Fiber

Fiber or fibre (see spelling differences, from the Latin fibra[1]) is a natural or synthetic substance that is significantly longer than it is wide.[2] Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

Synthetic fibers can often be produced very cheaply and in large amounts compared to natural fibers, but for clothing natural fibers can give some benefits, such as comfort, over their synthetic counterparts.

Fibreoptic
A bundle of optical fibers

Natural fibers

Natural fibers develop or occur in the fiber shape, and include those produced by plants, animals, and geological processes.[2] They can be classified according to their origin:

Human-made fibers

Human-made or chemical fibers are fibers whose chemical composition, structure, and properties are significantly modified during the manufacturing process.[4] Man-made fibers consist of regenerated fibers and synthetic fibers.

Semi-synthetic fibers

Semi-synthetic fibers are made from raw materials with naturally long-chain polymer structure and are only modified and partially degraded by chemical processes, in contrast to completely synthetic fibers such as nylon (polyamide) or dacron (polyester), which the chemist synthesizes from low-molecular weight compounds by polymerization (chain-building) reactions. The earliest semi-synthetic fiber is the cellulose regenerated fiber, rayon.[5] Most semi-synthetic fibers are cellulose regenerated fibers.

Cellulose regenerated fibers

Cellulose fibers are a subset of man-made fibers, regenerated from natural cellulose. The cellulose comes from various sources: rayon from tree wood fiber, Modal from beech trees, bamboo fiber from bamboo, seacell from seaweed, etc. In the production of these fibers, the cellulose is reduced to a fairly pure form as a viscous mass and formed into fibers by extrusion through spinnerets. Therefore, the manufacturing process leaves few characteristics distinctive of the natural source material in the finished products.

Some examples of this fiber type are:

Historically, cellulose diacetate and -triacetate were classified under the term rayon, but are now considered distinct materials.

Synthetic fibers

Synthetic come entirely from synthetic materials such as petrochemicals, unlike those man-made fibers derived from such natural substances as cellulose or protein.[6]

Fiber classification in reinforced plastics falls into two classes: (i) short fibers, also known as discontinuous fibers, with a general aspect ratio (defined as the ratio of fiber length to diameter) between 20 and 60, and (ii) long fibers, also known as continuous fibers, the general aspect ratio is between 200 and 500.[7]

Metallic fibers

Metallic fibers can be drawn from ductile metals such as copper, gold or silver and extruded or deposited from more brittle ones, such as nickel, aluminum or iron. See also Stainless steel fibers.

Carbon fiber

Carbon fibers are often based on oxidized and via pyrolysis carbonized polymers like PAN, but the end product is almost pure carbon.

Silicon carbide fiber

Silicon carbide fibers, where the basic polymers are not hydrocarbons but polymers, where about 50% of the carbon atoms are replaced by silicon atoms, so-called poly-carbo-silanes. The pyrolysis yields an amorphous silicon carbide, including mostly other elements like oxygen, titanium, or aluminium, but with mechanical properties very similar to those of carbon fibers.

Fiberglass

Fiberglass, made from specific glass, and optical fiber, made from purified natural quartz, are also man-made fibers that come from natural raw materials, silica fiber, made from sodium silicate (water glass) and basalt fiber made from melted basalt.

Mineral fibers

Mineral fibers can be particularly strong because they are formed with a low number of surface defects, asbestos is a common one.[8]

Polymer fibers

  • Polymer fibers are a subset of man-made fibers, which are based on synthetic chemicals (often from petrochemical sources) rather than arising from natural materials by a purely physical process. These fibers are made from:
    • polyamide nylon
    • PET or PBT polyester
    • phenol-formaldehyde (PF)
    • polyvinyl chloride fiber (PVC) vinyon
    • polyolefins (PP and PE) olefin fiber
    • acrylic polyesters, pure polyester PAN fibers are used to make carbon fiber by roasting them in a low oxygen environment. Traditional acrylic fiber is used more often as a synthetic replacement for wool. Carbon fibers and PF fibers are noted as two resin-based fibers that are not thermoplastic, most others can be melted.
    • aromatic polyamids (aramids) such as Twaron, Kevlar and Nomex thermally degrade at high temperatures and do not melt. These fibers have strong bonding between polymer chains
    • polyethylene (PE), eventually with extremely long chains / HMPE (e.g. Dyneema or Spectra).
    • Elastomers can even be used, e.g. spandex although urethane fibers are starting to replace spandex technology.
    • polyurethane fiber
    • Elastolefin
  • Coextruded fibers have two distinct polymers forming the fiber, usually as a core-sheath or side-by-side. Coated fibers exist such as nickel-coated to provide static elimination, silver-coated to provide anti-bacterial properties and aluminum-coated to provide RF deflection for radar chaff. Radar chaff is actually a spool of continuous glass tow that has been aluminum coated. An aircraft-mounted high speed cutter chops it up as it spews from a moving aircraft to confuse radar signals.

Microfibers

Microfibers in textiles refer to sub-denier fiber (such as polyester drawn to 0.5 denier). Denier and Dtex are two measurements of fiber yield based on weight and length. If the fiber density is known, you also have a fiber diameter, otherwise it is simpler to measure diameters in micrometers. Microfibers in technical fibers refer to ultra fine fibers (glass or meltblown thermoplastics) often used in filtration. Newer fiber designs include extruding fiber that splits into multiple finer fibers. Most synthetic fibers are round in cross-section, but special designs can be hollow, oval, star-shaped or trilobal. The latter design provides more optically reflective properties. Synthetic textile fibers are often crimped to provide bulk in a woven, non woven or knitted structure. Fiber surfaces can also be dull or bright. Dull surfaces reflect more light while bright tends to transmit light and make the fiber more transparent.

Very short and/or irregular fibers have been called fibrils. Natural cellulose, such as cotton or bleached kraft, show smaller fibrils jutting out and away from the main fiber structure.[9]

Typical properties of selected fibers

Fibers can be divided into natural and man-made (synthetic) substance, their properties can affect their performance in many applications. Nowadays, man-made fiber materials are replacing other conventional materials like glass and wood in a number of applications[10]. This is because man-made fibers can be engineered chemically, physically, and mechanically to suit particular technical engineering[11]. In choosing a fiber type, a manufacturer would balance their properties with the technical requirements of the applications. Various fibers are available to select for manufacturing. Here are typical properties of the sample natural fibers as compared to the properties of man-made fibers.

Table 1. Typical Properties of Selected Natural Fibers[12][13]
Fiber type Fiber Diameter

(in)

Specific Gravity Tensile Strength

(Ksi)

Elastic Modulus

(Ksi)

Elongation at Break

(%)

Water Absorption

(%)

Wood Fiber

(Kraft Pulp)

0.001-0.003 1.5 51-290 1500-5800 N/A 50-75
Musamba N/A N/A 12 130 9.7 N/A
Coconut 0.004-0.016 1.12-1.15 17.4-29 2750-3770 10-25 130-180
Sisal 0.008-0.016[14] 1.45[14] 40-82.4 1880-3770 3-5 60-70
Sugar Cane Bagasse 0.008-0.016 1.2-1.3 26.7-42 2175-2750 1.1[15] 70-75
Bamboo 0.002-0.016 1.5 50.8-72.5 4780-5800 N/A 40-45
Jute 0.004-0.008 1.02-1.04 36.3-50.8 3770-4640 1.5-1.9 28.64[16]
Elephant grass 0.003-0.016[17] 0.818[17] 25.8 710 3.6 N/Ab
a  Adapted from ACI 544. IR-96 P58, reference [12] P240 and [13]

b  N/A means properties not readily available or not applicable

Table 2. Properties of Selected Man-made Fibers
Fiber type Fiber Diameter

(0.001 in)

Specific Gravity Tensile Strength (Ksi) Elasticity Modulus  

(Ksi)

Elongation at Break

(%)

Water Absorption

(%)

Melting Point

(℃)

Maximum Working

Temp (℃)

Steel 4-40 7.8 70-380 30,000 0.5-3.5 nil 1370[18] 760[18]
Glass 0.3-0.8 2.5 220-580 10,400-11,600 2-4 N/A 1300 1000
Carbon 0.3-0.35 0.90 260-380 33,400-55,100 0.5-1.5 nil 3652-3697[19] N/A
Nylon 0.9 1.14 140 750 20-30 2.8-5.0 220-265 199
Acrylics 0.2-0.7 1.14-1.18 39-145 2,500-2,800 20-40 1.0-2.5 Decomp 180
Aramid 0.4-0.5 1.38-1.45 300-450 9,000-17,000 2-12 1.2-4.3 Decomp 450
Polyester 0.4-3.0 1.38 40-170 2,500 8-30 0.4 260 170
Polypropylene 0.8-8.0 0.9 65-100 500-750 10-20 nil 165 100
Polyethylene

   Low

   High

1.0-40.0


0.92

0.95


11-17

50-71

725


25-50

20-30


nil

nil


110

135


55

65

a  Adapted from ACI 544. IR-96 P40, reference [12] P240, [11] P209 and [13]

b  N/A means properties not readily available or not applicable

The tables above just show typical properties of fibers, in fact there are more properties which could be referred as follows(from a to z): [13]

Arc Resistance, Biodegradable, Coefficient of Linear Thermal Expansion, Continuous Service Temperature, Density of Plastics, Ductile / Brittle Transition Temperature, Elongation at Break, Elongation at Yield, Fire Resistance, Flexibility, Gamma Radiation Resistance, Gloss, Glass Transition Temperature, Hardness, Heat Deflection Temperature , Shrinkage, Stiffness , Ultimate tensile strength, Thermal Insulation, Toughness, Transparency, UV Light Resistance, Volume Resistivity, Water absorption, Young’s Modulus

See also

References

  1. ^ Harper, Douglas. "fiber". Online Etymology Dictionary.
  2. ^ a b Kadolph, Sara (2002). Textiles. Prentice Hall. ISBN 0-13-025443-6.
  3. ^ Saad, Mohamed (Oct 1994). Low resolution structure and packing investigations of collagen crystalline domains in tendon using Synchrotron Radiation X-rays, Structure factors determination, evaluation of Isomorphous Replacement methods and other modeling. PhD Thesis, Université Joseph Fourier Grenoble I. pp. 1–221. doi:10.13140/2.1.4776.7844.
  4. ^ "man-made fibre". Encyclopædia Britannica. Encyclopædia Britannica, Inc. 2013.
  5. ^ Kauffman, George B. (1993). "Rayon: the first semi-synthetic fiber product". Journal of Chemical Education. 70 (11): 887. Bibcode:1993JChEd..70..887K. doi:10.1021/ed070p887.
  6. ^ "synthetic fibre". Encyclopædia Britannica. Encyclopædia Britannica, Inc. 2013.
  7. ^ Serope Kalpakjian, Steven R Schmid. "Manufacturing Engineering and Technology". International edition. 4th Ed. Prentice Hall, Inc. 2001. ISBN 0-13-017440-8.
  8. ^ James Edward Gordon; Philip Ball (2006). The new science of strong materials, or, Why you don't fall through the floor. Princeton University Press. ISBN 978-0-691-12548-0. Retrieved 28 October 2011.
  9. ^ Hans-J. Koslowski. "Man-Made Fibers Dictionary". Second edition. Deutscher Fachverlag. 2009 ISBN 3-86641-163-4
  10. ^ Shenoy, Aroon (1999). Rheology of Filled Polymer Systems. Kluwer Academic Publishers. ISBN 0-412-83100-7.
  11. ^ Hollaway, C. (1990). Polymers and Polymer Composites in Construction. Great Britain: Bulter and Tanner Ltd. p. 209. ISBN 0-7277-1521-6.
  12. ^ Design and Control of Concrete Mixtures”. Sixteenth Edition. United States of America: Portland Cement Association. 2018. pp. 237–247. ISBN 978-0-89312-277-5.
  13. ^ a b "Polymer Properties – Omexus by Special Chem".
  14. ^ a b "Sisal Fiber – World of Sisal".
  15. ^ "Bagasse – Science".
  16. ^ Narayanan, Venkateshwaran (2012). "Mechanical and Water Absorption Properties of Woven Jute/Banana Hybrid Composites". Fibers and Polymers. Vol.13, No.7,907-914.
  17. ^ a b K. Murali Mohan, Rao (2007). "Tensile Properties of Elephant grass fiber reinforced polymer Composites". Journal of Materials Science. Vol.42, Issue 9,3266-3272.
  18. ^ a b "Metallic Materials –TEADIT" (PDF).
  19. ^ "Carbon Fiber – Americans Elements".
Axon

An axon (from Greek ἄξων áxōn, axis), or nerve fiber, is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different neurons, muscles, and glands. In certain sensory neurons (pseudounipolar neurons), such as those for touch and warmth, the axons are called afferent nerve fibers and the electrical impulse travels along these from the periphery to the cell body, and from the cell body to the spinal cord along another branch of the same axon. Axon dysfunction has caused many inherited and acquired neurological disorders which can affect both the peripheral and central neurons. Nerve fibers are classed into three types – group A nerve fibers, group B nerve fibers, and group C nerve fibers. Groups A and B are myelinated, and group C are unmyelinated. These groups include both sensory fibers and motor fibers. Another classification groups only the sensory fibers as Type I, Type II, Type III, and Type IV.

An axon is one of two types of cytoplasmic protrusions from the cell body of a neuron; the other type is a dendrite. Axons are distinguished from dendrites by several features, including shape (dendrites often taper while axons usually maintain a constant radius), length (dendrites are restricted to a small region around the cell body while axons can be much longer), and function (dendrites receive signals whereas axons transmit them). Some types of neurons have no axon and transmit signals from their dendrites. In some species, axons can emanate from dendrites and these are known as axon-carrying dendrites. No neuron ever has more than one axon; however in invertebrates such as insects or leeches the axon sometimes consists of several regions that function more or less independently of each other.Axons are covered by a membrane known as an axolemma; the cytoplasm of an axon is called axoplasm. Most axons branch, in some cases very profusely. The end branches of an axon are called telodendria. The swollen end of a telodendron is known as the axon terminal which joins the dendron or cell body of another neuron forming a synaptic connection. Axons make contact with other cells—usually other neurons but sometimes muscle or gland cells—at junctions called synapses. In some circumstances, the axon of one neuron may form a synapse with the dendrites of the same neuron, resulting in an autapse. At a synapse, the membrane of the axon closely adjoins the membrane of the target cell, and special molecular structures serve to transmit electrical or electrochemical signals across the gap. Some synaptic junctions appear along the length of an axon as it extends—these are called en passant ("in passing") synapses and can be in the hundreds or even the thousands along one axon. Other synapses appear as terminals at the ends of axonal branches.

A single axon, with all its branches taken together, can innervate multiple parts of the brain and generate thousands of synaptic terminals. A bundle of axons make a nerve tract in the central nervous system, and a fascicle in the peripheral nervous system. In placental mammals the largest white matter tract in the brain is the corpus callosum, formed of some 20 million axons in the human brain.

Carbon fiber reinforced polymer

Carbon fiber reinforced polymer, carbon fiber reinforced plastic, or carbon fiber reinforced thermoplastic (CFRP, CRP, CFRTP, or often simply carbon fiber, carbon composite, or even carbon), is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The alternative spelling 'fibre' is common in British Commonwealth countries. CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructure of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester, or nylon, are sometimes used. The composite material may contain aramid (e.g. Kevlar, Twaron), ultra-high-molecular-weight polyethylene (UHMWPE), aluminium, or glass fibers in addition to carbon fibers. The properties of the final CFRP product can also be affected by the type of additives introduced to the binding matrix (resin). The most common additive is silica, but other additives such as rubber and carbon nanotubes can be used. The material is also referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer).

Carbon fibers

Carbon fibers or carbon fibres (alternatively CF, graphite fiber or graphite fibre) are fibers about 5–10 micrometres in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages including high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion. These properties have made carbon fiber very popular in aerospace, civil engineering, military, and motorsports, along with other competition sports. However, they are relatively expensive when compared with similar fibers, such as glass fibers or plastic fibers.

To produce a carbon fiber, the carbon atoms are bonded together in crystals that are more or less aligned parallel to the long axis of the fiber as the crystal alignment gives the fiber high strength-to-volume ratio (making it strong for its size). Several thousand carbon fibers are bundled together to form a tow, which may be used by itself or woven into a fabric.

Carbon fibers are usually combined with other materials to form a composite. When impregnated with a plastic resin and baked it forms carbon-fiber-reinforced polymer (often referred to as carbon fiber) which has a very high strength-to-weight ratio, and is extremely rigid although somewhat brittle. Carbon fibers are also composited with other materials, such as graphite, to form reinforced carbon-carbon composites, which have a very high heat tolerance.

Cotton

Cotton is a soft, fluffy staple fiber that grows in a boll, or protective case, around the seeds of the cotton plants of the genus Gossypium in the mallow family Malvaceae. The fiber is almost pure cellulose. Under natural conditions, the cotton bolls will increase the dispersal of the seeds.

The plant is a shrub native to tropical and subtropical regions around the world, including the Americas, Africa, Egypt and India. The greatest diversity of wild cotton species is found in Mexico, followed by Australia and Africa. Cotton was independently domesticated in the Old and New Worlds.

The fiber is most often spun into yarn or thread and used to make a soft, breathable textile. The use of cotton for fabric is known to date to prehistoric times; fragments of cotton fabric dated to the fifth millennium BC have been found in the Indus Valley Civilization.

Although cultivated since antiquity, it was the invention of the cotton gin that lowered the cost of production that led to its widespread use, and it is the most widely used natural fiber cloth in clothing today.

Current estimates for world production are about 25 million tonnes or 110 million bales annually, accounting for 2.5% of the world's arable land. China is the world's largest producer of cotton, but most of this is used domestically. The United States has been the largest exporter for many years. In the United States, cotton is usually measured in bales, which measure approximately 0.48 cubic meters (17 cubic feet) and weigh 226.8 kilograms (500 pounds).

Dietary fiber

Dietary fiber or roughage is the portion of plant-derived food that cannot be completely broken down by digestive enzymes. It has two main components:

Soluble fiber – which dissolves in water – is readily fermented in the colon into gases and physiologically active by-products, such as short-chain fatty acids produced in the colon by gut bacteria; it is viscous, may be called prebiotic fiber, and delays gastric emptying which, in humans, can result in an extended feeling of fullness.

Insoluble fiber – which does not dissolve in water – is inert to digestive enzymes in the upper gastrointestinal tract and provides bulking. Some forms of insoluble fiber, such as resistant starches, can be fermented in the colon. Bulking fibers absorb water as they move through the digestive system, easing defecation.Dietary fiber consists of non-starch polysaccharides and other plant components such as cellulose, resistant starch, resistant dextrins, inulin, lignins, chitins, pectins, beta-glucans, and oligosaccharides.Dietary fibers can act by changing the nature of the contents of the gastrointestinal tract and by changing how other nutrients and chemicals are absorbed. Some types of soluble fiber absorb water to become a gelatinous, viscous substance which may or may not be fermented by bacteria in the digestive tract. Some types of insoluble fiber have bulking action and are not fermented. Lignin, a major dietary insoluble fiber source, may alter the rate and metabolism of soluble fibers. Other types of insoluble fiber, notably resistant starch, are fermented to produce short-chain fatty acids, which are physiologically active and confer health benefits. Health benefit from dietary fiber and whole grains may include a decreased risk of death and lower rates of coronary heart disease, colon cancer, and type 2 diabetes.Food sources of dietary fiber have traditionally been divided according to whether they provide soluble or insoluble fiber. Plant foods contain both types of fiber in varying amounts, according to the plant's characteristics of viscosity and fermentability. Advantages of consuming fiber depend upon which type of fiber is consumed and which benefits may result in the gastrointestinal system. Bulking fibers – such as cellulose, hemicellulose and psyllium – absorb and hold water, promoting regularity. Viscous fibers – such as beta-glucan and psyllium – thicken the fecal mass. Fermentable fibers – such as resistant starch and inulin – feed the bacteria and microbiota of the large intestine, and are metabolized to yield short-chain fatty acids, which have diverse roles in gastrointestinal health.

Eurasian beaver

The Eurasian beaver or European beaver (Castor fiber) is a species of beaver which was once widespread in Eurasia. It was hunted to near-extinction for both its fur and castoreum; and by 1900, only 1200 beavers survived in eight relict populations in Europe and Asia. Reintroduced through much of its former range, it now occurs from Great Britain to China and Mongolia, although it is absent from Portugal, the southern Balkans, and the Middle East.

Fiber-optic communication

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference are required.

Optical fiber is used by many telecommunications companies to transmit telephone signals, Internet communication, and cable television signals. Researchers at Bell Labs have reached internet speeds of over 100 petabit×kilometer per second using fiber-optic communication.

Fiber to the x

Fiber to the x (FTTX) (also spelled Fibre to the x) or fiber in the loop is a generic term for any broadband network architecture using optical fiber to provide all or part of the local loop used for last mile telecommunications. As fiber optic cables are able to carry much more data than copper cables, especially over long distances, copper telephone networks built in the 20th century are being replaced by fiber.

FTTX is a generalization for several configurations of fiber deployment, arranged into two groups: FTTP/FTTH/FTTB (Fiber laid all the way to the premises/home/building) and FTTC/N (fiber laid to the cabinet/node, with copper wires completing the connection).

Residential areas already served by balanced pair distribution plant call for a trade-off between cost and capacity. The closer the fiber head, the higher the cost of construction and the higher the channel capacity. In places not served by metallic facilities, little cost is saved by not running fiber to the home.

Fiber to the x is the key method used to drive next-generation access (NGA), which describes a significant upgrade to the Broadband available by making a step change in speed and quality of the service. This is typically thought of as asymmetrical with a download speed of 24 Mbit/s plus and a fast upload speed. The Definition of UK Superfast Next Generation Broadband

OFCOM have defined NGA as in "Ofcom's March 2010 'Review of the wholesale local access market"

"Super-fast broadband is generally taken to mean broadband products that provide a maximum download speed that is greater than 24 Mbit/s. This threshold is commonly considered to be the maximum speed that can be supported on current generation (copper-based) networks."

A similar network called a hybrid fiber-coaxial (HFC) network is used by cable television operators but is usually not synonymous with "fiber In the loop", although similar advanced services are provided by the HFC networks. Fixed wireless and mobile wireless technologies such as Wi-Fi, WiMAX and 3GPP Long Term Evolution (LTE) are an alternative for providing Internet access.

Fiberglass

Fiberglass (US) or fibreglass (UK) is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet (called a chopped strand mat), or woven into a fabric. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinylester—or a thermoplastic.

Cheaper and more flexible than carbon fiber, it is stronger than many metals by weight, and can be molded into complex shapes. Applications include aircraft, boats, automobiles, bath tubs and enclosures, swimming pools, hot tubs, septic tanks, water tanks, roofing, pipes, cladding, casts, surfboards, and external door skins.

Other common names for fiberglass are glass-reinforced plastic (GRP), glass-fiber reinforced plastic (GFRP) or GFK (from German: Glasfaserverstärkter Kunststoff). Because glass fiber itself is sometimes referred to as "fiberglass", the composite is also called "fiberglass reinforced plastic". This article will adopt the convention that "fiberglass" refers to the complete glass fiber reinforced composite material, rather than only to the glass fiber within it.

Flax

Flax (Linum usitatissimum), also known as common flax or linseed, is a member of the genus Linum in the family Linaceae. It is a food and fiber crop cultivated in cooler regions of the world. The textiles made from flax are known in the Western countries as linen, and traditionally used for bed sheets, underclothes, and table linen. The oil is known as linseed oil. In addition to referring to the plant itself, the word "flax" may refer to the unspun fibers of the flax plant. The plant species is known only as a cultivated plant, and appears to have been domesticated just once from the wild species Linum bienne, called pale flax.

Google Fiber

Google Fiber is part of the Access division of Alphabet Inc. It provides fiber-to-the-premises service in the United States, providing broadband Internet and IPTV to a small and slowly increasing number of locations. In mid-2016, Google Fiber had 68,715 television subscribers and was estimated to have about 453,000 broadband customers.The service was first introduced to the Kansas City metropolitan area, including 20 Kansas City area suburbs within the first 3 years. Initially proposed as an experimental project, Google Fiber was announced as a viable business model on December 12, 2012, when Google executive chairman Eric Schmidt stated "It's actually not an experiment, we're actually running it as a business," at the New York Times' DealBook Conference.Google Fiber announced expansion to Austin, Texas, and Provo, Utah, in April 2013, and subsequent expansions in 2014 and 2015 to Atlanta, Charlotte, the Triangle, Nashville, Salt Lake City, and San Antonio.On August 10, 2015, Google announced its intention to restructure the company moving less central services and products into a new umbrella corporation, Alphabet Inc. As part of this restructuring plan, Google Fiber would become a subsidiary of Alphabet and may become part of the Access and Energy business unit. In October 2016, all expansion plans were put on hold and some jobs were cut. Google Fiber will continue to provide service in the cities where it is already installed.

Hemp

Hemp, or industrial hemp (from Old English hænep), typically found in the northern hemisphere, is a variety of the Cannabis sativa plant species that is grown specifically for the industrial uses of its derived products. It is one of the fastest growing plants and was one of the first plants to be spun into usable fiber 10,000 years ago. It can be refined into a variety of commercial items including paper, textiles, clothing, biodegradable plastics, paint, insulation, biofuel, food, and animal feed.Although cannabis as a drug and industrial hemp both derive from the species Cannabis sativa and contain the psychoactive component tetrahydrocannabinol (THC), they are distinct strains with unique phytochemical compositions and uses. Hemp has lower concentrations of THC and higher concentrations of cannabidiol (CBD), which decreases or eliminates its psychoactive effects. The legality of industrial hemp varies widely between countries. Some governments regulate the concentration of THC and permit only hemp that is bred with an especially low THC content.

Jute

Jute is a long, soft, shiny vegetable fiber that can be spun into coarse, strong threads. It is produced primarily from plants in the genus Corchorus, which was once classified with the family Tiliaceae, and more recently with Malvaceae. The primary source of the fiber is Corchorus olitorius, but it is considered inferior to Corchorus capsularis. "Jute" is the name of the plant or fiber that is used to make burlap, hessian or gunny cloth.

Jute is one of the most affordable natural fibers in existence and it is second only to cotton in amount produced and variety of uses. Jute fibers are composed primarily of the plant materials cellulose and lignin. It falls into the bast fiber category (fiber collected from bast, the phloem of the plant, sometimes called the "skin") along with kenaf, industrial hemp, flax (linen), ramie, etc. The industrial term for jute fiber is raw jute. The fibers are off-white to brown, and 1–4 metres (3–13 feet) long. Jute is also called the golden fiber for its color and high cash value.

Optical fiber

An optical fiber is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer excessively. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.Optical fibers typically include a core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by the phenomenon of total internal reflection which causes the fiber to act as a waveguide. Fibers that support many propagation paths or transverse modes are called multi-mode fibers, while those that support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a wider core diameter and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 1,000 meters (3,300 ft).Being able to join optical fibers with low loss is important in fiber optic communication. This is more complex than joining electrical wire or cable and involves careful cleaving of the fibers, precise alignment of the fiber cores, and the coupling of these aligned cores. For applications that demand a permanent connection a fusion splice is common. In this technique, an electric arc is used to melt the ends of the fibers together. Another common technique is a mechanical splice, where the ends of the fibers are held in contact by mechanical force. Temporary or semi-permanent connections are made by means of specialized optical fiber connectors.The field of applied science and engineering concerned with the design and application of optical fibers is known as fiber optics. The term was coined by Indian physicist Narinder Singh Kapany, who is widely acknowledged as the father of fiber optics.

Optical fiber cable

An optical fiber cable, also known as a fiber optic cable, is an assembly similar to an electrical cable, but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable will be deployed. Different types of cable are used for different applications, for example long distance telecommunication, or providing a high-speed data connection between different parts of a building.

Rayon

Rayon is a manufactured fiber made from regenerated cellulose fiber. The many types and grades of rayon can imitate the feel and texture of natural fibers such as silk, wool, cotton, and linen. The types that resemble silk are often called artificial silk.

Although rayon is manufactured from naturally occurring polymers, it is not considered to be synthetic. Technically, the term synthetic fiber is reserved for fully synthetic fibers. In manufacturing terms, rayon is classified as "a fiber formed by regenerating natural materials into a usable form". Specific types of rayon include viscose, modal and lyocell, each of which differs in manufacturing process and properties of the finished product.

Rayon is made from purified cellulose, harvested primarily from wood pulp, which is chemically converted into a soluble compound. It is then dissolved and forced through a spinneret to produce filaments which are chemically solidified, resulting in fibers of nearly pure cellulose. Unless handled carefully, workers can be seriously harmed by the carbon disulfide used to manufacture most rayon.

Skeletal muscle

Skeletal muscle is one of three major muscle types, the others being cardiac muscle and smooth muscle. It is a form of striated muscle tissue, which is under the voluntary control of the somatic nervous system. Most skeletal muscles are attached to bones by bundles of collagen fibers known as tendons.

A skeletal muscle refers to multiple bundles (fascicles) of cells joined together called muscle fibers. The fibres and muscles are surrounded by connective tissue layers called fasciae. Muscle fibres, or muscle cells, are formed from the fusion of developmental myoblasts in a process known as myogenesis. Muscle fibres are cylindrical, and have more than one nucleus. They also have multiple mitochondria to meet energy needs.

Muscle fibers are in turn composed of myofibrils. The myofibrils are composed of actin and myosin filaments, repeated in units called sarcomeres, which are the basic functional units of the muscle fiber. The sarcomere is responsible for the striated appearance of skeletal muscle, and forms the basic machinery necessary for muscle contraction.

Synthetic fiber

Synthetic fibers (British English: synthetic fibres) are fibers made by humans with chemical synthesis, as opposed to natural fibers that humans get from living organisms with little or no chemical changes. They are the result of extensive research by scientists to improve on naturally occurring animal fibers and plant fibers. In general, synthetic fibers are created by extruding fiber-forming materials through spinnerets into air and water, forming a thread. These fibers are called synthetic or artificial fibers. Some fibers are manufactured from plant-derived cellulose and are thus semisynthetic, whereas others are totally synthetic, being made from crudes and intermediates including petroleum, coal, limestone and water.

Verizon Fios

Verizon Fios, also marketed as Fios by Verizon, is a bundled Internet access, telephone, and television service that operates over a fiber-optic communications network with over 5 million customers in nine U.S. states. The name, Fios, is an acronym for Fiber Optic Service. Service is offered in some areas of the United States by Verizon Communications, while Frontier Communications operates licensed FiOS services in former Verizon territories across six states, using a nearly identical network infrastructure. Fios service began in 2005, and networked areas expanded through 2010, although some areas do not have service or cannot receive TV and phone service because of franchise agreements.Verizon was one of the first major U.S. carriers to offer fiber to the home, and received positive ratings from Consumer Reports among cable television and Internet service providers.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.