Femtometre

The femtometre (American spelling femtometer, symbol fm[1][2][3] derived from the Danish and Norwegian word femten, "fifteen"+Ancient Greek: μέτρον, metrοn, "unit of measurement") is an SI unit of length equal to 10−15 metres, which means a quadrillionth of one. This distance can also be called a fermi and was so named in honour of physicist Enrico Fermi, as it is a typical length-scale of nuclear physics.

Femtometre
Unit systemmetric system
Unit oflength
Symbolfm 
Conversions
1 fm in ...... is equal to ...
   SI units   1×10−15 m
   Natural units   6.1877×1019 P
1.8897×10−5 a0
   imperial/US units   3.9370×10−14 in

Definition and equivalents

1000 attometres = 1 femtometre = 1 fermi = 0.001 picometre = 1×10−15 metres

1000000 femtometres = 10 ångström = 1 nanometre.

For example, the charge radius of a proton is approximately 0.84–0.87 femtometres[4] while the radius of a gold nucleus is approximately 8.45 femtometres.[5]

1 barn = 100 fm2

History

The femtometre was adopted by the 11th Conférence Générale des Poids et Mesures, and added to SI in 1.

The fermi is named after the Italian physicist Enrico Fermi (1901–1954), one of the founders of nuclear physics. The term was coined by Robert Hofstadter in a 1956 paper published in Reviews of Modern Physics entitled "Electron Scattering and Nuclear Structure".[6] The term is widely used by nuclear and particle physicists. When Hofstadter was awarded the 1961 Nobel Prize in Physics, it subsequently appeared in the text of his 1961 Nobel Lecture, "The electron-scattering method and its application to the structure of nuclei and nucleons" (December 11, 1961).[7]

References

  1. ^ [1] Archived May 23, 2011, at the Wayback Machine
  2. ^ "Units: F". Unc.edu. Retrieved 2015-11-04.
  3. ^ "Nuclear Size and Shape" (PDF). Archived from the original on 2012-04-25.CS1 maint: BOT: original-url status unknown (link)
  4. ^ "The Case of the Shrinking Proton | Perimeter Institute". Perimeterinstitute.ca. 2013-08-23. Retrieved 2015-11-04.
  5. ^ Blatt, John M.; Weisskopf, Victor F. (1952), Theoretical Nuclear Physics, New York: Wiley, pp. 14–16.
  6. ^ Hofstadter, Robert, Department of Physics, Stanford University, Stanford, California, "Electron Scattering and Nuclear Structure," Rev. Mod. Phys. 28, 214–254 (1956) © 1956 The American Physical Society
  7. ^ Hofstadter, Robert, "The electron-scattering method and its application to the structure of nuclei and nucleons," Nobel Lecture (December 11, 1961)

8. https://en.wiktionary.org/wiki/femtometre

Alpha decay

Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of +2 e and a mass of 4 u. For example, uranium-238 decays to form thorium-234. Alpha particles have a charge +2 e, but as a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms – the charge is not usually shown.

Alpha decay typically occurs in the heaviest nuclides. Theoretically, it can occur only in nuclei somewhat heavier than nickel (element 28), where the overall binding energy per nucleon is no longer a minimum and the nuclides are therefore unstable toward spontaneous fission-type processes. In practice, this mode of decay has only been observed in nuclides considerably heavier than nickel, with the lightest known alpha emitters being the lightest isotopes (mass numbers 104–109) of tellurium (element 52). Exceptionally, however, beryllium-8 decays to two alpha particles.

Alpha decay is by far the most common form of cluster decay, where the parent atom ejects a defined daughter collection of nucleons, leaving another defined product behind. It is the most common form because of the combined extremely high nuclear binding energy and relatively small mass of the alpha particle. Like other cluster decays, alpha decay is fundamentally a quantum tunneling process. Unlike beta decay, it is governed by the interplay between both the nuclear force and the electromagnetic force.

Alpha particles have a typical kinetic energy of 5 MeV (or ≈ 0.13% of their total energy, 110 TJ/kg) and have a speed of about 15,000,000 m/s, or 5% of the speed of light. There is surprisingly small variation around this energy, due to the heavy dependence of the half-life of this process on the energy produced (see equations in the Geiger–Nuttall law). Because of their relatively large mass, electric charge of +2 e and relatively low velocity, alpha particles are very likely to interact with other atoms and lose their energy, and their forward motion can be stopped by a few centimeters of air. Approximately 99% of the helium produced on Earth is the result of the alpha decay of underground deposits of minerals containing uranium or thorium. The helium is brought to the surface as a by-product of natural gas production.

Conversion of units

Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors.

DEMOnstration Power Station

DEMO (DEMOnstration Power Station) is a proposed nuclear fusion power station that is intended to build upon the ITER experimental nuclear fusion reactor. The objectives of DEMO are usually understood to lie somewhere between those of ITER and a "first of a kind" commercial station, sometimes referred to as PROTO.

While there is no clear international consensus on exact parameters or scope, the following parameters are often used as a baseline for design studies: DEMO should produce at least 2 gigawatts of fusion power on a continuous basis, and it should produce 25 times as much power as required for breakeven. DEMO's design of 2 to 4 gigawatts of thermal output will be on the scale of a modern electric power station.To achieve its goals, DEMO must have linear dimensions about

15% larger than ITER, and a plasma density about 30% greater than ITER. As a prototype commercial fusion reactor, DEMO could make fusion energy available by 2033. It is estimated that subsequent commercial fusion reactors could be built for about a quarter of the cost of DEMO.

Debye

The debye (symbol: D) (; Dutch: [dəˈbɛiə]) is a CGS unit (a non-SI metric unit) of electric dipole moment named in honour of the physicist Peter J. W. Debye. It is defined as 1×10−18 statcoulomb-centimeters. Historically the debye was defined as the dipole moment resulting from two charges of opposite sign but an equal magnitude of 10−10 statcoulomb (generally called e.s.u. (electrostatic unit) in older literature), which were separated by 1 Ångström. This gave a convenient unit for molecular dipole moments.

Typical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Symmetric homoatomic species, e.g. chlorine, Cl2, have zero dipole moment, and highly ionic molecular species have a very large dipole moment, e.g. gas-phase potassium bromide, KBr, with a dipole moment of 10.5 D.The debye is still used in atomic physics and chemistry because SI units are inconveniently large. The smallest SI unit of electric dipole moment is the yoctocoulomb-meter, which is roughly 300,000 D. There is currently no satisfactory solution to this problem of notation without resorting to the use of scientific notation.

Femto-

Femto- (symbol f) is a unit prefix in the metric system denoting a factor of 10−15 or 0.000000000000001. Adopted by the 11th General Conference on Weights and Measures, it was added in 1964 to the SI. It is derived from the Danish word femten, meaning "fifteen".

Examples of use:

The HIV-1 virus has the mass of about 1 x 10−15 g or 1 fg. Orders of magnitude (mass)

a proton has a diameter of about 1.6 to 1.7 femtometres.

More examples available.The femtometre shares the unit symbol (fm) with the older non-SI unit fermi, to which it is equivalent. The fermi, named in honour of Enrico Fermi, is often encountered in nuclear physics.

Fermi (disambiguation)

Enrico Fermi (1901–1954) was an Italian physicist who created the world's first nuclear reactor.

Fermi or Enrico Fermi may also refer to:

Fermi (unit), a unit of length in nuclear physics equivalent to the femtometre

Fermi (microarchitecture), a microarchitecture developed by Nvidia

Enrico Fermi Institute, Chicago, Illinois, US

Fermi Linux, distributions produced by Fermilab

RA-1 Enrico Fermi, a research reactor in Argentina

Enrico Fermi Award

List of examples of lengths

This is a list of examples of lengths, in metres in order to give an understanding of lengths.

List of things named after Enrico Fermi

Enrico Fermi (1901–1954), an Italian-born, naturalized American physicist, is the eponym of the topics listed below.

Metre

The metre (Commonwealth spelling and BIPM spelling) or meter (American spelling) (from the French unit mètre, from the Greek noun μέτρον, "measure") is the base unit of length in the International System of Units (SI). The SI unit symbol is m. The metre is defined as the length of the path travelled by light in a vacuum in 1/299 792 458 of a second.The metre was originally defined in 1793 as one ten-millionth of the distance from the equator to the North Pole – as a result the Earth's circumference is approximately 40,000 km today. In 1799, it was redefined in terms of a prototype metre bar (the actual bar used was changed in 1889). In 1960, the metre was redefined in terms of a certain number of wavelengths of a certain emission line of krypton-86. In 1983, the current definition was adopted.

The imperial inch is defined as 0.0254 metres (2.54 centimetres or 25.4 millimetres). One metre is about ​3 3⁄8 inches longer than a yard, i.e. about ​39 3⁄8 inches.

Metric prefix

A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in common use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a unique symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand: one kilogram is equal to one thousand grams. The prefix milli-, likewise, may be added to metre to indicate division by one thousand; one millimetre is equal to one thousandth of a metre.

Decimal multiplicative prefixes have been a feature of all forms of the metric system, with six of these dating back to the system's introduction in the 1790s. Metric prefixes have also been used with some non-metric units. The SI prefixes are metric prefixes that were standardized for use in the International System of Units (SI) by the International Bureau of Weights and Measures (BIPM) in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities. They are also used in the Unified Code for Units of Measure (UCUM)

Nuclear force

The nuclear force (or nucleon–nucleon interaction or residual strong force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nuclear force almost identically. Since protons have charge +1 e, they experience an electric force that tends to push them apart, but at short range the attractive nuclear force is strong enough to overcome the electromagnetic force. The nuclear force binds nucleons into atomic nuclei.

The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 1.0 × 10−15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At distances less than 0.7 fm, the nuclear force becomes repulsive. This repulsive component is responsible for the physical size of nuclei, since the nucleons can come no closer than the force allows. By comparison, the size of an atom, measured in angstroms (Å, or 1.0 × 10−10 m), is five orders of magnitude larger. The nuclear force is not simple, however, since it depends on the nucleon spins, has a tensor component, and may depend on the relative momentum of the nucleons. The strong nuclear force is one of the fundamental forces of nature.

The nuclear force plays an essential role in storing energy that is used in nuclear power and nuclear weapons. Work (energy) is required to bring charged protons together against their electric repulsion. This energy is stored when the protons and neutrons are bound together by the nuclear force to form a nucleus. The mass of a nucleus is less than the sum total of the individual masses of the protons and neutrons. The difference in masses is known as the mass defect, which can be expressed as an energy equivalent. Energy is released when a heavy nucleus breaks apart into two or more lighter nuclei. This energy is the electromagnetic potential energy that is released when the nuclear force no longer holds the charged nuclear fragments together.A quantitative description of the nuclear force relies on equations that are partly empirical. These equations model the internucleon potential energies, or potentials. (Generally, forces within a system of particles can be more simply modeled by describing the system's potential energy; the negative gradient of a potential is equal to the vector force.) The constants for the equations are phenomenological, that is, determined by fitting the equations to experimental data. The internucleon potentials attempt to describe the properties of nucleon–nucleon interaction. Once determined, any given potential can be used in, e.g., the Schrödinger equation to determine the quantum mechanical properties of the nucleon system.

The discovery of the neutron in 1932 revealed that atomic nuclei were made of protons and neutrons, held together by an attractive force. By 1935 the nuclear force was conceived to be transmitted by particles called mesons. This theoretical development included a description of the Yukawa potential, an early example of a nuclear potential. Mesons, predicted by theory, were discovered experimentally in 1947. By the 1970s, the quark model had been developed, by which the mesons and nucleons were viewed as composed of quarks and gluons. By this new model, the nuclear force, resulting from the exchange of mesons between neighboring nucleons, is a residual effect of the strong force.

Orders of magnitude (area)

This page is a progressive and labelled list of the SI area orders of magnitude, with certain examples appended to some list objects.

Orders of magnitude (length)

The following are examples of orders of magnitude for different lengths.

Speckle pattern

.

A speckle pattern is an intensity pattern produced by the mutual interference of a set of wavefronts. This phenomenon has been investigated by scientists since the time of Newton, but speckles have come into prominence since the invention of the laser and have now found a variety of applications. The term speckle pattern is also commonly used in the experimental mechanics community to describe the pattern of physical speckles on a surface which is useful for measuring displacement fields via digital image correlation.

Speckle patterns typically occur in diffuse reflections of monochromatic light such as laser light. Such reflections may occur on materials such as paper, white paint, rough surfaces, or in media with a large number of scattering particles in space, such as airborne dust or in cloudy liquids.

Square metre

The square metre (international spelling as used by the International Bureau of Weights and Measures) or square meter (American spelling) is the SI derived unit of area with symbol m2.Adding and subtracting SI prefixes creates multiples and submultiples; however, as the unit is exponentiated, the quantities grow geometrically by the corresponding power of 10. For example, a kilometre is 103 (a thousand) times the length of a metre, but a square kilometre is 1032 (106, a million) times the area of a square metre, and a cubic kilometre is 1033 (109, a billion) cubic metres.

Unit of length

A unit of length refers to any discrete, pre-established length or distance having a constant magnitude which is used as a reference or convention to express linear dimension. The most common units in modern use are U.S. customary units in the United States and metric units elsewhere. British Imperial units are still used for some purposes in the United Kingdom and some other countries. The metric system is sub-divided into SI and non-SI units.

Metric units of length

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.