing smooth and precise movements. Other joints such as sutures between the bones of the skull permit very little movement (only during birth) in order to protect the brain and the sense organs. The connection between a tooth and the jawbone is also called a joint, and is described as a fibrous joint known as a gomphosis. Joints are classified both structurally and functionally.

OBO Foundry

The Open Biomedical Ontologies (OBO) Foundry (now The Open Biological and Biomedical Ontologies (OBO) Foundry) is a collaborative experiment involving developers of science-based ontologies. (Smith et al., 2007) The Foundry is concerned with establishing a set of principles for ontology development with the goal of creating a suite of orthogonal interoperable reference ontologies in the biomedical domain. The Foundry approach has been adopted by the Monarch Initiative, the Neuroscience Information Framework (NIF) Standard and by the cROP (Common Reference Ontologies for Plants) initiatives.

Ontology (information science)

In computer science and information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains.

Every field creates ontologies to limit complexity and organize information into data and knowledge. As new ontologies are made, their use hopefully improves problem solving within that domain. Translating research papers within every field is a problem made easier when experts from different countries maintain a controlled vocabulary of jargon between each of their languages.Since Google started an initiative called Knowledge Graph, a substantial amount of research has gone on using the phrase knowledge graph as a generalized term. Although there is no clear definition for the term knowledge graph, it is sometimes used as synonym for ontology. One common interpretation is that a knowledge graph represents a collection of interlinked descriptions of entities – real-world objects, events, situations or abstract concepts. Unlike ontologies, knowledge graphs, such as Google's Knowledge Graph, often contain large volumes of factual information with less formal semantics. In some contexts, the term knowledge graph is used to refer to any knowledge base that is represented as a graph.

Ovarian cortex

The ovarian cortex is the outer portion of the ovary. The ovarian follicles are located within the ovarian cortex. Ovarian cortex tissue transplant has been performed to treat infertility.


The ovary is an organ found in the female reproductive system that produces an ovum. When released, this travels down the fallopian tube into the uterus, where it may become fertilised by a sperm. There is an ovary (from Latin ovarium, meaning 'egg, nut') found on the left and right sides of the body. The ovaries also secrete hormones that play a role in the menstrual cycle and fertility. The ovary progresses through many stages beginning in the prenatal period through menopause. It is also an endocrine gland because of the various hormones that it secretes.

Terminologia Anatomica

Terminologia Anatomica (TA) is the international standard on human anatomic terminology. It was developed by the Federative Committee on Anatomical Terminology (FCAT) and the International Federation of Associations of Anatomists (IFAA) and was released in 1998. It supersedes the previous standard, Nomina Anatomica. Terminologia Anatomica contains terminology for about 7500 human gross (macroscopic) anatomical structures. In April 2011, Terminologia Anatomica was published online by the Federative International Programme on Anatomical Terminologies (FIPAT), the successor of FCAT.


Uberon is a comparative anatomy ontology representing a variety of structures found in animals, such as lungs, muscles, bones, feathers and fins. These structures are connected to other structures via relationships such as part-of and develops-from. One of the uses of this ontology is to integrate data from different biological databases, and other species-specific ontologies such as the Foundational Model of Anatomy.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.