Fever

Fever, also known as pyrexia and febrile response,[6] is defined as having a temperature above the normal range due to an increase in the body's temperature set point.[4][5] There is not a single agreed-upon upper limit for normal temperature with sources using values between 37.5 and 38.3 °C (99.5 and 100.9 °F).[6][7] The increase in set point triggers increased muscle contractions and causes a feeling of cold.[1] This results in greater heat production and efforts to conserve heat.[2] When the set point temperature returns to normal, a person feels hot, becomes flushed, and may begin to sweat.[2] Rarely a fever may trigger a febrile seizure.[3] This is more common in young children.[3] Fevers do not typically go higher than 41 to 42 °C (105.8 to 107.6 °F).[5]

A fever can be caused by many medical conditions ranging from non serious to life-threatening.[11] This includes viral, bacterial and parasitic infections such as the common cold, urinary tract infections, meningitis, malaria and appendicitis among others.[11] Non-infectious causes include vasculitis, deep vein thrombosis, side effects of medication, and cancer among others.[11] It differs from hyperthermia, in that hyperthermia is an increase in body temperature over the temperature set point, due to either too much heat production or not enough heat loss.[6]

Treatment to reduce fever is generally not required.[1][8] Treatment of associated pain and inflammation, however, may be useful and help a person rest.[8] Medications such as ibuprofen or paracetamol (acetaminophen) may help with this as well as lower temperature.[8][9] Measures such as putting a cool damp cloth on the forehead and having a slightly warm bath are not useful and may simply make a person more uncomfortable.[8] Children younger than three months require medical attention, as might people with serious medical problems such as a compromised immune system or people with other symptoms.[12] Hyperthermia does require treatment.[1]

Fever is one of the most common medical signs.[1] It is part of about 30% of healthcare visits by children[1] and occurs in up to 75% of adults who are seriously sick.[10] While fever is a useful defense mechanism, treating fever does not appear to worsen outcomes.[13][14] Fever is viewed with greater concern by parents and healthcare professionals than it usually deserves, a phenomenon known as fever phobia.[1]

Fever
Other namesPyrexia, febrile response
Clinical thermometer 38.7
An analog medical thermometer showing a temperature of 38.7 °C or 101.7 °F
SpecialtyInfectious disease, pediatrics
SymptomsInitially: shivering, feeling cold[1]
Later: flushed, sweating[2]
ComplicationsFebrile seizure[3]
CausesIncrease in the body's temperature set point[4][5]
Diagnostic methodTemperature > between 37.5 and 38.3 °C (99.5 and 100.9 °F)[6][7]
Differential diagnosisHyperthermia[6]
TreatmentBased on underlying cause, not required for fever itself[1][8]
MedicationIbuprofen, paracetamol (acetaminophen)[8][9]
FrequencyCommon[1][10]

Signs and symptoms

A fever is usually accompanied by sickness behavior, which consists of lethargy, depression, anorexia, sleepiness, hyperalgesia, and the inability to concentrate.[15][16][17]

Diagnosis

A wide range for normal temperatures has been found.[7] Central temperatures, such as rectal temperatures, are more accurate than peripheral temperatures.[23] Fever is generally agreed to be present if the elevated temperature is caused by a raised set point and:

  • Temperature in the anus (rectum/rectal) is at or over 37.5–38.3 °C (99.5–100.9 °F)[6][7]
  • Temperature in the mouth (oral) is at or over 37.7 °C (99.9 °F)[24]
  • Temperature under the arm (axillary) or in the ear (tympanic) is at or over 37.2 °C (99.0 °F)

In healthy adults, the range of normal, healthy temperatures for oral temperature is 33.2–38.2 °C (91.8–100.8 °F), for rectal it is 34.4–37.8 °C (93.9–100.0 °F), for tympanic membrane (the ear drum) it is 35.4–37.8 °C (95.7–100.0 °F), and for axillary (the armpit) it is 35.5–37.0 °C (95.9–98.6 °F).[25] Harrison's Principles of Internal Medicine defines a fever as a morning oral temperature of >37.2 °C (>98.9 °F) or an afternoon oral temperature of >37.7 °C (>99.9 °F) while the normal daily temperature variation is typically 0.5 °C (0.9 °F).[26]

Normal body temperatures vary depending on many factors, including age, sex, time of day, ambient temperature, activity level, and more. A raised temperature is not always a fever. For example, the temperature of a healthy person rises when he or she exercises, but this is not considered a fever, as the set point is normal. On the other hand, a "normal" temperature may be a fever, if it is unusually high for that person. For example, medically frail elderly people have a decreased ability to generate body heat, so a "normal" temperature of 37.3 °C (99.1 °F) may represent a clinically significant fever.

Types

Febbre
Performance of the various types of fever
a) Fever continues
b) Fever continues to abrupt onset and remission
c) Remittent fever
d) Intermittent fever
e) Undulant fever
f) Relapsing fever
Fever Patterns v1.2
Different fever patterns observed in Plasmodium infections.

The pattern of temperature changes may occasionally hint at the diagnosis:

A neutropenic fever, also called febrile neutropenia, is a fever in the absence of normal immune system function. Because of the lack of infection-fighting neutrophils, a bacterial infection can spread rapidly; this fever is, therefore, usually considered to require urgent medical attention. This kind of fever is more commonly seen in people receiving immune-suppressing chemotherapy than in apparently healthy people.

Febricula is an old term for a low-grade fever, especially if the cause is unknown, no other symptoms are present, and the patient recovers fully in less than a week.[30]

Hyperpyrexia

Hyperpyrexia is an extreme elevation of body temperature which, depending upon the source, is classified as a core body temperature greater than or equal to 40.0 or 41.5 °C (104.0 or 106.7 °F).[31][32][33] Such a high temperature is considered a medical emergency, as it may indicate a serious underlying condition or lead to problems including permanent brain damage, or death.[34] The most common cause of hyperpyrexia is an intracranial hemorrhage.[35][33] Other possible causes include sepsis, Kawasaki syndrome,[36] neuroleptic malignant syndrome, drug overdose, serotonin syndrome, and thyroid storm.[34]

Infections are the most common cause of fevers, but as the temperature rises other causes become more common.[34] Infections commonly associated with hyperpyrexia include roseola, measles and enteroviral infections.[36] Immediate aggressive cooling to less than 38.9 °C (102.0 °F) has been found to improve survival.[34] Hyperpyrexia differs from hyperthermia in that in hyperpyrexia the body's temperature regulation mechanism sets the body temperature above the normal temperature, then generates heat to achieve this temperature, while in hyperthermia the body temperature rises above its set point due to an outside source.[35]

Hyperthermia

Hyperthermia is an example of a high temperature that is not a fever. It occurs from a number of causes including heatstroke, neuroleptic malignant syndrome, malignant hyperthermia, stimulants such as substituted amphetamines and cocaine, idiosyncratic drug reactions, and serotonin syndrome.[37][38]

Differential diagnosis

Fever is a common symptom of many medical conditions:

Persistent fever that cannot be explained after repeated routine clinical inquiries is called fever of unknown origin.

Teething is not a cause.[41]

Pathophysiology

Fever-conceptual
Hyperthermia: Characterized on the left. Normal body temperature (thermoregulatory set point) is shown in green, while the hyperthermic temperature is shown in red. As can be seen, hyperthermia can be conceptualized as an increase above the thermoregulatory set point.
Hypothermia: Characterized in the center: Normal body temperature is shown in green, while the hypothermic temperature is shown in blue. As can be seen, hypothermia can be conceptualized as a decrease below the thermoregulatory set point.
Fever: Characterized on the right: Normal body temperature is shown in green. It reads "New Normal" because the thermoregulatory set point has risen. This has caused what was the normal body temperature (in blue) to be considered hypothermic.

Temperature is ultimately regulated in the hypothalamus. A trigger of the fever, called a pyrogen, causes release of prostaglandin E2 (PGE2). PGE2 in turn acts on the hypothalamus, which creates a systemic response in the body, causing heat-generating effects to match a new higher temperature set point.

In many respects, the hypothalamus works like a thermostat.[42] When the set point is raised, the body increases its temperature through both active generation of heat and retention of heat. Peripheral vasoconstriction both reduces heat loss through the skin and causes the person to feel cold. Norepinephrine increases thermogenesis in brown adipose tissue, and muscle contraction through shivering raises the metabolic rate.[43] If these measures are insufficient to make the blood temperature in the brain match the new set point in the hypothalamus, then shivering begins in order to use muscle movements to produce more heat. When the hypothalamic set point moves back to baseline either spontaneously or with medication, the reverse of these processes (vasodilation, end of shivering and nonshivering heat production) and sweating are used to cool the body to the new, lower setting.

This contrasts with hyperthermia, in which the normal setting remains, and the body overheats through undesirable retention of excess heat or over-production of heat.[42] Hyperthermia is usually the result of an excessively hot environment (heat stroke) or an adverse reaction to drugs. Fever can be differentiated from hyperthermia by the circumstances surrounding it and its response to anti-pyretic medications.

Pyrogens

A pyrogen is a substance that induces fever. These can be either internal (endogenous) or external (exogenous) to the body. The bacterial substance lipopolysaccharide (LPS), present in the cell wall of gram-negative bacteria,[44] is an example of an exogenous pyrogen. Pyrogenicity can vary: In extreme examples, some bacterial pyrogens known as superantigens can cause rapid and dangerous fevers. Depyrogenation may be achieved through filtration, distillation, chromatography, or inactivation.

Endogenous

In essence, all endogenous pyrogens are cytokines, molecules that are a part of the immune system. They are produced by activated immune cells and cause the increase in the thermoregulatory set point in the hypothalamus. Major endogenous pyrogens are interleukin 1 (α and β)[45] and interleukin 6 (IL-6). Minor endogenous pyrogens include interleukin-8, tumor necrosis factor-β, macrophage inflammatory protein-α and macrophage inflammatory protein-β as well as interferon-α, interferon-β, and interferon-γ.[45] Tumor necrosis factor-α also acts as a pyrogen. It is mediated by interleukin 1 (IL-1) release.[46]

These cytokine factors are released into general circulation, where they migrate to the circumventricular organs of the brain due to easier absorption caused by the blood–brain barrier's reduced filtration action there. The cytokine factors then bind with endothelial receptors on vessel walls, or interact with local microglial cells. When these cytokine factors bind, the arachidonic acid pathway is then activated.

Exogenous

One model for the mechanism of fever caused by exogenous pyrogens includes LPS, which is a cell wall component of gram-negative bacteria. An immunological protein called lipopolysaccharide-binding protein (LBP) binds to LPS. The LBP–LPS complex then binds to the CD14 receptor of a nearby macrophage. This binding results in the synthesis and release of various endogenous cytokine factors, such as interleukin 1 (IL-1), interleukin 6 (IL-6), and the tumor necrosis factor-alpha. In other words, exogenous factors cause release of endogenous factors, which, in turn, activate the arachidonic acid pathway.[47] The highly toxic metabolism-boosting supplement 2,4-dinitrophenol induces high body temperature via the inhibition of ATP production by mitochondria, resulting in impairment of cellular respiration. Instead of producing ATP, the energy of the proton gradient is lost as heat.[48]

PGE2 release

PGE2 release comes from the arachidonic acid pathway. This pathway (as it relates to fever), is mediated by the enzymes phospholipase A2 (PLA2), cyclooxygenase-2 (COX-2), and prostaglandin E2 synthase. These enzymes ultimately mediate the synthesis and release of PGE2.

PGE2 is the ultimate mediator of the febrile response. The set point temperature of the body will remain elevated until PGE2 is no longer present. PGE2 acts on neurons in the preoptic area (POA) through the prostaglandin E receptor 3 (EP3). EP3-expressing neurons in the POA innervate the dorsomedial hypothalamus (DMH), the rostral raphe pallidus nucleus in the medulla oblongata (rRPa), and the paraventricular nucleus (PVN) of the hypothalamus . Fever signals sent to the DMH and rRPa lead to stimulation of the sympathetic output system, which evokes non-shivering thermogenesis to produce body heat and skin vasoconstriction to decrease heat loss from the body surface. It is presumed that the innervation from the POA to the PVN mediates the neuroendocrine effects of fever through the pathway involving pituitary gland and various endocrine organs.

Hypothalamus

The brain ultimately orchestrates heat effector mechanisms via the autonomic nervous system or primary motor center for shivering. These may be:

In infants, the autonomic nervous system may also activate brown adipose tissue to produce heat (non-exercise-associated thermogenesis, also known as non-shivering thermogenesis). Increased heart rate and vasoconstriction contribute to increased blood pressure in fever.

Usefulness

There are arguments for and against the usefulness of fever, and the issue is controversial.[49][50][51] There are studies using warm-blooded vertebrates with some suggesting that they recover more rapidly from infections or critical illness due to fever.[52] Studies suggest reduced mortality in bacterial infections when fever was present.[53]

In theory, fever can aid in host defense.[49] There are certainly some important immunological reactions that are sped up by temperature, and some pathogens with strict temperature preferences could be hindered.[54]

Research[55] has demonstrated that fever assists the healing process in several important ways:

Management

Fever should not necessarily be treated.[57] Most people recover without specific medical attention.[58] Although it is unpleasant, fever rarely rises to a dangerous level even if untreated. Damage to the brain generally does not occur until temperatures reach 42 °C (107.6 °F), and it is rare for an untreated fever to exceed 40.6 °C (105 °F).[57] Treating fever in people with sepsis does not affect outcomes.[59]

Conservative measures

Some limited evidence supports sponging or bathing feverish children with tepid water.[60] The use of a fan or air conditioning may somewhat reduce the temperature and increase comfort. If the temperature reaches the extremely high level of hyperpyrexia, aggressive cooling is required (generally produced mechanically via conduction by applying numerous ice packs across most of the body or direct submersion in ice water).[34] In general, people are advised to keep adequately hydrated.[61] Whether increased fluid intake improves symptoms or shortens respiratory illnesses such as the common cold is not known.[62]

Medications

Medications that lower fevers are called antipyretics. The antipyretic ibuprofen is effective in reducing fevers in children.[63] It is more effective than acetaminophen (paracetamol) in children.[63] Ibuprofen and acetaminophen may be safely used together in children with fevers.[64][65] The efficacy of acetaminophen by itself in children with fevers has been questioned.[66] Ibuprofen is also superior to aspirin in children with fevers.[67] Additionally, aspirin is not recommended in children and young adults (those under the age of 16 or 19 depending on the country) due to the risk of Reye's syndrome.[68]

Using both paracetamol and ibuprofen at the same time or alternating between the two is more effective at decreasing fever than using only paracetamol or ibuprofen.[69] It is not clear if it increases child comfort.[69] Response or nonresponse to medications does not predict whether or not a child has a serious illness.[70]

Epidemiology

About 5% of people who go to an emergency room have a fever.[71]

History

A number of types of fever were known as early as 460 BC to 370 BC when Hippocrates was practicing medicine including that due to malaria (tertian or every 2 days and quartan or every 3 days).[72] It also became clear around this time that fever was a symptom of disease rather than a disease in and of itself.[72]

Society and culture

Etymology

Pyrexia is from the Greek pyr meaning fire. Febrile is from the Latin word febris, meaning fever, and archaically known as ague.

Fever phobia

Fever phobia is the name given by medical experts to parents' misconceptions about fever in their children. Among them, many parents incorrectly believe that fever is a disease rather than a medical sign, that even low fevers are harmful, and that any temperature even briefly or slightly above the oversimplified "normal" number marked on a thermometer is a clinically significant fever.[73] They are also afraid of harmless side effects like febrile seizures and dramatically overestimate the likelihood of permanent damage from typical fevers.[73] The underlying problem, according to professor of pediatrics Barton D. Schmitt, is "as parents we tend to suspect that our children’s brains may melt."[74]

As a result of these misconceptions parents are anxious, give the child fever-reducing medicine when the temperature is technically normal or only slightly elevated, and interfere with the child's sleep to give the child more medicine.[73]

Other animals

Fever is an important feature for the diagnosis of disease in domestic animals. The body temperature of animals, which is taken rectally, is different from one species to another. For example, a horse is said to have a fever above 101 °F (38.3 °C).[75] In species that allow the body to have a wide range of "normal" temperatures, such as camels,[76] it is sometimes difficult to determine a febrile stage.

Fever can also be behaviorally induced by invertebrates that do not have immune-system based fever. For instance, some species of grasshopper will thermoregulate to achieve body temperatures that are 2–5 °C higher than normal in order to inhibit the growth of fungal pathogens such as Beauveria bassiana and Metarhizium acridum.[77] Honeybee colonies are also able to induce a fever in response to a fungal parasite Ascosphaera apis. [77]

References

  1. ^ a b c d e f g h i Section on Clinical Pharmacology and, Therapeutics; Committee on, Drugs; Sullivan, JE; Farrar, HC (March 2011). "Fever and antipyretic use in children". Pediatrics. 127 (3): 580–7. doi:10.1542/peds.2010-3852. PMID 21357332.
  2. ^ a b c Sue E. Huether (2014). Pathophysiology: The Biologic Basis for Disease in Adults and Children (7 ed.). Elsevier Health Sciences. p. 498. ISBN 9780323293754.
  3. ^ a b c "Taking Care of Someone Who is Sick". 13 August 2010. Archived from the original on 24 March 2015. Retrieved 8 May 2015.
  4. ^ a b Kluger, Matthew J. (2015). Fever: Its Biology, Evolution, and Function. Princeton University Press. p. 57. ISBN 9781400869831.
  5. ^ a b c Garmel GM, Mahadevan SV, eds. (2012). "Fever in adults". An introduction to clinical emergency medicine (2nd ed.). Cambridge: Cambridge University Press. p. 375. ISBN 978-0521747769.
  6. ^ a b c d e f g h Axelrod, Yekaterina K.; Diringer, Michael N. (May 2008). "Temperature management in acute neurologic disorders". Neurologic Clinics. 26 (2): 585–603, xi. doi:10.1016/j.ncl.2008.02.005. PMID 18514828.
  7. ^ a b c d e f Laupland, Kevin B. (July 2009). "Fever in the critically ill medical patient". Critical Care Medicine. 37 (7 Suppl): S273–8. doi:10.1097/CCM.0b013e3181aa6117. PMID 19535958.
  8. ^ a b c d e f Richardson, M; Purssell, E (September 2015). "Who's afraid of fever?". Archives of Disease in Childhood. 100 (9): 818–20. doi:10.1136/archdischild-2014-307483. PMID 25977564.
  9. ^ a b Garmel GM, Mahadevan SV, eds. (2012). An introduction to clinical emergency medicine (2nd ed.). Cambridge: Cambridge University Press. p. 401. ISBN 9780521747769.
  10. ^ a b Kiekkas, P; Aretha, D; Bakalis, N; Karpouhtsi, I; Marneras, C; Baltopoulos, GI (August 2013). "Fever effects and treatment in critical care: literature review". Australian Critical Care. 26 (3): 130–5. doi:10.1016/j.aucc.2012.10.004. PMID 23199670.
  11. ^ a b c Garmel GM, Mahadevan SV, eds. (2012). An introduction to clinical emergency medicine (2nd ed.). Cambridge: Cambridge University Press. p. 5. ISBN 9780521747769.
  12. ^ "Fever". MedlinePlus. 30 August 2014. Archived from the original on 11 May 2009.
  13. ^ Schaffner, A (March 2006). "[Fever--useful or noxious symptom that should be treated?]". Therapeutische Umschau. Revue Therapeutique. 63 (3): 185–8. doi:10.1024/0040-5930.63.3.185. PMID 16613288.
  14. ^ Niven, DJ; Stelfox, HT; Laupland, KB (June 2013). "Antipyretic therapy in febrile critically ill adults: A systematic review and meta-analysis". Journal of Critical Care. 28 (3): 303–10. doi:10.1016/j.jcrc.2012.09.009. PMID 23159136.
  15. ^ Hart, BL (1988). "Biological basis of the behavior of sick animals". Neuroscience and Biobehavioral Reviews. 12 (2): 123–37. doi:10.1016/S0149-7634(88)80004-6. PMID 3050629.
  16. ^ Johnson, RW (2002). "The concept of sickness behavior: a brief chronological account of four key discoveries". Veterinary Immunology and Immunopathology. 87 (3–4): 443–50. doi:10.1016/S0165-2427(02)00069-7. PMID 12072271.
  17. ^ Kelley, KW; Bluthé, RM; Dantzer, R; Zhou, JH; Shen, WH; Johnson, RW; Broussard, SR (2003). "Cytokine-induced sickness behavior". Brain, Behavior, and Immunity. 17 Suppl 1 (1): S112–8. doi:10.1016/S0889-1591(02)00077-6. PMID 12615196.
  18. ^ Marx, John (2006). Rosen's emergency medicine: concepts and clinical practice. Mosby/Elsevier. p. 2239. ISBN 978-0-323-02845-5.
  19. ^ Hutchison, James S.; et al. (June 2008). "Hypothermia therapy after traumatic brain injury in children". New England Journal of Medicine. 358 (23): 2447–2456. doi:10.1056/NEJMoa0706930. PMID 18525042.
  20. ^ Pryor, Jennifer A.; Prasad, Ammani S. (2008). Physiotherapy for Respiratory and Cardiac Problems: Adults and Paediatrics. Elsevier Health Sciences. p. 8. ISBN 0702039748.
  21. ^ Grunau, Brian E.; Wiens, Matthew O.; Brubacher, Jeffrey R. (September 2010). "Dantrolene in the treatment of MDMA-related hyperpyrexia: a systematic review". Canadian Journal of Emergency Medicine. 12 (5): 435–442. doi:10.1017/s1481803500012598. PMID 20880437. Dantrolene may also be associated with improved survival and reduced complications, especially in patients with extreme (≥ 42 °C) or severe (≥ 40 °C) hyperpyrexia
  22. ^ Sharma, Hari Shanker, ed. (2007). Neurobiology of Hyperthermia (1st ed.). Elsevier. pp. 175–177, 485. ISBN 9780080549996. Retrieved 19 November 2016. Despite the myriad of complications associated with heat illness, an elevation of core temperature above 41.0 °C (often referred to as fever or hyperpyrexia) is the most widely recognized symptom of this syndrome.
  23. ^ Niven, Daniel J.; Gaudet, Jonathan E.; Laupland, Kevin B.; Mrklas, Kelly J.; Roberts, Derek J.; Stelfox, Henry Thomas (17 November 2015). "Accuracy of Peripheral Thermometers for Estimating Temperature". Annals of Internal Medicine. 163 (10): 768. doi:10.7326/M15-1150. PMID 26571241.
  24. ^ Barone JE (August 2009). "Fever: Fact and fiction". J Trauma. 67 (2): 406–9. doi:10.1097/TA.0b013e3181a5f335. PMID 19667898.
  25. ^ Sund-Levander M, Forsberg C, Wahren LK (June 2002). "Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review". Scand J Caring Sci. 16 (2): 122–8. doi:10.1046/j.1471-6712.2002.00069.x. PMID 12000664.
  26. ^ Longo, Dan L.; Fauci, Anthony; Kasper, Dennis; Hauser, Stephen; Jameson, J.; Loscalzo, Joseph (2011). Harrison's principles of internal medicine (18 ed.). New York: McGraw-Hill. p. 4012. ISBN 978-0-07-174889-6.
  27. ^ Muhammad, Inayatullah; Shabbir Ahmad Nasir (May 2009). Bedside Techniques: Methods of clinical examination. Saira Publishers and Salamat Iqbal Press, Multan.
  28. ^ a b Ferri FF (2009). "Chapter 332. Protozoal infections". Ferri's Color Atlas and Text of Clinical Medicine. Elsevier Health Sciences. p. 1159. ISBN 978-1-4160-4919-7. Archived from the original on 3 June 2016.
  29. ^ Hilson AJ (July 1995). "Pel-Ebstein fever". N. Engl. J. Med. 333 (1): 66–7. doi:10.1056/NEJM199507063330118. PMID 7777006.. They cite Richard Asher's lecture Making Sense (Lancet, 1959, 2, 359)
  30. ^ Rolla L. Thomas (1906) [1906]. The eclectic practice of medicine. The Scudder Brothers Company. p. 261. Archived from the original on 11 May 2015.
  31. ^ Grunau BE, Wiens MO, Brubacher JR (September 2010). "Dantrolene in the treatment of MDMA-related hyperpyrexia: a systematic review". CJEM. 12 (5): 435–442. doi:10.1017/s1481803500012598. PMID 20880437. Dantrolene may also be associated with improved survival and reduced complications, especially in patients with extreme (≥ 42°C) or severe (≥ 40°C) hyperpyrexia
  32. ^ Sharma HS, ed. (2007). Neurobiology of Hyperthermia (1st ed.). Elsevier. pp. 175–177, 485. ISBN 9780080549996. Archived from the original on 8 September 2017. Retrieved 19 November 2016. Despite the myriad of complications associated with heat illness, an elevation of core temperature above 41.0°C (often referred to as fever or hyperpyrexia) is the most widely recognized symptom of this syndrome.
  33. ^ a b "Fever". Harrison's Principles of Internal Medicine 19/E (Vol.1 & Vol.2) (19 ed.). McGraw Hill Professional. 2015. p. Chapter 23. ISBN 9780071802161.
  34. ^ a b c d e McGugan EA (March 2001). "Hyperpyrexia in the emergency department". Emerg. Med. (Fremantle). 13 (1): 116–20. doi:10.1046/j.1442-2026.2001.00189.x. PMID 11476402.
  35. ^ a b Loscalzo, Joseph; Fauci, Anthony S.; Braunwald, Eugene; Dennis L. Kasper; Hauser, Stephen L; Longo, Dan L. (2008). "Chapter 17, Fever versus hyperthermia". Harrison's principles of internal medicine. McGraw-Hill Medical. ISBN 978-0-07-146633-2.
  36. ^ a b Marx 2006, p. 2506
  37. ^ Tintinalli, Judith (2004). Emergency Medicine: A Comprehensive Study Guide, Sixth edition. McGraw-Hill Professional. p. 1187. ISBN 978-0-07-138875-7.
  38. ^ Fauci, Anthony; et al. (2008). Harrison's Principles of Internal Medicine (17th ed.). McGraw-Hill Professional. pp. 117–121. ISBN 978-0-07-146633-2.
  39. ^ Puéchal, X; Terrier, B; Mouthon, L; Costedoat-Chalumeau, N; Guillevin, L; Le Jeunne, C (March 2014). "Relapsing polychondritis". Joint, Bone, Spine : Revue du Rhumatisme. 81 (2): 118–24. doi:10.1016/j.jbspin.2014.01.001. PMID 24556284.
  40. ^ Longo, Dan L. Longo (2012). Harrison's principles of internal medicine (18th ed.). New York: McGraw-Hill. ISBN 978-0071748896.
  41. ^ Massignan, Carla; Cardoso, Mariane; Porporatti, André Luís; Aydinoz, Secil; Canto, Graziela De Luca; Mezzomo, Luis Andre Mendonça; Bolan, Michele (March 2016). "Signs and Symptoms of Primary Tooth Eruption: A Meta-analysis". Pediatrics. 137 (3): e20153501. doi:10.1542/peds.2015-3501. PMID 26908659. Archived from the original on 21 February 2016.
  42. ^ a b Fauci, Anthony (2008). Harrison's Principles of Internal Medicine (17 ed.). McGraw-Hill Professional. pp. 117–121. ISBN 978-0-07-146633-2.
  43. ^ Evans SS, Repasky EA, Fisher DT (2015). "Fever and the thermal regulation of immunity: the immune system feels the heat". Nature Reviews Immunology. 15 (6): 335–349. doi:10.1038/nri3843. PMC 4786079. PMID 25976513.
  44. ^ Silhavy TJ, Kahne D, Walker S (2010). "The bacterial cell envelope". Cold Spring Harbor Perspectives in Biology. 2 (5): a000414. doi:10.1101/cshperspect.a000414. PMC 2857177. PMID 20452953.
  45. ^ a b Chapter 58 in: Walter F. Boron (2003). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. p. 1300. ISBN 978-1-4160-2328-9.
  46. ^ Stefferl, Andreas; Stephen J. Hopkins, Nancy J. Rothwell & Giamal N. Luheshi (25 April 1996). "The role of TNF-a in fever: opposing actions of human and murine TNF-oa and interactions with IL-fl in the rat". British Journal of Pharmacology. 118 (8): 1919–1924. doi:10.1111/j.1476-5381.1996.tb15625.x. PMC 1909906. PMID 8864524.
  47. ^ Roth, J; Blatteis, CM (October 2014). "Mechanisms of fever production and lysis: lessons from experimental LPS fever". Comprehensive Physiology. 4 (4): 1563–604. doi:10.1002/cphy.c130033. PMID 25428854.
  48. ^ Yen M, Ewald MB (June 2012). "Toxicity of weight loss agents". J Med Toxicol. 8 (2): 145–52. doi:10.1007/s13181-012-0213-7. PMC 3550246. PMID 22351299.
  49. ^ a b Schaffner, A (2006). "Fever--useful or noxious symptom that should be treated?". Therapeutische Umschau. Revue Therapeutique. 63 (3): 185–8. doi:10.1024/0040-5930.63.3.185. PMID 16613288.
  50. ^ Soszyński D (2003). "[The pathogenesis and the adaptive value of fever]". Postepy Hig Med Dosw (in Polish). 57 (5): 531–54. PMID 14737969.
  51. ^ Kluger MJ, Kozak W, Conn CA, Leon LR, Soszynski D (September 1998). "Role of fever in disease". Ann. N. Y. Acad. Sci. 856: 224–33. doi:10.1111/j.1749-6632.1998.tb08329.x. PMID 9917881.
  52. ^ Su F, Nguyen ND, Wang Z, Cai Y, Rogiers P, Vincent JL (June 2005). "Fever control in septic shock: beneficial or harmful?". Shock. 23 (6): 516–20. PMID 15897803.
  53. ^ Rantala, S; Vuopio-Varkila, J; Vuento, R; Huhtala, H; Syrjänen, J (2009). "Predictors of mortality in beta-hemolytic streptococcal bacteremia: a population-based study". The Journal of Infection. 58 (4): 266–72. doi:10.1016/j.jinf.2009.01.015. PMID 19261333.
  54. ^ Fischler MP, Reinhart WH (May 1997). "[Fever: friend or enemy?]". Schweiz Med Wochenschr (in German). 127 (20): 864–70. PMID 9289813.
  55. ^ Craven, R and Hirnle, C. (2006). Fundamentals of nursing: Human health and function. Fourth edition. p. 1044
  56. ^ Lewis, SM, Heitkemper, MM, and Dirksen, SR. (2007). Medical-surgical nursing: Assessment and management of clinical problems. sixth edition. p. 212
  57. ^ a b "Fever". Medline Plus Medical Encyclopedia. U.S. National Library of Medicine. Archived from the original on 11 May 2009. Retrieved 20 May 2009.
  58. ^ "What To Do If You Get Sick: 2009 H1N1 and Seasonal Flu". Centers for Disease Control and Prevention. 7 May 2009. Archived from the original on 3 November 2009. Retrieved 1 November 2009.
  59. ^ Drewry, Anne M.; Ablordeppey, Enyo A.; Murray, Ellen T.; Stoll, Carolyn R. T.; Izadi, Sonya R.; Dalton, Catherine M.; Hardi, Angela C.; Fowler, Susan A.; Fuller, Brian M.; Colditz, Graham A. (February 2017). "Antipyretic Therapy in Critically Ill Septic Patients". Critical Care Medicine. 45 (5): 806–813. doi:10.1097/CCM.0000000000002285. PMC 5389594. PMID 28221185.
  60. ^ Meremikwu M, Oyo-Ita A; Oyo-Ita (2003). Meremikwu, Martin M (ed.). "Physical methods for treating fever in children". Cochrane Database Syst Rev (2): CD004264. doi:10.1002/14651858.CD004264. PMID 12804512.
  61. ^ "Fever". National Institute of Health. Archived from the original on 30 April 2016.
  62. ^ Guppy MP, Mickan SM, Del Mar CB, Thorning S, Rack A (February 2011). "Advising patients to increase fluid intake for treating acute respiratory infections". Cochrane Database Syst Rev (2): CD004419. doi:10.1002/14651858.CD004419.pub3. PMID 21328268.
  63. ^ a b Perrott DA, Piira T, Goodenough B, Champion GD (June 2004). "Efficacy and safety of acetaminophen vs ibuprofen for treating children's pain or fever: a meta-analysis". Arch Pediatr Adolesc Med. 158 (6): 521–6. doi:10.1001/archpedi.158.6.521. PMID 15184213.
  64. ^ Hay AD, Redmond NM, Costelloe C, Montgomery AA, Fletcher M, Hollinghurst S, Peters TJ (May 2009). "Paracetamol and ibuprofen for the treatment of fever in children: the PITCH randomised controlled trial". Health Technol Assess. 13 (27): iii–iv, ix–x, 1–163. doi:10.3310/hta13270. PMID 19454182.
  65. ^ Southey ER, Soares-Weiser K, Kleijnen J (September 2009). "Systematic review and meta-analysis of the clinical safety and tolerability of ibuprofen compared with paracetamol in paediatric pain and fever". Curr Med Res Opin. 25 (9): 2207–22. doi:10.1185/03007990903116255. PMID 19606950.
  66. ^ Meremikwu M, Oyo-Ita A (2002). "Paracetamol for treating fever in children". Cochrane Database Syst Rev (2): CD003676. doi:10.1002/14651858.CD003676. PMID 12076499.
  67. ^ Autret E, Reboul-Marty J, Henry-Launois B, Laborde C, Courcier S, Goehrs JM, et al. (1997). "Evaluation of ibuprofen versus aspirin and paracetamol on efficacy and comfort in children with fever". Eur. J. Clin. Pharmacol. 51 (5): 367–71. doi:10.1007/s002280050215. PMID 9049576.
  68. ^ "2.9 Antiplatelet drugs". British National Formulary for Children. British Medical Association and Royal Pharmaceutical Society of Great Britain. 2007. p. 151.
  69. ^ a b Wong T, Stang AS, Ganshorn H, Hartling L, Maconochie IK, Thomsen AM, Johnson DW (October 2013). "Combined and alternating paracetamol and ibuprofen therapy for febrile children". Cochrane Database Syst Rev (10): CD009572. doi:10.1002/14651858.CD009572.pub2. PMID 24174375.
  70. ^ King D (August 2013). "Question 2: does a failure to respond to antipyretics predict serious illness in children with a fever?". Arch. Dis. Child. 98 (8): 644–6. doi:10.1136/archdischild-2013-304497. PMID 23846358.
  71. ^ Nassisi D, Oishi ML (January 2012). "Evidence-based guidelines for evaluation and antimicrobial therapy for common emergency department infections". Emerg Med Pract. 14 (1): 1–28, quiz 28–9. PMID 22292348.
  72. ^ a b Sajadi MM, Bonabi R, Sajadi MR, Mackowiak PA (October 2012). "Akhawayni and the first fever curve". Clin. Infect. Dis. 55 (7): 976–80. doi:10.1093/cid/cis596. PMID 22820543.
  73. ^ a b c Crocetti M, Moghbeli N, Serwint J (June 2001). "Fever phobia revisited: have parental misconceptions about fever changed in 20 years?". Pediatrics. 107 (6): 1241–6. doi:10.1542/peds.107.6.1241. PMID 11389237.
  74. ^ Klass, Perri (10 January 2011). "Lifting a Veil of Fear to See a Few Benefits of Fever". The New York Times. Archived from the original on 29 September 2015.
  75. ^ "Equusite Vital Signs". www.equusite.com. Archived from the original on 26 March 2010. Retrieved 22 March 2010.
  76. ^ Schmidt-Nielsen, Knut; Schmidt-Nielsen, Bodil; Jarnum, S. A.; Houpt, T. R. (1956). "Body Temperature of the Camel and Its Relation to Water Economy". American Journal of Physiology. Legacy Content. 188: 103–112. doi:10.1152/ajplegacy.1956.188.1.103.
  77. ^ a b Thomas MB, Blanford S (July 2003). "Thermal biology in insect-parasite interactions". Trends in Ecology & Evolution. 18 (7): 344–350. doi:10.1016/S0169-5347(03)00069-7.

Further reading

  • Rhoades, R. and Pflanzer, R. Human physiology, third edition, chapter 27 Regulation of body temperature, p. 820 Clinical focus: pathogenesis of fever. ISBN 0-03-005159-2

External links

External resources
Allergic rhinitis

Allergic rhinitis, also known as hay fever, is a type of inflammation in the nose which occurs when the immune system overreacts to allergens in the air. Signs and symptoms include a runny or stuffy nose, sneezing, red, itchy, and watery eyes, and swelling around the eyes. The fluid from the nose is usually clear. Symptom onset is often within minutes following exposure and they can affect sleep, the ability to work, and the ability to concentrate at school. Those whose symptoms are due to pollen typically develop symptoms during specific times of the year. Many people with allergic rhinitis also have asthma, allergic conjunctivitis, or atopic dermatitis.Allergic rhinitis is typically triggered by environmental allergens such as pollen, pet hair, dust, or mold. Inherited genetics and environmental exposures contribute to the development of allergies. Growing up on a farm and having multiple siblings decreases the risk. The underlying mechanism involves IgE antibodies attaching to the allergen and causing the release of inflammatory chemicals such as histamine from mast cells. Diagnosis is usually based on a medical history in combination with a skin prick test or blood tests for allergen-specific IgE antibodies. These tests, however, are sometimes falsely positive. The symptoms of allergies resemble those of the common cold; however, they often last for more than two weeks and typically do not include a fever.Exposure to animals in early life might reduce the risk of developing allergies to them later. A number of medications may improve symptoms including nasal steroids, antihistamines such as diphenhydramine, cromolyn sodium, and leukotriene receptor antagonists such as montelukast. Medications are, however, not sufficient or are associated with side effects in many people. Exposing people to larger and larger amounts of allergen, known as allergen immunotherapy, is often effective. The allergen may be given as injections just under the skin or as a tablet under the tongue. Treatment typically lasts three to five years after which benefits may be prolonged.Allergic rhinitis is the type of allergy that affects the greatest number of people. In Western countries, between 10–30% of people are affected in a given year. It is most common between the ages of twenty and forty. The first accurate description is from the 10th century physician Rhazes. Pollen was identified as the cause in 1859 by Charles Blackley. In 1906, the mechanism was determined by Clemens von Pirquet. The link with hay came about due to an early (and incorrect) theory that the symptoms were brought about by the smell of new hay.

Argentine hemorrhagic fever

Argentine hemorrhagic fever (AHF) or O'Higgins disease, also known in Argentina as mal de los rastrojos, stubble disease, is a hemorrhagic fever and zoonotic infectious disease occurring in Argentina. It is caused by the Junín virus (an arenavirus, closely related to the Machupo virus, causative agent of Bolivian hemorrhagic fever). Its vector is a species of rodent, the corn mouse.

Bolivian hemorrhagic fever

Bolivian hemorrhagic fever (BHF), also known as black typhus or Ordog Fever, is a hemorrhagic fever and zoonotic infectious disease originating in Bolivia after infection by Machupo mammarenavirus.BHF was first identified in 1963 as an ambisense RNA virus of the Arenaviridae family, by a research group led by Karl Johnson. The mortality rate is estimated at 5 to 30 percent. Due to its pathogenicity, Machupo virus requires Biosafety Level Four conditions, the highest level.During the period between February and March 2007, some 20 suspected BHF cases (3 fatal) were reported to the El Servicio Departamental de Salud (SEDES) in Beni Department, Bolivia. In February 2008, at least 200 suspected new cases (12 fatal) were reported to SEDES. In November 2011, a second case was confirmed near the departmental capital of Trinidad, and a serosurvey was conducted to determine the extent of Machupo virus infections in the Department. A SEDES expert involved in the survey expressed his concerns about the expansion of the virus to other provinces outside the endemic regions of Mamoré and Iténez provinces.

Brucellosis

Brucellosis is a highly contagious zoonosis caused by ingestion of unpasteurized milk or undercooked meat from infected animals, or close contact with their secretions. It is also known as undulant fever, Malta fever, and Mediterranean fever.Brucella species are small, Gram-negative, nonmotile, non-spore-forming, rod-shaped (coccobacilli) bacteria. They function as facultative intracellular parasites, causing chronic disease, which usually persists for life. Four species infect humans: B. abortus, B. canis, B. melitensis, and B. suis. B. abortus is less virulent than B. melitensis and is primarily a disease of cattle. B. canis affects dogs. B. melitensis is the most virulent and invasive species; it usually infects goats and occasionally sheep. B. suis is of intermediate virulence and chiefly infects pigs. Symptoms include profuse sweating and joint and muscle pain. Brucellosis has been recognized in animals and humans since the 20th century.

Cat-scratch disease

Cat-scratch disease (CSD) is an infectious disease that results from a scratch or bite of a cat. Symptoms typically include a non-painful bump or blister at the site of injury and painful and swollen lymph nodes. People may feel tired, have a headache, or a fever. Symptoms typically begin within 3-14 days following infection.Cat-scratch disease is caused by the bacterium Bartonella henselae which is believed to be spread by the cat’s saliva. Young cats pose a greater risk than older cats. Occasionally dog scratches or bites may be involved. Diagnosis is generally based on symptoms. Confirmation is possible by blood tests.The primary treatment is supportive. Antibiotics speed healing and are recommended in those with severe disease or immune problems. Recovery typically occurs within 4 months but can require a year. About 1 in 10,000 people are affected. It is more common in children.

Dengue fever

Dengue fever is a mosquito-borne tropical disease caused by the dengue virus. Symptoms typically begin three to fourteen days after infection. This may include a high fever, headache, vomiting, muscle and joint pains, and a characteristic skin rash. Recovery generally takes two to seven days. In a small proportion of cases, the disease develops into severe dengue, also known as dengue hemorrhagic fever, resulting in bleeding, low levels of blood platelets and blood plasma leakage, or into dengue shock syndrome, where dangerously low blood pressure occurs.Dengue is spread by several species of female mosquitoes of the Aedes type, principally A. aegypti. The virus has five types; infection with one type usually gives lifelong immunity to that type, but only short-term immunity to the others. Subsequent infection with a different type increases the risk of severe complications. A number of tests are available to confirm the diagnosis including detecting antibodies to the virus or its RNA.A vaccine for dengue fever has been approved and is commercially available in a number of countries. The vaccine, however, is only recommended in those who have been previously infected. Other methods of prevention include reducing mosquito habitat and limiting exposure to bites. This may be done by getting rid of or covering standing water and wearing clothing that covers much of the body. Treatment of acute dengue is supportive and includes giving fluid either by mouth or intravenously for mild or moderate disease. For more severe cases, blood transfusion may be required. About half a million people require hospital admission every year. Paracetamol (acetaminophen) is recommended instead of nonsteroidal anti-inflammatory drugs (NSAIDs) for fever reduction and pain relief in dengue due to an increased risk of bleeding from NSAID use.Dengue has become a global problem since the Second World War and is common in more than 110 countries, mainly in Asia and South America. Each year between 50 and 528 million people are infected and approximately 10,000 to 20,000 die. The earliest descriptions of an outbreak date from 1779. Its viral cause and spread were understood by the early 20th century. Apart from eliminating the mosquitos, work is ongoing for medication targeted directly at the virus. It is classified as a neglected tropical disease.

Dysentery

Dysentery is an inflammatory disease of the intestine, especially of the colon, which always results in severe diarrhea and abdominal pains. Other symptoms may include fever and a feeling of incomplete defecation. The disease is caused by several types of infectious pathogens such as bacteria, viruses and parasites.

Ebola virus disease

Ebola virus disease (EVD), also known as Ebola hemorrhagic fever (EHF) or simply Ebola, is a viral hemorrhagic fever of humans and other primates caused by ebolaviruses. Signs and symptoms typically start between two days and three weeks after contracting the virus with a fever, sore throat, muscular pain, and headaches. Vomiting, diarrhea and rash usually follow, along with decreased function of the liver and kidneys. At this time, some people begin to bleed both internally and externally. The disease has a high risk of death, killing between 25 and 90 percent of those infected, with an average of about 50 percent. This is often due to low blood pressure from fluid loss, and typically follows six to sixteen days after symptoms appear.The virus spreads through direct contact with body fluids, such as blood from infected humans or other animals. Spread may also occur from contact with items recently contaminated with bodily fluids. Spread of the disease through the air between primates, including humans, has not been documented in either laboratory or natural conditions. Semen or breast milk of a person after recovery from EVD may carry the virus for several weeks to months. Fruit bats are believed to be the normal carrier in nature, able to spread the virus without being affected by it. Other diseases such as malaria, cholera, typhoid fever, meningitis and other viral hemorrhagic fevers may resemble EVD. Blood samples are tested for viral RNA, viral antibodies or for the virus itself to confirm the diagnosis.Control of outbreaks requires coordinated medical services and community engagement. This includes rapid detection, contact tracing of those who have been exposed, quick access to laboratory services, care for those infected, and proper disposal of the dead through cremation or burial. Samples of body fluids and tissues from people with the disease should be handled with special caution. Prevention includes limiting the spread of disease from infected animals to humans by handling potentially infected bushmeat only while wearing protective clothing, and by thoroughly cooking bushmeat before eating it. It also includes wearing proper protective clothing and washing hands when around a person with the disease. An Ebola vaccine has been studied in Africa with promising results. No specific treatment is available, although a number of potential treatments are being studied. Supportive efforts, however, improve outcomes. This includes either oral rehydration therapy (drinking slightly sweetened and salty water) or giving intravenous fluids as well as treating symptoms.The disease was first identified in 1976 in two simultaneous outbreaks: one in Nzara (a town in South Sudan) and the other in Yambuku (Democratic Republic of the Congo), a village near the Ebola River from which the disease takes its name. EVD outbreaks occur intermittently in tropical regions of sub-Saharan Africa. Between 1976 and 2013, the World Health Organization reports a total of 24 outbreaks involving 1,716 cases. The largest outbreak to date was the epidemic in West Africa, which occurred from December 2013 to January 2016 with 28,616 cases and 11,310 deaths. It was declared no longer an emergency on 29 March 2016. Other outbreaks in Africa began in the Democratic Republic of the Congo in May 2017, and 2018.

Infectious mononucleosis

Infectious mononucleosis (IM, mono), also known as glandular fever, is an infection usually caused by the Epstein–Barr virus (EBV). Most people are infected by the virus as children, when the disease produces few or no symptoms. In young adults, the disease often results in fever, sore throat, enlarged lymph nodes in the neck, and tiredness. Most people recover in two to four weeks; however, feeling tired may last for months. The liver or spleen may also become swollen, and in less than one percent of cases splenic rupture may occur.While usually caused by Epstein–Barr virus, also known as human herpesvirus 4, which is a member of the herpes virus family, a few other viruses may also cause the disease. It is primarily spread through saliva but can rarely be spread through semen or blood. Spread may occur by objects such as drinking glasses or toothbrushes. Those who are infected can spread the disease weeks before symptoms develop. Mono is primarily diagnosed based on the symptoms and can be confirmed with blood tests for specific antibodies. Another typical finding is increased blood lymphocytes of which more than 10% are atypical. The monospot test is not recommended for general use due to poor accuracy.There is no vaccine for EBV, but infection can be prevented by not sharing personal items or saliva with an infected person. Mono generally improves without any specific treatment. Symptoms may be reduced by drinking enough fluids, getting sufficient rest, and taking pain medications such as paracetamol (acetaminophen) and ibuprofen.Mono most commonly affects those between the ages of 15 to 24 years in the developed world. In the developing world, people are more often infected in early childhood when the symptoms are less. In those between 16 and 20 it is the cause of about 8% of sore throats. About 45 out of 100,000 people develop infectious mono each year in the United States. Nearly 95% of people have had an EBV infection by the time they are adults. The disease occurs equally at all times of the year. Mononucleosis was first described in the 1920s and colloquially known as "the kissing disease".

Malaria

Malaria is a mosquito-borne infectious disease that affects humans and other animals. Malaria causes symptoms that typically include fever, tiredness, vomiting, and headaches. In severe cases it can cause yellow skin, seizures, coma, or death. Symptoms usually begin ten to fifteen days after being bitten by an infected mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria.It is caused by single-celled microorganisms of the Plasmodium group. The disease is most commonly spread by an infected female Anopheles mosquito. The mosquito bite introduces the parasites from the mosquito's saliva into a person's blood. The parasites travel to the liver where they mature and reproduce. Five species of Plasmodium can infect and be spread by humans. Most deaths are caused by P. falciparum because P. vivax, P. ovale, and P. malariae generally cause a milder form of malaria. The species P. knowlesi rarely causes disease in humans. Malaria is typically diagnosed by the microscopic examination of blood using blood films, or with antigen-based rapid diagnostic tests. Methods that use the polymerase chain reaction to detect the parasite's DNA have been developed, but are not widely used in areas where malaria is common due to their cost and complexity.The risk of disease can be reduced by preventing mosquito bites through the use of mosquito nets and insect repellents, or with mosquito control measures such as spraying insecticides and draining standing water. Several medications are available to prevent malaria in travellers to areas where the disease is common. Occasional doses of the combination medication sulfadoxine/pyrimethamine are recommended in infants and after the first trimester of pregnancy in areas with high rates of malaria. Despite a need, no effective vaccine exists, although efforts to develop one are ongoing. The recommended treatment for malaria is a combination of antimalarial medications that includes an artemisinin. The second medication may be either mefloquine, lumefantrine, or sulfadoxine/pyrimethamine. Quinine along with doxycycline may be used if an artemisinin is not available. It is recommended that in areas where the disease is common, malaria is confirmed if possible before treatment is started due to concerns of increasing drug resistance. Resistance among the parasites has developed to several antimalarial medications; for example, chloroquine-resistant P. falciparum has spread to most malarial areas, and resistance to artemisinin has become a problem in some parts of Southeast Asia.The disease is widespread in the tropical and subtropical regions that exist in a broad band around the equator. This includes much of Sub-Saharan Africa, Asia, and Latin America. In 2016, there were 216 million cases of malaria worldwide resulting in an estimated 445,000 to 731,000 deaths. Approximately 90% of both cases and deaths occurred in Africa. Rates of disease have decreased from 2000 to 2015 by 37%, but increased from 2014, during which there were 198 million cases. Malaria is commonly associated with poverty and has a major negative effect on economic development. In Africa, it is estimated to result in losses of US$12 billion a year due to increased healthcare costs, lost ability to work, and negative effects on tourism.

Plague (disease)

Plague is an infectious disease caused by the bacterium Yersinia pestis. Symptoms include fever, weakness and headache. Usually this begins one to seven days after exposure. In the bubonic form there is also swelling of lymph nodes, while in the septicemic form tissues may turn black and die, and in the pneumonic form shortness of breath, cough and chest pain may occur.Bubonic and septicemic plague is generally spread by flea bites or handling an infected animal. The pneumonitic form is generally spread between people through the air via infectious droplets. Diagnosis is typically by finding the bacterium in fluid from a lymph node, blood or sputum.Those at high risk may be vaccinated. Those exposed to a case of pneumonic plague may be treated with preventative medication. If infected, treatment is with antibiotics and supportive care. Typically antibiotics include a combination of gentamicin and a fluoroquinolone. The risk of death with treatment is about 10% while without it is about 70%.Globally about 600 cases are reported a year. In 2017 the countries with the most cases include the Democratic Republic of the Congo, Madagascar and Peru. In the United States infections occasionally occur in rural areas and the bacteria is believed to circulate among rodents. It has historically occurred in large outbreaks, with the best known being the Black Death in the 14th century, which resulted in greater than 50 million dead.

Rheumatic fever

Rheumatic fever (RF) is an inflammatory disease that can involve the heart, joints, skin, and brain. The disease typically develops two to four weeks after a streptococcal throat infection. Signs and symptoms include fever, multiple painful joints, involuntary muscle movements, and occasionally a characteristic non-itchy rash known as erythema marginatum. The heart is involved in about half of the cases. Damage to the heart valves, known as rheumatic heart disease (RHD), usually occurs after repeated attacks but can sometimes occur after one. The damaged valves may result in heart failure, atrial fibrillation and infection of the valves.Rheumatic fever may occur following an infection of the throat by the bacterium Streptococcus pyogenes. If the infection is untreated rheumatic fever can occur in up to three percent of people. The underlying mechanism is believed to involve the production of antibodies against a person's own tissues. Due to their genetics, some people are more likely to get the disease when exposed to the bacteria than others. Other risk factors include malnutrition and poverty. Diagnosis of RF is often based on the presence of signs and symptoms in combination with evidence of a recent streptococcal infection.Treating people who have strep throat with antibiotics, such as penicillin, decreases the risk of developing rheumatic fever. In order to avoid antibiotic misuse this often involves testing people with sore throats for the infection, which may not be available in the developing world. Other preventive measures include improved sanitation. In those with rheumatic fever and rheumatic heart disease, prolonged periods of antibiotics are sometimes recommended. Gradual return to normal activities may occur following an attack. Once RHD develops, treatment is more difficult. Occasionally valve replacement surgery or valve repair is required. Otherwise complications are treated as per normal.Rheumatic fever occurs in about 325,000 children each year and about 33.4 million people currently have rheumatic heart disease. Those who develop RF are most often between the ages of 5 and 14, with 20% of first-time attacks occurring in adults. The disease is most common in the developing world and among indigenous peoples in the developed world. In 2015 it resulted in 319,400 deaths down from 374,000 deaths in 1990. Most deaths occur in the developing world where as many as 12.5% of people affected may die each year. Descriptions of the condition are believed to date back to at least the 5th century BCE in the writings of Hippocrates. The disease is so named because its symptoms are similar to those of some rheumatic disorders.

Rocky Mountain spotted fever

Rocky Mountain spotted fever (RMSF) is a bacterial disease spread by ticks. It typically begins with a fever and headache, which is followed a few days later with the development of a rash. The rash is generally made up of small spots of bleeding and starts on the wrists and ankles. Other symptoms may include muscle pains and vomiting. Long-term complications following recovery may include hearing loss or loss of part of an arm or leg.The disease is caused by Rickettsia rickettsii, a type of bacterium that is primarily spread to humans by American dog ticks, Rocky Mountain wood ticks, and brown dog ticks. Rarely the disease is spread by blood transfusions. Diagnosis in the early stages is difficult. A number of laboratory tests can confirm the diagnosis but treatment should be begun based on symptoms. It is within a group known as spotted fever rickettsiosis, together with Rickettsia parkeri rickettsiosis, Pacific Coast tick fever, and rickettsialpox.Treatment of RMSF is with the antibiotic doxycycline. It works best when started early and is recommended in all age groups as well as during pregnancy. Antibiotics are not recommended for prevention. Approximately 0.5% of people who are infected die as a result. Before the discovery of tetracycline in the 1940s, more than 10% of those with RMSF died.Less than 5,000 cases are reported a year in the United States, most often in June and July. It has been diagnosed throughout the contiguous United States, Western Canada, and parts of Central and South America. Rocky Mountain spotted fever was first identified in the 1800s in the Rocky Mountains.

Saturday Night Fever

Saturday Night Fever is a 1977 American drama film directed by John Badham. It stars John Travolta as Tony Manero, a working-class young man who spends his weekends dancing and drinking at a local Brooklyn discothèque; Karen Lynn Gorney as Stephanie Mangano, his dance partner and eventual confidante; and Donna Pescow as Annette, Tony's former dance partner and would-be girlfriend. While in the disco, Tony is the champion dancer. His circle of friends and weekend dancing help him to cope with the harsh realities of his life: a dead-end job, clashes with his unsupportive and squabbling parents, racial tensions in the local community, and his general restlessness.

The story is based upon a 1976 New York magazine article by British writer Nik Cohn, "Tribal Rites of the New Saturday Night"; in the mid-1990s, Cohn acknowledged that he fabricated the article. A newcomer to the United States and a stranger to the disco lifestyle, Cohn was unable to make any sense of the subculture he had been assigned to write about; instead, the character who became Tony Manero was based on an English mod acquaintance of Cohn.A huge commercial success, the film significantly helped to popularize disco music around the world and made Travolta, already well known from his role on TV's Welcome Back, Kotter, a household name. The Saturday Night Fever soundtrack, featuring disco songs by the Bee Gees, is one of the best-selling soundtracks of all time. The film showcased aspects of the music, the dancing, and the subculture surrounding the disco era: symphony-orchestrated melodies; haute couture styles of clothing; pre-AIDS sexual promiscuity; and graceful choreography. The sequel Staying Alive (1983) also starred John Travolta and was directed by Sylvester Stallone, but received less positive reception. In 2010, Saturday Night Fever was deemed "culturally, historically, or aesthetically significant" by the Library of Congress and selected for preservation in the National Film Registry.

Scarlet fever

Scarlet fever is a disease which can occur as a result of a group A streptococcus (group A strep) infection, also known as Streptococcus pyogenes. The signs and symptoms include a sore throat, fever, headaches, swollen lymph nodes, and a characteristic rash. The rash is red and feels like sandpaper and the tongue may be red and bumpy. It most commonly affects children between five and 15 years of age.Scarlet fever affects a small number of people who have strep throat or streptococcal skin infections. The bacteria are usually spread by people coughing or sneezing. It can also be spread when a person touches an object that has the bacteria on it and then touches their mouth or nose. The characteristic rash is due to the erythrogenic toxin, a substance produced by some types of the bacterium. The diagnosis is typically confirmed by culturing the throat.There is no vaccine. Prevention is by frequent handwashing, not sharing personal items, and staying away from other people when sick. The disease is treatable with antibiotics, which prevent most complications. Outcomes with scarlet fever are typically good if treated. Long-term complications as a result of scarlet fever include kidney disease, rheumatic heart disease, and arthritis. It was a leading cause of death in children in the early 20th century.

Streptococcal pharyngitis

Streptococcal pharyngitis, also known as strep throat, is an infection of the back of the throat including the tonsils caused by group A streptococcus (GAS). Common symptoms include fever, sore throat, red tonsils, and enlarged lymph nodes in the neck. A headache, and nausea or vomiting may also occur. Some develop a sandpaper-like rash which is known as scarlet fever. Symptoms typically begin one to three days after exposure and last seven to ten days.Strep throat is spread by respiratory droplets from an infected person. It may be spread directly or by touching something that has droplets on it and then touching the mouth, nose, or eyes. Some people may carry the bacteria without symptoms. It may also be spread by skin infected with group A strep. The diagnosis is made based on the results of a rapid antigen detection test or throat culture in those who have symptoms.Prevention is by washing hands and not sharing eating utensils. There is no vaccine for the disease. Treatment with antibiotics is only recommended in those with a confirmed diagnosis. Those infected should stay away from other people for at least 24 hours after starting treatment. Pain can be treated with paracetamol (acetaminophen) and nonsteroidal anti-inflammatory drugs (NSAIDS) such as ibuprofen.Strep throat is a common bacterial infection in children. It is the cause of 15–40% of sore throats among children and 5–15% among adults. Cases are more common in late winter and early spring. Potential complications include rheumatic fever and peritonsillar abscess.

Typhoid fever

Typhoid fever, also known simply as typhoid, is a bacterial infection due to specific type of Salmonella that causes symptoms. Symptoms may vary from mild to severe and usually begin six to thirty days after exposure. Often there is a gradual onset of a high fever over several days. This is commonly accompanied by weakness, abdominal pain, constipation, headaches, and mild vomiting. Some people develop a skin rash with rose colored spots. In severe cases people may experience confusion. Without treatment, symptoms may last weeks or months. Diarrhea is uncommon. Other people may carry the bacterium without being affected; however, they are still able to spread the disease to others. Typhoid fever is a type of enteric fever, along with paratyphoid fever.The cause is the bacterium Salmonella enterica subsp. enterica growing in the intestines and blood. Typhoid is spread by eating or drinking food or water contaminated with the feces of an infected person. Risk factors include poor sanitation and poor hygiene. Those who travel in the developing world are also at risk. Only humans can be infected. Symptoms are similar to those of many other infectious diseases. Diagnosis is by either culturing the bacteria or detecting the bacterium's DNA in the blood, stool, or bone marrow. Culturing the bacterium can be difficult. Bone marrow testing is the most accurate.A typhoid vaccine can prevent about 40% to 90% of cases during the first two years. The vaccine may have some effect for up to seven years. It is recommended for those at high risk or people traveling to areas where the disease is common. Other efforts to prevent the disease include providing clean drinking water, good sanitation, and handwashing. Until it has been confirmed that an individual's infection is cleared, the individual should not prepare food for others. The disease is treated with antibiotics such as azithromycin, fluoroquinolones or third generation cephalosporins. Resistance to these antibiotics has been developing, which has made treatment of the disease more difficult.In 2015, there were 12.5 million new cases worldwide. The disease is most common in India. Children are most commonly affected. Rates of disease decreased in the developed world in the 1940s as a result of improved sanitation and use of antibiotics to treat the disease. Each year in the United States, about 400 cases are reported and it is estimated that the disease occurs in about 6,000 people. In 2015, it resulted in about 149,000 deaths worldwide – down from 181,000 in 1990 (about 0.3% of the global total). The risk of death may be as high as 20% without treatment. With treatment, it is between 1 and 4%. Typhus is a different disease. However, the name typhoid means "resembling typhus" due to the similarity in symptoms.

Typhus

Typhus, also known as typhus fever, is a group of infectious diseases that include epidemic typhus, scrub typhus and murine typhus. Common symptoms include fever, headache, and a rash. Typically these begin one to two weeks after exposure.The diseases are caused by specific types of bacterial infection. Epidemic typhus is due to Rickettsia prowazekii spread by body lice, scrub typhus is due to Orientia tsutsugamushi spread by chiggers, and murine typhus is due to Rickettsia typhi spread by fleas.There is currently no commercially available vaccine. Prevention is by reducing exposure to the organisms that spread the disease. Treatment is with the antibiotic doxycycline. Epidemic typhus generally occurs in outbreaks when poor sanitary conditions and crowding are present. While once common, it is now rare. Scrub typhus occurs in Southeast Asia, Japan, and northern Australia. Murine typhus occurs in tropical and subtropical areas of the world.Typhus has been described since at least 1528 AD. The name comes from the Greek tûphos (τύφος) meaning hazy, describing the state of mind of those infected. While "typhoid" means "typhus-like", typhus and typhoid fever are distinct diseases caused by different types of bacteria.

Yellow fever

Yellow fever is a viral disease of typically short duration. In most cases, symptoms include fever, chills, loss of appetite, nausea, muscle pains particularly in the back, and headaches. Symptoms typically improve within five days. In about 15% of people, within a day of improving the fever comes back, abdominal pain occurs, and liver damage begins causing yellow skin. If this occurs, the risk of bleeding and kidney problems is also increased.The disease is caused by yellow fever virus and is spread by the bite of an infected female mosquito. It infects only humans, other primates, and several species of mosquitoes. In cities, it is spread primarily by Aedes aegypti, a type of mosquito found throughout the tropics and subtropics. The virus is an RNA virus of the genus Flavivirus. The disease may be difficult to tell apart from other illnesses, especially in the early stages. To confirm a suspected case, blood sample testing with polymerase chain reaction is required.A safe and effective vaccine against yellow fever exists, and some countries require vaccinations for travelers. Other efforts to prevent infection include reducing the population of the transmitting mosquito. In areas where yellow fever is common and vaccination is uncommon, early diagnosis of cases and immunization of large parts of the population are important to prevent outbreaks. Once infected, management is symptomatic with no specific measures effective against the virus. Death occurs in up to half of those who get severe disease.In 2013, yellow fever resulted in about 127,000 severe infections and 45,000 deaths, with nearly 90% of these occurring in African nations. Nearly a billion people live in an area of the world where the disease is common. It is common in tropical areas of the continents of South America and Africa, but not in Asia. Since the 1980s, the number of cases of yellow fever has been increasing. This is believed to be due to fewer people being immune, more people living in cities, people moving frequently, and changing climate increasing the habitat for mosquitoes. The disease originated in Africa, from where it spread to South America through the slave trade in the 17th century. Since the 17th century, several major outbreaks of the disease have occurred in the Americas, Africa, and Europe. In the 18th and 19th centuries, yellow fever was seen as one of the most dangerous infectious diseases. In 1927 yellow fever virus became the first human virus to be isolated.

Symptoms and signs: general / constitutional (R50–R61, 780.6–780.9)
Temperature
Aches and pains
Malaise and fatigue
Miscellaneous

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.