Fiber Distributed Data Interface

Fiber Distributed Data Interface (FDDI) is a standard for data transmission in a local area network. It uses optical fiber as its standard underlying physical medium, although it was also later specified to use copper cable, in which case it may be called CDDI (Copper Distributed Data Interface), standardized as TP-PMD (Twisted-Pair Physical Medium-Dependent), also referred to as TP-DDI (Twisted-Pair Distributed Data Interface).

Sbus-das-fddi
Dual-attach FDDI board

Description

FDDI provides a 100 Mbit/s optical standard for data transmission in local area network that can extend in range up to 200 kilometers (120 mi). Although FDDI logical topology is a ring-based token network, it did not use the IEEE 802.5 token ring protocol as its basis; instead, its protocol was derived from the IEEE 802.4 token bus timed token protocol. In addition to covering large geographical areas, FDDI local area networks can support thousands of users. FDDI offers both a Dual-Attached Station (DAS), counter-rotating token ring topology and a Single-Attached Station (SAS), token bus passing ring topology.[1]

FDDI, as a product of American National Standards Institute X3T9.5 (now X3T12), conforms to the Open Systems Interconnection (OSI) model of functional layering using other protocols. The standards process started in the mid 1980s.[2] FDDI-II, a version of FDDI described in 1989, added circuit-switched service capability to the network so that it could also handle voice and video signals.[3] Work started to connect FDDI networks to synchronous optical networking (SONET) technology.

A FDDI network contains two rings, one as a secondary backup in case the primary ring fails. The primary ring offers up to 100 Mbit/s capacity. When a network has no requirement for the secondary ring to do backup, it can also carry data, extending capacity to 200 Mbit/s. The single ring can extend the maximum distance; a dual ring can extend 100 km (62 mi). FDDI had a larger maximum-frame size (4,352 bytes) than the standard Ethernet family, which only supports a maximum-frame size of 1,500 bytes,[a] allowing better effective data rates in some cases.

Topology

Designers normally constructed FDDI rings in a network topology such as a "dual ring of trees". A small number of devices, typically infrastructure devices such as routers and concentrators rather than host computers, were "dual-attached" to both rings. Host computers then connect as single-attached devices to the routers or concentrators. The dual ring in its most degenerate form simply collapses into a single device. Typically, a computer-room contained the whole dual ring, although some implementations deployed FDDI as a metropolitan area network.[4]

FDDI requires this network topology because the dual ring actually passes through each connected device and requires each such device to remain continuously operational. The standard actually allows for optical bypasses, but network engineers consider these unreliable and error-prone. Devices such as workstations and minicomputers that might not come under the control of the network managers are not suitable for connection to the dual ring.

As an alternative to using a dual-attached connection, a workstation can obtain the same degree of resilience through a dual-homed connection made simultaneously to two separate devices in the same FDDI ring. One of the connections becomes active while the other one is automatically blocked. If the first connection fails, the backup link takes over with no perceptible delay.

Frame format

The FDDI data frame format is:

PA SD FC DA SA PDU FCS ED/FS
16 bits 8 bits 8 bits 48 bits 48 bits up to 4478x8 bits 32 bits 16 bits

Where PA is the preamble, SD is a start delimiter, FC is frame control, DA is the destination address, SA is the source address, PDU is the protocol data unit (or packet data unit), FCS is the frame check Sequence (or checksum), and ED/FS are the end delimiter and frame status. The Internet Engineering Task Force defined a standard for transmission of the Internet Protocol (which would be the protocol data unit in this case) over FDDI. It was first proposed in June 1989[5] and revised in 1990.[6] Some aspects of the protocol were compatible with the IEEE 802.2 standard for logical link control. For example, the 48-bit MAC addresses that became popular with the Ethernet family. Thus other protocols such as the Address Resolution Protocol (ARP) could be common as well.[6]

Deployment

FDDI was considered an attractive campus backbone network technology in the early to mid 1990s since existing Ethernet networks only offered 10 Mbit/s data rates and token ring networks only offered 4 Mbit/s or 16 Mbit/s rates. Thus it was a relatively high-speed choice of that era. By 1994, vendors included Cisco Systems, National Semiconductor, Network Peripherals, SysKonnect (acquired by Marvell Technology Group), and 3Com.[7]

FDDI was effectively made obsolete in local networks by Fast Ethernet which offered the same 100 Mbit/s speeds, but at a much lower cost and, since 1998, by Gigabit Ethernet due to its speed, and even lower cost, and ubiquity.[8]

Standards

FDDI standards included:[9]

  • ANSI X3.139-1987, Media Access Control (MAC) — also ISO 9314-2
  • ANSI X3.148-1988, Physical Layer Protocol (PHY) — also ISO 9314-1
  • ANSI X3.166-1989, Physical Medium Dependent (PMD) — also ISO 9314-3
  • ANSI X3.184-1993, Single Mode Fiber Physical Medium Dependent (SMF-PMD) — also ISO 9314-4
  • ANSI X3.229-1994, Station Management (SMT) — also ISO 9314-6

Notes

  1. ^ Jumbo frames can be used to extend Ethernet's maximum frame size to 9,000 bytes

References

  1. ^ Bernhard Albert and Anura P. Jayasumana (1994). FDDI and FDDI-II: architecture, protocols, and performance. Artech House. ISBN 9780890066331.CS1 maint: Uses authors parameter (link)
  2. ^ Floyd Ross (May 1986). "FDDI - A tutorial". Communications Magazine. IEEE Communications Society. 24 (5): 10–17. doi:10.1109/MCOM.1986.1093085.
  3. ^ Michael Teener and R. Gvozdanovic (October 10, 1989). "FDDI-II operation and architectures". Proceedings of the 14th Conference on Local Computer Networks. IEEE: 49–61. doi:10.1109/LCN.1989.65243. ISBN 0-8186-1968-6.
  4. ^ T. Boston (June 29, 1988). "FDDI-II: A High Speed Integrated Service LAN". Sixth European Fibre Optic Communications and Local Area Networks Exposition. Information Gatekeepers: 123–126. ISBN 9781568510552. Reprinted in Fiber Optic Metropolitan Area Networks (MANs) 1984-1991
  5. ^ Dave Katz (June 1989). "A Proposed Standard for the Transmission of IP Datagrams over FDDI Networks". RFC 1103. IETF. Retrieved August 15, 2013.
  6. ^ a b Dave Katz (June 1989). "A Proposed Standard for the Transmission of IP Datagrams over FDDI Networks". RFC 1183. IETF. Retrieved August 15, 2013.
  7. ^ Mark Miller (March 21, 1994). "Wading Through Plethora of Options Poses Challenge for Life on the Fast LAN". Network World. pp. 41, 44, 46–49. Retrieved August 15, 2013.
  8. ^ A. Selvarajan, Subrat Kar, T. Srinivas (2003). Optical Fiber Communication: Principles and Systems. Tata McGraw-Hill Education. pp. 241–249. ISBN 9781259082207.CS1 maint: Uses authors parameter (link)
  9. ^ "fiber distributed data interface (FDDI)". Telecommunications: Glossary of Telecommunication Terms, Federal Standard 1037C. National Communications System of the US Department of Defense. August 7, 1996. Retrieved August 15, 2013.
4B5B

In telecommunication, 4B5B is a form of data communications line code. 4B5B maps groups of 4 bits of data onto groups of 5 bits for transmission. These 5 bit words are pre-determined in a dictionary and they are chosen to ensure that there will be sufficient transitions in the line state to produce a self-clocking signal. A collateral effect of the code is that 25% more bits are needed to send the same information.

An alternative to using 4B5B coding is to use a scrambler. Some systems use scramblers in conjunction with 4B5B coding to assure DC balance and improve electromagnetic compatibility.

Depending on the standard or specification of interest, there may be several 5-bit output codes left unused. The presence of any of the unused codes in the data stream can be used as an indication that there is a fault somewhere in the link. Therefore, the unused codes can be used to detect errors in the data stream.

Data link layer

The data layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between adjacent network nodes in a wide area network (WAN) or between nodes on the same local area network (LAN) segment. The data link layer provides the functional and procedural means to transfer data between network entities and might provide the means to detect and possibly correct errors that may occur in the physical layer.

The data link layer is concerned with local delivery of frames between nodes on the same level of the network. Data-link frames, as these protocol data units are called, do not cross the boundaries of a local area network. Inter-network routing and global addressing are higher-layer functions, allowing data-link protocols to focus on local delivery, addressing, and media arbitration. In this way, the data link layer is analogous to a neighborhood traffic cop; it endeavors to arbitrate between parties contending for access to a medium, without concern for their ultimate destination. When devices attempt to use a medium simultaneously, frame collisions occur. Data-link protocols specify how devices detect and recover from such collisions, and may provide mechanisms to reduce or prevent them.

Examples of data link protocols are Ethernet for local area networks (multi-node), the Point-to-Point Protocol (PPP), HDLC and ADCCP for point-to-point (dual-node) connections. In the Internet Protocol Suite (TCP/IP), the data link layer functionality is contained within the link layer, the lowest layer of the descriptive model.

Gordon Stitt

Gordon L. Stitt is an American network technology business executive.

IEEE 802.1X

IEEE 802.1X is an IEEE Standard for port-based Network Access Control (PNAC). It is part of the IEEE 802.1 group of networking protocols. It provides an authentication mechanism to devices wishing to attach to a LAN or WLAN.

IEEE 802.1X defines the encapsulation of the Extensible Authentication Protocol (EAP) over IEEE 802, which is known as "EAP over LAN" or EAPOL. EAPOL was originally designed for IEEE 802.3 Ethernet in 802.1X-2001, but was clarified to suit other IEEE 802 LAN technologies such as IEEE 802.11 wireless and Fiber Distributed Data Interface (ISO 9314-2) in 802.1X-2004. The EAPOL protocol was also modified for use with IEEE 802.1AE ("MACsec") and IEEE 802.1AR (Secure Device Identity, DevID) in 802.1X-2010 to support service identification and optional point to point encryption over the local LAN segment.

IEEE 802.2

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it still remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

LLC is a software component that provides a uniform interface to the user of the data link service, usually the network layer. LLC may offer three types of services:

Unacknowledged connectionless mode services (mandatory)

Connection mode services (optional)

Acknowledged connectionless mode services (optional)Conversely, the LLC uses the services of the media access control (MAC), which is dependent on the specific transmission medium (Ethernet, Token Ring, FDDI, 802.11, etc.). Using LLC is compulsory for all IEEE 802 networks with the exception of Ethernet. It is also used in Fiber Distributed Data Interface (FDDI) which is not part of the IEEE 802 family.

The IEEE 802.2 sublayer adds some control information to the message created by the upper layer and passed to the LLC for transmission to another node on the same data link. The resulting packet is generally referred to as LLC protocol data unit (PDU) and the additional information added by the LLC sublayer is the LLC HEADER. The LLC Header consist of DSAP (Destination Service Access Point), SSAP (Source Service Access Point) and the Control field.

The two 8-bit fields DSAP and SSAP allow to multiplex various upper layer protocols above LLC. However, many protocols use the Subnetwork Access Protocol (SNAP) extension which allows using EtherType values to specify the protocol being transported atop IEEE 802.2. It also allows vendors to define their own protocol value spaces.

The 8 or 16 bit HDLC-style Control field serves to distinguish communication mode, to specify a specific operation and to facilitate connection control and flow control (in connection mode) or acknowledgements (in acknowledged connectionless mode).

IEEE 802.6

IEEE 802.6 is a standard governed by the ANSI for Metropolitan Area Networks (MAN). It is an improvement of an older standard (also created by ANSI) which used the Fiber distributed data interface (FDDI) network structure. The FDDI-based standard failed due to its expensive implementation and lack of compatibility with current LAN standards. The IEEE 802.6 standard uses the Distributed Queue Dual Bus (DQDB) network form. This form supports 150 Mbit/s transfer rates. It consists of two unconnected unidirectional buses. DQDB is rated for a maximum of 160 km before significant signal degradation over fiberoptic cable with an optical wavelength of 1310 nm.

This standard has also failed, mostly for the same reasons that the FDDI standard failed. MANs are traditionally designed using Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH) or Asynchronous Transfer Mode (ATM). Recent designs use native Ethernet or MPLS.

Internet exchange point

An Internet exchange point (IX or IXP) is the physical infrastructure through which Internet service providers (ISPs) and content delivery networks (CDNs) exchange Internet traffic between their networks (autonomous systems).IXPs reduce the portion of an ISP's traffic that must be delivered via their upstream transit providers, thereby reducing the average per-bit delivery cost of their service. Furthermore, the increased number of paths available through the IXP improves routing efficiency and fault-tolerance. In addition, IXPs exhibit the characteristics of what economists call the network effect.

John F Mazzaferro

John F Mazzaferro is a published American author on telecommunications subjects, specifically fiber optics and networking.

From Library of Congress Name Authority File

http://id.loc.gov/authorities/names/n91023731

From WorldCat.org

From The National Library of Australia

From Open Library

From Open Library

John F. Mazzaferro (1994), FDDI vs. ATM, Charleston, S.C: Computer Technology Research, ISBN 1566070228, OCLC 29313279, 1566070228

List of information technology initialisms

The table below lists information technology initialisms and acronyms in common and current usage. These acronyms are used to discuss LAN, internet, WAN, routing and switching protocols, and their applicable organizations. The table contains only current, common, non-proprietary initialisms that are specific to information technology. Most of these initialisms appear in IT career certification exams.

List of network protocols (OSI model)

This article lists protocols, categorized by their nearest Open Systems Interconnection (OSI) model layers. This list is not exclusive to only the OSI protocol family. Many of these protocols are originally based on the Internet Protocol Suite (TCP/IP) and other models and they often do not fit neatly into OSI layers.

MAC address

A media access control address (MAC address) of a device is a unique identifier assigned to a network interface controller (NIC). For communications within a network segment, it is used as a network address for most IEEE 802 network technologies, including Ethernet, Wi-Fi, and Bluetooth. Within the Open Systems Interconnection (OSI) model, MAC addresses are used in the medium access control protocol sublayer of the data link layer. As typically represented, MAC addresses are recognizable as six groups of two hexadecimal digits, separated by hyphens, colons, or no separator (see Notational conventions below).

A MAC address may be referred to as the burned-in address, and is also known as an Ethernet hardware address, hardware address, and physical address (not to be confused with a memory physical address).

A network node with multiple NICs must have a unique MAC addresses for each. Sophisticated network equipment such as a multilayer switch or router may require one or more permanently assigned MAC addresses.

MAC addresses are most often assigned by the manufacturer of network interface cards. Each is stored in hardware, such as the card's read-only memory or by a firmware mechanism. A MAC address typically includes the manufacturer's organizationally unique identifier (OUI). MAC addresses are formed according to the rules of one of two numbering name spaces managed by the Institute of Electrical and Electronics Engineers (IEEE): EUI-48 (it replaces the obsolete term MAC-48) and EUI-64. EUI is an abbreviation for Extended Unique Identifier.

MADI

Multichannel Audio Digital Interface (MADI) or AES10 is an Audio Engineering Society (AES) standard that defines the data format and electrical characteristics of an interface that carries multiple channels of digital audio. The AES first documented the MADI standard in AES10-1991, and updated it in AES10-2003 and AES10-2008. The MADI standard includes a bit-level description and has features in common with the two-channel AES3 interface.

MADI supports serial digital transmission over coaxial cable or fibre-optic lines of 28, 56, or 32, 64 channels; and sampling rates of up to 192 kHz with an audio bit depth of up to 24 bits per channel. Like AES3 and ADAT Lightpipe it is a unidirectional interface from one sender to one receiver.

NICE Ltd.

NICE Ltd. (Hebrew: נייס‎) is a publicly-traded Israeli enterprise software company. It is one of the largest technology organizations in Israel. NICE develops both cloud and on-premises software based on advanced analytics. The company's software is used for customer experience, regulatory compliance and financial crime prevention. NICE has customers in more than 150 countries, including the majority of Fortune 100 companies.The company is traded on NASDAQ and the Tel Aviv Stock Exchange, where it is part of the TA-35 Index. NICE was founded in 1986 and Barak Eilam is its chief executive officer.

Outline of the Internet

The following outline is provided as an overview of and topical guide to the Internet.

Internet – worldwide, publicly accessible network of interconnected computer networks that transmit data by packet switching using the standard Internet Protocol (IP). It is a "network of networks" that consists of millions of interconnected smaller domestic, academic, business, and government networks, which together carry various information and services, such as electronic mail, online chat, file transfer, and the interlinked Web pages and other documents of the World Wide Web.

It allows other services

Pui Ching Middle School (Hong Kong)

Pui Ching Middle School (Chinese: 香港培正中學) is a Baptist secondary school in Ho Man Tin, Kowloon, Hong Kong. Founded in 1889, it currently has sister schools in Macau and Guangzhou.

Ring network

A ring network is a network topology in which each node connects to exactly two other nodes, forming a single continuous pathway for signals through each node - a ring. Data travels from node to node, with each node along the way handling every packet.

Rings can be unidirectional, with all traffic travelling either clockwise or anticlockwise around the ring, or bidirectional (as in SONET/SDH). Because a unidirectional ring topology provides only one pathway between any two nodes, unidirectional ring networks may be disrupted by the failure of a single link. A node failure or cable break might isolate every node attached to the ring. In response, some ring networks add a "counter-rotating ring" (C-Ring) to form a redundant topology: in the event of a break, data are wrapped back onto the complementary ring before reaching the end of the cable, maintaining a path to every node along the resulting C-Ring. Such "dual ring" networks include the ITU-T's PSTN telephony systems network Signalling System No. 7 (SS7), Spatial Reuse Protocol, Fiber Distributed Data Interface (FDDI), and Resilient Packet Ring. 802.5 networks - also known as IBM token ring networks - avoid the weakness of a ring topology altogether: they actually use a star topology at the physical layer and a media access unit (MAU) to imitate a ring at the datalink layer.

All Signalling System No. 7 (SS7), and some SONET/SDH rings have two sets of bidirectional links between nodes. This allows maintenance or failures at multiple points of the ring usually without loss of the primary traffic on the outer ring by switching the traffic onto the inner ring past the failure points.

Token passing

On a local area network, token passing is a channel access method where a signal called a token is passed between nodes to authorize that node to communicate. In contrast to polling access methods, there is no pre-defined "master" node. The most well-known examples are token ring and ARCNET, but there were a range of others, including FDDI (Fiber Distributed Data Interface), which was popular in the early to mid 1990s.

Token passing schemes degrade deterministically under load, which is a key reason why they were popular for industrial control LANs such as MAP, (Manufacturing Automation Protocol). The advantage over contention based channel access (such as the CSMA/CD of early Ethernet), is that collisions are eliminated, and that the channel bandwidth can be fully utilized without idle time when demand is heavy. The disadvantage is that even when demand is light, a station wishing to transmit must wait for the token, increasing latency.

Some types of token passing schemes do not need to explicitly send a token between systems because the process of "passing the token" is implicit. An example is the channel access method used during "Contention Free Time Slots" in the ITU-T G.hn standard for high-speed local area networking using existing home wires (power lines, phone lines and coaxial cable).

University of New Hampshire InterOperability Laboratory

The University of New Hampshire InterOperability Laboratory (UNH-IOL) is an independent test facility that provides interoperability and standards conformance testing for networking, telecommunications, data storage, and consumer technology products.

Founded in 1988, it employs approximately 25 full-time staff members and over 100 part-time undergraduate and graduate students, and counts over 150 companies as members.

Virtual LAN

A virtual LAN (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer (OSI layer 2). LAN is the abbreviation for local area network and in this context virtual refers to a physical object recreated and altered by additional logic. VLANs work by applying tags to network frames and handling these tags in networking systems – creating the appearance and functionality of network traffic that is physically on a single network but acts as if it is split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

VLANs allow network administrators to group hosts together even if the hosts are not directly connected to the same network switch. Because VLAN membership can be configured through software, this can greatly simplify network design and deployment. Without VLANs, grouping hosts according to their resource needs necessitates the labor of relocating nodes or rewiring data links. VLANs allow networks and devices that must be kept separate to share the same physical cabling without interacting, improving simplicity, security, traffic management, or economy. For example, a VLAN could be used to separate traffic within a business due to users, and due to network administrators, or between types of traffic, so that users or low priority traffic cannot directly affect the rest of the network's functioning. Many Internet hosting services use VLANs to separate their customers' private zones from each other, allowing each customer's servers to be grouped together in a single network segment while being located anywhere in their data center. Some precautions are needed to prevent traffic "escaping" from a given VLAN, an exploit known as VLAN hopping.

To subdivide a network into VLANs, one configures network equipment. Simpler equipment can partition only per physical port (if at all), in which case each VLAN is connected with a dedicated network cable. More sophisticated devices can mark frames through VLAN tagging, so that a single interconnect (trunk) may be used to transport data for multiple VLANs. Since VLANs share bandwidth, a VLAN trunk can use link aggregation, quality-of-service prioritization, or both to route data efficiently.

ISO standards by standard number
1–9999
10000–19999
20000+

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.