Fisheries management

Fisheries management is the activity of protecting fishery resources so sustainable exploitation is possible, drawing on fisheries science, and including the precautionary principle. Modern fisheries management is often referred to as a governmental system of appropriate management rules based on defined objectives and a mix of management means to implement the rules, which are put in place by a system of monitoring control and surveillance. A popular approach is the ecosystem approach to fisheries management.[1][2] According to the Food and Agriculture Organization of the United Nations (FAO), there are "no clear and generally accepted definitions of fisheries management".[3] However, the working definition used by the FAO and much cited elsewhere is:

The integrated process of information gathering, analysis, planning, consultation, decision-making, allocation of resources and formulation and implementation, with enforcement as necessary, of regulations or rules which govern fisheries activities in order to ensure the continued productivity of the resources and the accomplishment of other fisheries objectives.[3]


Fisheries have been explicitly managed in some places for hundreds of years. More than 80 percent of the world's commercial exploitation of fish and shellfish are harvested from natural occurring populations in the oceans and freshwater areas.[4] For example, the Māori people, New Zealand residents for about 700 years, had prohibitions against taking more than what could be eaten and about giving back the first fish caught as an offering to sea god Tangaroa.[5] Starting in the 18th century attempts were made to regulate fishing in the North Norwegian fishery. This resulted in the enactment of a law in 1816 on the Lofoten fishery, which established in some measure what has come to be known as territorial use rights.[6]

"The fishing banks were divided into areas belonging to the nearest fishing base on land and further subdivided into fields where the boats were allowed to fish. The allocation of the fishing fields was in the hands of local governing committees, usually headed by the owner of the onshore facilities which the fishermen had to rent for accommodation and for drying the fish."[7]

Governmental resource protection-based fisheries management is a relatively new idea, first developed for North European fisheries after the first Overfishing Conference held in London in 1936. In 1957 British fisheries researchers Ray Beverton and Sidney Holt published a seminal work on North Sea commercial fisheries dynamics.[8] In the 1960s the work became the theoretical platform for North European management schemes.

After some years away from the field of fisheries management, Beverton criticized his earlier work in a paper given at the first World Fisheries Congress in Athens in 1992. "The Dynamics of Exploited Fish Populations" expressed his concerns, including the way his and Sidney Holt's work had been misinterpreted and misused by fishery biologists and managers during the previous 30 years.[9] Nevertheless, the institutional foundation for modern fishery management had been laid.

In 1996, the Marine Stewardship Council was founded to set standards for sustainable fishing. In 2010, the Aquaculture Stewardship Council was created to do the same for aquaculture.

A report by Prince Charles' International Sustainability Unit, the New York-based Environmental Defense Fund and 50in10 published in July 2014 estimated global fisheries were adding $270 billion a year to global GDP, but by full implementation of sustainable fishing, that figure could rise by an extra amount of as much as $50 billion.[10]

Political objectives

According to the FAO, fisheries management should be based explicitly on political objectives, ideally with transparent priorities.[11] Typical political objectives when exploiting a fish resource are to:[12]

Such political goals can also be a weak part of fisheries management, since the objectives can conflict with each other.[12]

International objectives

Fisheries objectives need to be expressed in concrete management rules. In most countries fisheries management rules should be based on the internationally agreed, though non-binding, Code of Conduct for Responsible Fisheries,[13] agreed at a meeting of the U.N.'s Food and Agriculture Organization FAO session in 1995. The precautionary approach it prescribes is typically implemented in concrete management rules as minimum spawning biomass, maximum fishing mortality rates, etc. In 2005 the UBC Fisheries Centre at the University of British Columbia comprehensively reviewed the performance of the world's major fishing nations against the Code.[14]

International agreements are required in order to regulate fisheries in international waters. The desire for agreement on this and other maritime issues led to three conferences on the Law of the Sea, and ultimately to the treaty known as the United Nations Convention on the Law of the Sea (UNCLOS). Concepts such as exclusive economic zones (EEZ, extending 200 nautical miles (370 km) from a nation's coasts) allocate certain sovereign rights and responsibilities for resource management to individual countries.

Other situations need additional intergovernmental coordination. For example, in the Mediterranean Sea and other relatively narrow bodies of water, EEZ of 200 nautical miles (370 km) are irrelevant. International waters beyond 12-nautical-mile (22 km) from shore require explicit agreements.

Straddling fish stocks, which migrate through more than one EEZ also present challenges. Here sovereign responsibility must be agreed with neighbouring coastal states and fishing entities. Usually this is done through the medium of a regional organisation set up for the purpose of coordinating the management of that stock.

UNCLOS does not prescribe precisely how fisheries confined only to international waters should be managed. Several new fisheries (such as high seas bottom trawling fisheries) are not (yet) subject to international agreement across their entire range. In November 2004 the UN General Assembly issued a resolution on Fisheries that prepared for further development of international fisheries management law.

Management mechanisms

Many countries have set up Ministries/Government Departments, named "Ministry of Fisheries" or similar, controlling aspects of fisheries within their exclusive economic zones. Four categories of management means have been devised, regulating either input/investment, or output, and operating either directly or indirectly:

Inputs Outputs
Indirect Vessel licensing Catching techniques
Direct Limited entry Catch quota and technical regulation

Technical means may include:

  • prohibiting devices such as bows and arrows, and spears, or firearms
  • prohibiting nets
  • setting minimum mesh sizes
  • limiting the average potential catch of a vessel in the fleet (vessel and crew size, gear, electronic gear and other physical "inputs".[15]
  • prohibiting bait
  • snagging
  • limits on fish traps
  • limiting the number of poles or lines per fisherman
  • restricting the number of simultaneous fishing vessels
  • limiting a vessel's average operational intensity per unit time at sea
  • limiting average time at sea

Catch quotas

Systems that use individual transferable quotas (ITQ), also called individual fishing quota limit the total catch and allocate shares of that quota among the fishers who work that fishery. Fishers can buy/sell/trade shares as they choose.

A large scale study in 2008 provided strong evidence that ITQ's can help to prevent fishery collapse and even restore fisheries that appear to be in decline.[16][17][18][19] Other studies have shown negative socio-economic consequences of ITQs, especially on small-sclale fisheries.[20] These consequences include concentration of quota in that hands of few fishers; increased number of inactive fishers leasing their quotas to others (a phenomenon known as armchair fishermen); and detrimental effects on coastal communities.[21]

Precautionary principle

A Fishery Manager's Guidebook issued in 2002 by the FAO advises that a set of working principles should be applied to "highlight the underlying key issues" of fisheries management."[11]:130[22] There are 8 principles that should be considered as a whole in order to best manage a fishery. The first principle focuses on the finite nature of fish stocks and how potential yields must be estimated based on the biological constraints of the population.

In a paper published in 2007, Shertzer and Prager suggested that there can be significant benefits to stock biomass and fishery yield if management is stricter and more prompt.[23] This is supported by recent work on the management of North Sea fisheries in accordance with ranges of acceptable fishing, where fishing at the top of the "acceptable" ranges is many times more risky than fishing near the bottom, but delivers only 20% more yield.[24]

Fisheries law

Fisheries law is an emerging and specialized area of law which includes the study and analysis of different fisheries management approaches, including seafood safety regulations and aquaculture regulations. Despite its importance, this area is rarely taught at law schools around the world, which leaves a vacuum of advocacy and research.

Fisheries legislation on a national level differs greatly between countries [11]:130[22] Fisheries may also me managed on an international level. One the first laws enacted was the "United Nations Convention on the Law of the Sea of 10 December 1982 (LOS Convention)", which entered into force in 1994.[11]:130[22] This law set the foundation for all international agreements related to oceans that followed.

Climate change

In the past, changing climate has affected inland and offshore fisheries and such changes are likely to continue.[25] From a fisheries perspective, the specific driving factors of climate change include rising water temperature, alterations in the hydrologic cycle, changes in nutrient fluxes, and relocation of spawning and nursery habitat. Further, changes in such factors would affect resources at all levels of biological organization, including the genetic, organism, population, and ecosystem levels.[26] Understanding how these factors affect fisheries at a more nuanced level stand as challenges that fish biologists, across multiple fields, still need to face.[27]

Population dynamics

Population dynamics describes the growth and decline of a given fishery stock over time, as controlled by birth, death and migration. It is the basis for understanding changing fishery patterns and issues such as habitat destruction, predation and optimal harvesting rates. The population dynamics of fisheries has been traditionally used by fisheries scientists to determine sustainable yields.[28][29]

The basic accounting relation for population dynamics is the BIDE model:[30]

N1 = N0 + BD + IE

where N1 is the number of individuals at time 1, N0 is the number of individuals at time 0, B is the number of individuals born, D the number that died, I the number that immigrated, and E the number that emigrated between time 0 and time 1. While immigration and emigration can be present in wild fisheries, they are usually not measured.

Care is needed when applying population dynamics to real world fisheries. In the past, over-simplistic modelling, such as ignoring the size, age and reproductive status of the fish, focusing solely on a single species, ignoring bycatch and physical damage to the ecosystem, has accelerated the collapse of key stocks.[31][32]

Ecosystem based fisheries

We propose that rebuilding ecosystems, and not sustainability per se, should be the goal of fishery management. Sustainability is a deceptive goal because human harvesting of fish leads to a progressive simplification of ecosystems in favour of smaller, high turnover, lower trophic level fish species that are adapted to withstand disturbance and habitat degradation.
— Tony Pitcher and Daniel Pauly[33]

According to marine ecologist Chris Frid, the fishing industry points to pollution and global warming as the causes of unprecedentedly low fish stocks in recent years, writing, "Everybody would like to see the rebuilding of fish stocks and this can only be achieved if we understand all of the influences, human and natural, on fish dynamics." Overfishing has also had an effect. Frid adds, “Fish communities can be altered in a number of ways, for example they can decrease if particular sized individuals of a species are targeted, as this affects predator and prey dynamics. Fishing, however, is not the sole perpetrator of changes to marine life - pollution is another example [...] No one factor operates in isolation and components of the ecosystem respond differently to each individual factor."[34]

In contrast to the traditional approach of focusing on a single species, the ecosystem-based approach is organized in terms of ecosystem services. Ecosystem-based fishery concepts have been implemented in some regions.[35] In 2007 a group of scientists offered the following "ten commandments":[36]

  • Keep a perspective that is holistic, risk-adverse and adaptive.
  • Maintain an “old growth” structure in fish populations, since big, old and fat female fish have been shown to be the best spawners, but are also susceptible to overfishing.
  • Characterize and maintain the natural spatial structure of fish stocks, so that management boundaries match natural boundaries in the sea.
  • Monitor and maintain seafloor habitats to make sure fish have food and shelter.
  • Maintain resilient ecosystems that are able to withstand occasional shocks.
  • Identify and maintain critical food-web connections, including predators and forage species.
  • Adapt to ecosystem changes through time, both short-term and on longer cycles of decades or centuries, including global climate change.
  • Account for evolutionary changes caused by fishing, which tends to remove large, older fish.
  • Include the actions of humans and their social and economic systems in all ecological equations.

Elderly maternal fish

Sebastes mystinus 2
Old, fat, female rockfish are the best producers.

Traditional management practices aim to reduce the number of old, slow-growing fish, leaving more room and resources for younger, faster-growing fish. Most marine fish produce huge numbers of eggs. The assumption was that younger spawners would produce plenty of viable larvae.[37]

However, 2005 research on rockfish shows that large, elderly females are far more important than younger fish in maintaining productive fisheries. The larvae produced by these older maternal fish grow faster, survive starvation better, and are much more likely to survive than the offspring of younger fish. Failure to account for the role of older fish may help explain recent collapses of some major US West Coast fisheries. Recovery of some stocks is expected to take decades. One way to prevent such collapses is to establish marine reserves, where fishing is not allowed and fish populations age naturally.[37]

Data quality

According to fisheries scientist Milo Adkison, the primary limitation in fisheries management decisions is the absence of quality data. Fisheries management decisions are often based on population models, but the models need quality data to be effective. He asserts that scientists and fishery managers would be better served with simpler models and improved data.[38]

The most reliable source for summary statistics is the FAO Fisheries Department.[39]


Ecopath, with Ecosim (EwE), is an ecosystem modelling software suite. It was initially a NOAA initiative led by Jeffrey Polovina, later primarily developed at the UBC Fisheries Centre of the University of British Columbia. In 2007, it was named as one of the ten biggest scientific breakthroughs in NOAA’s 200-year history. The citation states that Ecopath "revolutionized scientists’ ability worldwide to understand complex marine ecosystems". Behind this lies two decades of development work by Villy Christensen, Carl Walters, Daniel Pauly, and other fisheries scientists. As of 2010 there are 6000 registered users in 155 countries. Ecopath is widely used in fisheries management as a tool for modelling and visualising the complex relationships that exist in real world marine ecosystems.

Human factors

Managing fisheries is about managing people and businesses, and not about managing fish. Fish populations are managed by regulating the actions of people.[40] If fisheries management is to be successful, then associated human factors, such as the reactions of fishermen, are of key importance, and need to be understood.[41]

Management regulations must also consider the implications for stakeholders. Commercial fishermen rely on catches to provide for their families just as farmers rely on crops. Commercial fishing can be a traditional trade passed down from generation to generation. Most commercial fishing is based in towns built around the fishing industry; regulation changes can impact an entire town’s economy. Cuts in harvest quotas can have adverse effects on the ability of fishermen to compete with the tourism industry.[42]

Effective management of fisheries includes involving all stakeholders in the fishery. To do this successfully, stakeholders need to feel empowered enough to make meaningful contributions to the management process.[43]

Empowerment has a wide application but in this context it refers to a tool that gives people within the fishing communities an opportunity to shape their own future in order to cope with the impacts from large-scale commercial fishing, competition of resources, and other threats that impact fishing communities.[44]

However, there are limits to empowerment in the fisheries management process. Empowerment maintains an involvement on the part of the state in fisheries management and no matter how empowered the other stakeholders are, the success of fisheries isn't possible without the legislative powers, financial resources, educational support, and research the government provides.[44]

This concept is not accepted by all, as some communities and individuals argue that the state should withdraw completely and let the local communities handle their own fishery management based on cultural traditions and established practices.[44] Additionally, others have argued that co-management only empowers the wealthy and powerful which in turn solidifies and validates the already existing inequalities of fisheries management.[44]

Empowerment working as a function of co-management, carried out correctly, will not only enable but it will authorize individuals and communities to make meaningful contributions to fisheries management. It is a mechanism that works in a loop, where an individual gains empowerment and encouragement from being a part of the group and the collective action is only successful because of its empowered individuals.[43] In order to effectively and successfully use empowerment as co-management, it is imperative that study programs, guidelines, reading materials, manuals, and checklists are developed and incorporated into all fisheries management.


The biomass of certain global fish stocks have been allowed to run down. The biomass of many species have now diminished to the point where it is no longer possible to sustainably catch the amount of fish that could be caught. According to a 2008 UN report, titled The Sunken Billions: The Economic Justification for Fisheries Reform, the world's fishing fleets incur a "$US 50 billion annual economic loss" through depleted stocks and poor fisheries management. The report, produced jointly by the World Bank and the UN Food and Agriculture Organization (FAO), asserts that half the world's fishing fleet could be scrapped with no change in catch.

"By improving governance of marine fisheries, society could capture a substantial part of this $50 billion annual economic loss. Through comprehensive reform, the fisheries sector could become a basis for economic growth and the creation of alternative livelihoods in many countries. At the same time, a nation’s natural capital in the form of fish stocks could be greatly increased and the negative impacts of the fisheries on the marine environment reduced."[45]

The most prominent failure of fisheries management in recent times has perhaps been the events that lead to the collapse of the northern cod fisheries. More recently, the International Consortium of Investigative Journalists produced a series of journalistic investigations called Looting the seas. These detail investigations into the black market for bluefin tuna, the subsidies propping up the Spanish fishing industry, and the overfishing of the Chilean jack mackerel.[46]

See also


  1. ^ [1]
  2. ^ Garcia SM, Zerbi A, Aliaume C, Do Chi T, Lasserre G (2003). The ecosystem approach to fisheries. Issues, terminology, principles, institutional foundations, implementation and outlook. FAO.
  3. ^ a b FAO (1997) Fisheries Management Section 1.2, Technical Guidelines for Responsible Fisheries. FAO, Rome. ISBN 92-5-103962-3
  4. ^ Elements of Ecology - Thomas M. Smith, Robert Leo Smith
  5. ^ Meredith P (2009) Te hī ika – Māori fishing - Traditional practices Te Ara - the Encyclopedia of New Zealand. Updated 2 March 2009. Retrieved 22 February 2011.
  6. ^ Christy FT (1983) Territorial Use Rights in Fisheries: Definitions and Conditions FAO Fisheries, Technical Paper No. 227, Rome. ISBN 978-92-5-101269-7.
  7. ^ Hannesson R, Salvanes JG and Squires A (2008) "Technological change and the Tragedy of the Commons: The Lofoten Fishery over Hundred and Thirty Years" Archived 24 July 2011 at the Wayback Machine Institutt for Samfunnsøkonomi. Discussion paper SAM 5 2008.
  8. ^ Beverton & Holt 1957
  9. ^ Beverton 1992
  10. ^ "Prince Charles calls for greater sustainability in fisheries". London Mercury. Archived from the original on 14 July 2014. Retrieved 13 July 2014.
  11. ^ a b c d Cochrane, Kevern L.; Garcia, Serge M. (22 June 2009). A Fishery Manager's Guidebook. John Wiley & Sons. pp. 91–. ISBN 978-1-4051-7085-7.
  12. ^ a b Erdogan, Naciye; Duzgunes, Ertug (1 January 2008). "Fisheries Management in the Black Sea Countries". Turkish Journal of Fisheries and Aquatic Sciences. 8 (1): 181–192.
  13. ^ Code of Conduct for Responsible Fisheries
  14. ^ Pitcher, Kalikoski & Pramod 2006
  15. ^ Sustainable Fishery system, Charles, A. (ed) (2001). Oxford: Blackwell science. p. 95.
  16. ^ Costello, Christopher; Gaines, Steven D.; Lynham, John (2008). "Can Catch Shares Prevent Fisheries Collapse?".
  17. ^ Debora MacKenzie New Scientist: Guaranteed fish quotas halt commercial free-for-all
  18. ^ A Rising Tide: Scientists find proof that privatising fishing stocks can avert a disaster The Economist, 18 Sept, 2008.
  19. ^ New study offers solution to global fisheries collapse Eureka alert.
  20. ^ Soliman, Adam (2014) "Using individual transferable quotas (ITQs) to achieve social policy objectives: A proposed intervention", Marine Policy, 45C: 76–81.
  21. ^ Soliman, Adam (January 2014). "Individual transferable quotas in world fisheries: Addressing legal and rights-based issues". Ocean & Coastal Management. 87: 102–113. doi:10.1016/j.ocecoaman.2013.09.012.
  22. ^ a b c FAO (2002) A Fishery Manager's Guidebook - Management Measures and Their Application. Rome. ISBN 92-5-104773-1.
  23. ^ Shertzer, Kyle W.; Prager, Michael H. (January 2007). "Delay in fishery management: diminished yield, longer rebuilding, and increased probability of stock collapse1". ICES Journal of Marine Science. 64 (1): 149–159. doi:10.1093/icesjms/fsl005.
  24. ^ Thorpe, Robert B.; Jennings, Simon; Dolder, Paul J.; Zhou, Shijie (September 2017). "Risks and benefits of catching pretty good yield in multispecies mixed fisheries". ICES Journal of Marine Science. 74 (8): 2097–2106. doi:10.1093/icesjms/fsx062.
  25. ^ Gucinski, Lackey, and Spence (1990)
  26. ^ Hlohowskyj, Brody, and Lackey, (1996)
  27. ^ Jacobs, A.; Doran, C.; Murray, D. S.; Duffill Telsnig, J.; Laskowski, K. L.; Jones, N. A. R.; Auer, S. K.; Praebel, K. (March 2018). "On the challenges and opportunities facing fish biology: a discussion of five key knowledge gaps". Journal of Fish Biology. 92 (3): 690–698. doi:10.1111/jfb.13545. PMID 29537088.
  28. ^ Wilderbuer, Thomas K; Zhang, Chang Ik (June 1999). "Evaluation of the population dynamics and yield characteristics of Alaska plaice, Pleuronectes quadrituberculatus, in the eastern Bering Sea". Fisheries Research. 41 (2): 183–200. doi:10.1016/S0165-7836(99)00012-0.
  29. ^ Zabel, Richard W.; Harvey, Chris J.; Katz, Stephen L.; Good, Thomas P.; Levin, Phillip S. (2003). "Ecologically Sustainable Yield: Marine conservation requires a new ecosystem-based concept for fisheries management that looks beyond sustainable yield for individual fish species". American Scientist. 91 (2): 150–157. doi:10.1511/2003.2.150. JSTOR 27858183.
  30. ^ Caswell, H. 2001. Matrix population models: Construction, analysis and interpretation, 2nd Edition. Sinauer Associates, Sunderland, Massachusetts. ISBN 0-87893-096-5.
  31. ^ Larkin, PA (1977). "An epitaph for the concept of maximum sustained yield". Transactions of the American Fisheries Society. 106: 1–11. doi:10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2.
  32. ^ Walters, C; Maguire, J (1996). "Lessons for stock assessment from the northern cod collapse". Reviews in Fish Biology and Fisheries. 6 (2): 125–137. doi:10.1007/bf00182340.
  33. ^ Pitcher TJ and Pauly D (1998) "Rebuilding ecosystems, not sustainability, as the proper goal of fishery management" Archived 13 May 2013 at the Wayback Machine Pages 311-325 in T Pitcher, D Pauly and P Hart, Reinventing Fisheries Management, Chapman & Hall.
  34. ^ University of Liverpool (2006). "Marine Ecologists To Help Rebuild Decreasing Fish Stocks" ScienceDaily.
  35. ^ FAO: Fisheries governance: The ecosystem approach to fisheries management Rome. Updated 27 May 2005. Accessed 27 November 2009.
  36. ^ Francis RC, Hixon MA, Clarke ME, Murawski SA, and Ralston S (2007) Ten commandments for ecosystem-based fisheries scientists Archived 15 January 2009 at the Wayback Machine Proceedings of Coastal Zone 07, Portland, Oregon. Download Archived 17 December 2008 at the Wayback Machine
  37. ^ a b AAAS (2005) New Science Sheds Light on Rebuilding Fisheries Archived 17 December 2008 at the Wayback Machine
  38. ^ "Adkison advocates increased fisheries data gathering". University of Alaska Fairbanks. 2007. Archived from the original on 11 July 2007. Retrieved 14 November 2008.
  39. ^ Fishery statistics: Reliability and policy implications
  40. ^ Mahon & McConney 2004
  41. ^ Hilborn, R (2007). "Managing fisheries is managing people: what has been learned?". Fish and Fisheries. 8 (4): 285–296. doi:10.1111/j.1467-2979.2007.00263_2.x.
  42. ^ Elder 2006
  43. ^ a b Jentoft, Svein (January 2004). "Fisheries co-management as empowerment". Marine Policy. 29: 1–7. doi:10.1016/j.marpol.2004.01.003.
  44. ^ a b c d Svein, Jentoft (January 2004). "Fisheries co-management as empowerment". Marine Policy. 29: 1–7. doi:10.1016/j.marpol.2004.01.003.
  45. ^ Arnason, Kelleher & Willmann 2008
  46. ^ Looting the Seas Archived 4 March 2012 at the Wayback Machine iWatch News, 17 March 2012.


Australian Fisheries Management Authority

The Australian Fisheries Management Authority (AFMA) is the Australian Government agency responsible for the management and sustainable use of fisheries resources including combating illegal fishing activities in the Australian Fishing Zone that covers 8,148,250 square kilometres, the third largest in the world, and in most of Australia's Exclusive Economic Zone, which extends to 200 nautical miles (370 km) from the coastline of Australia and its external territories, except where a maritime delimitation agreement exists with a state.)

AFMA is an agency of the Australian Department of Agriculture and Water Resources. The Authority does not have a legal identity separate from the Commonwealth .

Bioeconomics (fisheries)

Bioeconomics is closely related to the early development of theories in fisheries economics, initially in the mid-1950s by Canadian economists Scott Gordon (in 1954) and Anthony Scott (1955). Their ideas used recent achievements in biological fisheries modelling, primarily the works by Schaefer in 1954 and 1957 on establishing a formal relationship between fishing activities and biological growth through mathematical modelling confirmed by empirical studies, and also relates itself to ecology and the environment and resource protection.These ideas developed out of the multidisciplinary fisheries science environment in Canada at the time. Fisheries science and modelling developed rapidly during a productive and innovative period, particularly among Canadian fisheries researchers of various disciplines. Population modelling and fishing mortality were introduced to economists, and new interdisciplinary modelling tools became available for the economists, which made it possible to evaluate biological and economic impacts of different fishing activities and fisheries management decisions.

Catch reporting

Catch reporting is a part of Monitoring control and surveillance of Commercial fishing. Depending on national and local fisheries management practices, catch reports may reveal illegal fishing practices, or simply indicate that a given area is being overfished.

Central Marine Fisheries Research Institute

The Central Marine Fisheries Research Institute(CMFRI) was established by Government of India on February 3, 1947 under the Ministry of Agriculture and Farmers Welfare and later, in 1967, it joined the Indian Council of Agricultural Research (ICAR) family and emerged as a leading tropical marine fisheries research institute in the world ". The Headquarters of the ICAR-CMFRI is located in Kochi, Kerala. Initially the institute focussed its research efforts on creating a strong database on marine fisheries sector by developing scientific methodologies for estimating the marine fish landings and effort inputs, taxonomy of marine organisms and the biological aspects of the exploited stocks of finfish and shellfish on which fisheries management were to be based. This focus contributed significantly to development of the marine fisheries sector from a predominantly artisanal, sustenance fishery till the early sixties to that of a complex, multi-gear, multispecies fisheries.One of the major achievements of ICAR-CMFRI is the development and refinement of "Stratified Multistage Random Sampling" Method for estimation of marine fish landings in the country with a coast line of over 8,000 km (5,000 mi) coastline and landing centres. Currently, the institute is maintaining the National Marine Fisheries Data Centre (NMFDC) with over 9 million catch and effort data records of more than 1000 fished species, from all maritime states of India.Presently the Institute has 3 Regional Centres located at Mandapam, Visakhapatnam and Veraval and 8 Research Centres at Mumbai, Chennai, Calicut, Karwar, Tuticorin, Vizhinjam, Mangalore and Digha. Besides, there are also fifteen field centre and 2 KVKs (Ernakulam and Kavaratti, Lakshadweep) under the control of the institute. The nearly five-fold increase in marine fish production and the increasing contribution of marine fisheries to the GDP growth are supported by the robust research efforts and its impact on fisher folk,fish farmers, fisheries policy planners and managers.

Environmental impact of fishing

The environmental impact of fishing includes issues such as the availability of fish, overfishing, fisheries, and fisheries management; as well as the impact of fishing on other elements of the environment, such as by-catch. These issues are part of marine conservation, and are addressed in fisheries science programs. There is a growing gap between the supply of fish and demand, due in part to world population growth.The journal Science published a four-year study in November 2006, which predicted that, at prevailing trends, the world would run out of wild-caught seafood in 2048. The scientists stated that the decline was a result of overfishing, pollution and other environmental factors that were reducing the population of fisheries at the same time as their ecosystems were being annihilated. Yet again the analysis has met criticism as being fundamentally flawed, and many fishery management officials, industry representatives and scientists challenge the findings, although the debate continues. Many countries, such as Tonga, the United States, Australia and Bahamas, and international management bodies have taken steps to appropriately manage marine resources.Reefs are also being destroyed by overfishing because of the huge nets that are dragged along the ocean floor while trawling. Many corals are being destroyed and as a consequence, the ecological niche of many species is at stake.

Fish stock

Fish stocks are subpopulations of a particular species of fish, for which intrinsic parameters (growth, recruitment, mortality and fishing mortality) are traditionally regarded as the significant factors determining the stock's population dynamics, while extrinsic factors (immigration and emigration) are traditionally ignored.

Fisheries law

Fisheries law is an emerging and specialized area of law. Fisheries law is the study and analysis of different fisheries management approaches such as catch shares e.g. Individual Transferable Quotas; TURFs; and others. The study of fisheries law is important in order to craft policy guidelines that maximize sustainability and legal enforcement. This specific legal area is rarely taught at law schools around the world, which leaves a vacuum of advocacy and research. Fisheries law also takes into account international treaties and industry norms in order to analyze fisheries management regulations. In addition, fisheries law includes access to justice for small-scale fisheries and coastal and aboriginal communities and labor issues such as child labor laws, employment law, and family law.Another important area of research covered in fisheries law is seafood safety. Each country, or region, around the world has a varying degree of seafood safety standards and regulations. These regulations can contain a large diversity of fisheries management schemes including quota or catch share systems. It is important to study seafood safety regulations around the world in order to craft policy guidelines from countries who have implemented effective schemes. Also, this body of research can identify areas of improvement for countries who have not yet been able to master efficient and effective seafood safety regulations.

Fisheries law also includes the study of aquaculture laws and regulations. Aquaculture, also known as aquafarming, is the farming of aquatic organisms, such as fish and aquatic plants. This body of research also encompasses animal feed regulations and requirements. It is important to regulate what feed is consumed by fish in order to prevent risks to human health and safety.


Generally, a fishery is an entity engaged in raising or harvesting fish which is determined by some authority to be a fishery. According to the FAO, a fishery is typically defined in terms of the "people involved, species or type of fish, area of water or seabed, method of fishing, class of boats, purpose of the activities or a combination of the foregoing features". The definition often includes a combination of fish and fishers in a region, the latter fishing for similar species with similar gear types.A fishery may involve the capture of wild fish or raising fish through fish farming or aquaculture. Directly or indirectly, the livelihood of over 500 million people in developing countries depends on fisheries and aquaculture. Overfishing, including the taking of fish beyond sustainable levels, is reducing fish stocks and employment in many world regions. A report by Prince Charles' International Sustainability Unit, the New York-based Environmental Defence Fund and 50in10 published in July 2014 estimated global fisheries were adding $270 billion a year to global GDP, but by full implementation of sustainable fishing, that figure could rise by as much as $50 billion.

Fishing industry in New Zealand

As with other countries, New Zealand’s 200 nautical miles exclusive economic zone gives its fishing industry special fishing rights. It covers 4.1 million square kilometres. This is the sixth largest zone in the world, and is fourteen times the land area of New Zealand itself.The New Zealand zone has a rich and unusually complex underwater topography. Over 15,000 marine species are known to live there, about ten percent of the world's diversity. Many of these are migratory species, but New Zealand's isolation means also that many of the marine species are unique to New Zealand.

Head of tide

Head of tide or tidal limit is the farthest point upstream where a river is affected by tidal fluctuations, or where the fluctuations are less than a certain amount. This applies to rivers which flow into tidal bodies such as oceans, bays and deltas.Though this point may vary due to storms, spring tides, and seasonal or annual differences in water flows, there is generally an average point which is accepted as the head of tide (in Great Britain this is the Normal Tidal Limit, typically noted on Ordnance Survey maps as 'NTL'). A river's tidal data are recorded at various locations downstream of this point. A river's head of tide may be considered the upper boundary of its estuary.The head of tide is important in surveying, navigation, and fisheries management, and thus many jurisdictions establish a legal head of tide. As the head of tide is useful for navigation, separate maps can be made of the tidal zones up to the head of tide, such as was done in New Jersey.The head of tide may be many miles upstream from the river's mouth. For example, on the Hudson River, it is located 140 miles (225 km) upstream, near Albany, New York. On the Saint Lawrence River, tides affect the river up to Lake St. Pierre.

Illegal, unreported and unregulated fishing

Illegal, unreported and unregulated fishing (IUU) is an international issue around the world. Industry observers believe IUU occurs in most fisheries, and accounts for up to 30% of total catches in some important fisheries.Illegal fishing takes place when vessels or harvesters operate in violation of the laws of a fishery. This can apply to fisheries that are under the jurisdiction of a coastal state or to high seas fisheries regulated by regional fisheries management organisations (RFMO). According to the UN Food and Agriculture Organization (FAO), Fisheries and Aquaculture Department, illegal fishing has caused losses estimated at US$23 billion per year, with about 30% of illegal fishing in the world occurring in Indonesia alone.Unreported fishing is fishing that has been unreported or misreported to the relevant national authority or RFMO, in contravention of applicable laws and regulations.

Unregulated fishing generally refers to fishing by vessels without nationality, vessels flying the flag of a country not party to the RFMO governing that fishing area or species on the high seas, or harvesting in unregulated areas.

The drivers behind illegal, unreported and unregulated (IUU) fishing are similar to those behind many other types of international environmental crime: pirate fishers have a strong economic incentive – many species of fish, particularly those that have been over-exploited and are thus in short supply, are of high financial value.

Such IUU activity may then show a high chance of success – i.e. a high rate of return – from the failure of governments to regulate adequately (e.g. inadequate coverage of international agreements), or to enforce national or international laws (e.g. because of lack of capacity, or poor levels of governance). A particular driver behind IUU fishing is the failure of a number of flag states to exercise effective regulation over ships on their registers – which in turn creates an incentive for ships to register under these flags of convenience.

Since no one reports catches made by pirates, their level of fishing cannot be accurately quantified.

Maximum sustainable yield

In population ecology and economics, maximum sustainable yield or MSY is theoretically, the largest yield (or catch) that can be taken from a species' stock over an indefinite period. Fundamental to the notion of sustainable harvest, the concept of MSY aims to maintain the population size at the point of maximum growth rate by harvesting the individuals that would normally be added to the population, allowing the population to continue to be productive indefinitely. Under the assumption of logistic growth, resource limitation does not constrain individuals' reproductive rates when populations are small, but because there are few individuals, the overall yield is small. At intermediate population densities, also represented by half the carrying capacity, individuals are able to breed to their maximum rate. At this point, called the maximum sustainable yield, there is a surplus of individuals that can be harvested because growth of the population is at its maximum point due to the large number of reproducing individuals. Above this point, density dependent factors increasingly limit breeding until the population reaches carrying capacity. At this point, there are no surplus individuals to be harvested and yield drops to zero. The maximum sustainable yield is usually higher than the optimum sustainable yield and maximum economic yield.

MSY is extensively used for fisheries management. Unlike the logistic (Schaefer) model, MSY has been refined in most modern fisheries models and occurs at around 30% of the unexploited population size. This fraction differs among populations depending on the life history of the species and the age-specific selectivity of the fishing method.

However, the approach has been widely criticized as ignoring several key factors involved in fisheries management and has led to the devastating collapse of many fisheries. As a simple calculation, it ignores the size and age of the animal being taken, its reproductive status, and it focuses solely on the species in question, ignoring the damage to the ecosystem caused by the designated level of exploitation and the issue of bycatch. Among conservation biologists it is widely regarded as dangerous and misused.

Monitoring control and surveillance

Monitoring, control and surveillance (MCS), in the context of fisheries, is defined by the Food and Agriculture Organization (FAO) of the United Nations as a broadening of traditional enforcing national rules over fishing, to the support of the broader problem of fisheries management.Internationally, the basis of law for fisheries management comes from the 1982 United Nations Convention on the Law of the Sea (UNCLOS). Further definition was in the Declaration of Cancun This is complemented by the work of a variety of regional organizations that cover high seas fishing areas. A key concept in international fishing laws is that of the Exclusive Economic Zone, which extends 200 miles (370 km) from the coast of nations bordering on the oceans. EEZ is not a meaningful concept in relatively small seas such as the Mediterranean and Baltic, so those areas tend to have regional agreements for MCS of international waters within those seas.

National Marine Fisheries Service

The National Marine Fisheries Service (NMFS) is the United States federal agency responsible for the stewardship of national marine resources. The agency conserves and manages fisheries to promote sustainability and prevent lost economic potential associated with overfishing, declining species, and degraded habitats.

Pulse fishing

Pulse fishing is a fisheries management technique for preventing fish stocks from being overfished by periodically permitting a cycle of fishing followed by a fallow period which allows stocks to reconstitute. It should not to be confused with electric pulse fishing which is a fishing technique which involves pulsing electric currents.

Regional fisheries management organisation

A regional fisheries management organisation (RFMO), sometimes called regional fisheries organisation (RFO), or regional fishery body (RFB) is a type of international organization that is dedicated to the sustainable management of fishery resources in a particular region of international waters, or of highly migratory species.

RFMOs may focus on certain species of fish (e.g. the Commission for the Conservation of Southern Bluefin Tuna) or have a wider remit related to living marine resources in general within a region (e.g. the Commission for the Conservation of Antarctic Marine Living Resources). This wide diversity of mandates and areas of application, and also effective implementation of regulations, opens up opportunities to combat illegal, unreported and unregulated fishing vessels.

Sea of the Hebrides

The Sea of the Hebrides () is a portion of the North Atlantic Ocean, located off the coast of western Scotland, separating the mainland and the northern Inner Hebrides islands (to the east) from the southern Outer Hebrides islands (to the west). To the north, the Sea of the Hebrides joins The Minch.The Sea of the Hebrides forms part of the Inner Seas off the West Coast of Scotland, as defined by the International Hydrographic Organization, and part of the Seas west of Scotland as far as fisheries management is concerned.

Seafood in Australia

Seafood in Australia comes from local and international commercial fisheries, aquaculture and recreational anglers. It is an economically important sector, and along with agriculture and forestry contributed $24,744 million to Australia's GDP in year 2007–2008, out of a total GDP of $1,084,146 million. Commercial fisheries in Commonwealth waters are managed by the Australian Fisheries Management Authority, while commercial and recreational fishing in state waters is managed by various state-level agencies.The sustainable seafood movement is growing in Australia as consumers become more aware of conservation issues and the importance of maintaining fish stocks. Organisations such as the Marine Stewardship Council and GoodFishBadFish have released guides helping consumers make sustainable seafood choices.

Sustainable fishery

A conventional idea of a sustainable fishery is that it is one that is harvested at a sustainable rate, where the fish population does not decline over time because of fishing practices. Sustainability in fisheries combines theoretical disciplines, such as the population dynamics of fisheries, with practical strategies, such as avoiding overfishing through techniques such as individual fishing quotas, curtailing destructive and illegal fishing practices by lobbying for appropriate law and policy, setting up protected areas, restoring collapsed fisheries, incorporating all externalities involved in harvesting marine ecosystems into fishery economics, educating stakeholders and the wider public, and developing independent certification programs.

Some primary concerns around sustainability are that heavy fishing pressures, such as overexploitation and growth or recruitment overfishing, will result in the loss of significant potential yield; that stock structure will erode to the point where it loses diversity and resilience to environmental fluctuations; that ecosystems and their economic infrastructures will cycle between collapse and recovery; with each cycle less productive than its predecessor; and that changes will occur in the trophic balance (fishing down marine food webs).

Fisheries management, sustainability and conservation


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.