Extragalactic astronomy

Extragalactic astronomy is the branch of astronomy concerned with objects outside the Milky Way galaxy. In other words, it is the study of all astronomical objects which are not covered by galactic astronomy.

As instrumentation has improved, distant objects can now be examined in more detail. It is therefore useful to sub-divide this branch into Near-Extragalactic Astronomy and Far-Extragalactic Astronomy. The former deals with objects such as the galaxies of the Local Group, which are close enough to allow very detailed analyses of their contents (e.g. supernova remnants, stellar associations).

Some topics include:

Hubble deep field
Galaxies in the Hubble Deep Field

See also

References

  1. ^ M. E. Bailey; D. A. Williams (1988), Dust in the universe: the proceedings of a conference at the Department of Astronomy, University of Manchester, 14-18 December 1987, CUP Archive, p. 509, ISBN 978-0-521-35580-3
Density wave theory

Density wave theory or the Lin-Shu density wave theory is a theory proposed by C.C. Lin and Frank Shu in the mid-1960s to explain the spiral arm structure of spiral galaxies. The Lin-Shu theory introduces the idea of long-lived quasistatic spiral structure(QSSS hypothesis). In this hypothesis, the spiral pattern rotates in a particular angular frequency (pattern speed), whereas the stars in the galactic disk are orbiting at a different speed depending their distance to the galaxy center. The presence of spiral density waves in galaxies has implications on the star formation, since the gas orbiting around the galaxy may be compressed and form shock periodically. Theoretically, the formation of global spiral pattern is treated as an instability of the stellar disk caused by the self-gravity, as opposed to tidal interactions. The mathematical formulation of the theory has also been extended to other astrophysical disk systems, such as Saturn's rings.

Durham University Department of Physics

The Department of Physics at Durham University in Durham, England, is a large physics and astronomy department involved in both undergraduate teaching and scientific research. In the most recent subject review report by the Quality Assurance Agency (QAA) for Higher Education, the department achieved maximum marks (24/24) and in the 2001 Research Assessment Exercise the department retained a Grade 5A rating. In addition, the department's research into Space Science and Astrophysics was rated as number one in Europe and fourth in the world by Thomson Reuters from its Essential Science Indicators (1998–2008).

Extragalactic planet

An extragalactic planet, also known as an extragalactic exoplanet, is a star-bound planet, or rogue planet, located outside of the Milky Way Galaxy. Due to the huge distances to such worlds, they would be very hard to detect directly. However, indirect evidence suggests that such planets may exist. Nonetheless, the most distant known planets are SWEEPS-11 and SWEEPS-04, located in Sagittarius, approximately 27,710 light-years from the Sun, while the Milky Way is between 100,000 and 180,000 light years in diameter. This means that even galactic planets located farther than that distance have not been detected.

Galactic astronomy

Galactic astronomy is the study of the Milky Way galaxy and all its contents. This is in contrast to extragalactic astronomy, which is the study of everything outside our galaxy, including all other galaxies.

Galactic astronomy should not be confused with galaxy formation and evolution, which is the general study of galaxies, their formation, structure, components, dynamics, interactions, and the range of forms they take.

The Milky Way galaxy, where the Solar System belongs, is in many ways the best studied galaxy, although important parts of it are obscured from view in visible wavelengths by regions of cosmic dust. The development of radio astronomy, infrared astronomy and submillimetre astronomy in the 20th Century allowed the gas and dust of the Milky Way to be mapped for the first time.

Galactic corona

The terms galactic corona and gaseous corona have been used in the first decade of the 21st century to describe a hot, ionised, gaseous component in the galactic halo of the Milky Way. A similar body of very hot and tenuous gas in the halo of any spiral galaxy may also be described by these terms.

This coronal gas may be sustained by the galactic fountain, in which superbubbles of ionised gas from supernova remnants expand vertically through galactic chimneys into the halo. As the gas cools, it is pulled back into the galactic disc of the galaxy by gravitational forces.

Galactic coronas have been and are currently being studied extensively, in the hope of gaining a further understanding of galaxy formation. Although, considering how galaxies differ in shaping and sizing, no particular theory has been able to adequately illustrate how the galaxies in the Universe originally formed.

Galactic tide

A galactic tide is a tidal force experienced by objects subject to the gravitational field of a galaxy such as the Milky Way. Particular areas of interest concerning galactic tides include galactic collisions, the disruption of dwarf or satellite galaxies, and the Milky Way's tidal effect on the Oort cloud of the Solar System.

Galaxy morphological classification

Galaxy morphological classification is a system used by astronomers to divide galaxies into groups based on their visual appearance. There are several schemes in use by which galaxies can be classified according to their morphologies, the most famous being the Hubble sequence, devised by Edwin Hubble and later expanded by Gérard de Vaucouleurs and Allan Sandage.

Great Observatories Origins Deep Survey

The Great Observatories Origins Deep Survey, or GOODS, is an astronomical survey combining deep observations from three of NASA's Great Observatories: the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory, along with data from other space-based telescopes, such as XMM Newton, and some of the world's most powerful ground-based telescopes.

GOODS is intended to enable astronomers to study the formation and evolution of galaxies in the distant, early universe.

The Great Observatories Origins Deep Survey consists of optical and near-infrared imaging taken with the Advanced Camera for Surveys on the Hubble Space Telescope, the Very Large Telescope and the 4-m telescope at Kitt Peak National Observatory; infrared data from the Spitzer Space Telescope. These are added to pre-existing x-ray data from the Chandra X-ray Observatory and ESAs XMM-Newton, two fields of 10' by 16'; one centered on the Hubble Deep Field North (12h 36m 55s, +62° 14m 15s) and the other on the Chandra Deep Field South (3h 32m 30s, -27° 48m 20s).

The two GOODS fields are the most data-rich areas of the sky in terms of depth and wavelength coverage.

Interacting galaxy

Interacting galaxies (colliding galaxies) are galaxies whose gravitational fields result in a disturbance of one another. An example of a minor interaction is a satellite galaxy's disturbing the primary galaxy's spiral arms. An example of a major interaction is a galactic collision, which may lead to a galaxy merger.

Intergalactic dust

Intergalactic dust is cosmic dust in between galaxies in intergalactic space. Evidence for intergalactic dust has been suggested as early as 1949, and study of it grew throughout the late 20th century. There are large variations in the distribution of intergalactic dust. The dust may affect intergalactic distance measurements, such as to supernova and quasars in other galaxies.Intergalactic dust can form intergalactic dust clouds, known to exist around some galaxies since the 1960s. By the 1980s, at least four intergalactic dust clouds had been discovered within several megaparsec (Mpc) of the Milky Way galaxy, exemplified by the Okroy cloud.In February 2014, NASA announced a greatly upgraded database for tracking polycyclic aromatic hydrocarbons (PAHs) in the universe. According to scientists, more than 20% of the carbon in the universe may be associated with PAHs, possible starting materials for the formation of life. PAHs seem to have been formed as early as two billion years after the big bang, are widespread throughout the universe, and are associated with new stars and exoplanets.

Intergalactic star

An intergalactic star, also known as an intracluster star or a rogue star, is a star not gravitationally bound to any galaxy. Although a source of much discussion in the scientific community during the late 1990s, intergalactic stars are now generally thought to have originated in galaxies, like other stars, but later expelled as the result of either colliding galaxies or of a multiple star system travelling too close to a supermassive black hole, which are found at the center of many galaxies.

Collectively, intergalactic stars are referred to as the intracluster stellar population, or IC population for short, in the scientific literature.

Intracluster medium

In astronomy, the intracluster medium (ICM) is the superheated plasma that permeates a galaxy cluster. The gas consists mainly of ionized hydrogen and helium and accounts for most of the baryonic material in galaxy clusters. The ICM is heated to temperatures on the order of 10 to 100 megakelvins, emitting strong X-ray radiation.

MilkyWay@home

MilkyWay@home is a volunteer distributed computing project in astrophysics running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. Using spare computing power from over 38,000 computers run by over 27,000 active volunteers as of November 2011, the MilkyWay@home project aims to generate accurate three-dimensional dynamic models of stellar streams in the immediate vicinity of the Milky Way. With SETI@home and Einstein@home, it is the third computing project of this type that has the investigation of phenomena in interstellar space as its primary purpose. Its secondary objective is to develop and optimize algorithms for distributed computing.

Peculiar velocity

Peculiar motion or peculiar velocity refers to the velocity of an object relative to a rest frame — usually a frame in which the average velocity of some objects is zero.

Sołtan argument

The Sołtan argument is an astrophysical theory outlined in 1982 by Polish astronomer Andrzej Sołtan. It maintains that if quasars were powered by accretion onto a supermassive black hole, then such supermassive black holes must exist in our local universe as "dead" quasars.

Supergalactic coordinate system

Supergalactic coordinates are coordinates in a spherical coordinate system which was designed to have its equator aligned with the supergalactic plane, a major structure in the local universe formed by the preferential distribution of nearby galaxy clusters (such as the Virgo cluster, the Great Attractor and the Pisces-Perseus supercluster) towards a (two-dimensional) plane. The supergalactic plane was recognized by Gérard de Vaucouleurs in 1953 from the Shapley-Ames Catalog, although a flattened distribution of nebulae had been noted by William Herschel over 200 years earlier. Vera Rubin had also identified the supergalactic plane in the 1950s, but her data remained unpublished.By convention, supergalactic latitude and supergalactic longitude are usually denoted by SGB and SGL, respectively, by analogy to b and l conventionally used for galactic coordinates. The zero point for supergalactic longitude is defined by the intersection of this plane with the galactic plane.

Tully–Fisher relation

In astronomy, the Tully–Fisher relation (TFR) is an empirical relationship between the mass or intrinsic luminosity of a spiral galaxy and its asymptotic rotation velocity or emission line width. It was first published in 1977 by astronomers R. Brent Tully and J. Richard Fisher. The luminosity is calculated by multiplying the galaxy's apparent brightness by 4πd2, where d is its distance from us, and the spectral-line width is measured using long-slit spectroscopy.

Several different forms of the TFR exist, depending on which precise measures of mass, luminosity or rotation velocity one takes it to relate. Tully and Fisher used optical luminosity, but subsequent work showed the relation to be tighter when defined using microwave to infrared (K band) radiation (a good proxy for stellar mass), and even tighter when luminosity is replaced by the galaxy's total baryonic mass (the sum of its mass in stars and gas). This latter form of the relation is known as the Baryonic Tully–Fisher relation (BTFR), and states that baryonic mass is proportional to velocity to the power of roughly 3.5–4.The TFR can be used to estimate the distance to spiral galaxies by allowing the luminosity of a galaxy to be derived from its directly measurable line width. The distance can then be found by comparing the luminosity to the apparent brightness. Thus the TFR constitutes a rung of the cosmic distance ladder, where it is calibrated using more direct distance measurement techniques and used in turn to calibrate methods extending to larger distance.

In the dark matter paradigm, a galaxy's rotation velocity (and hence line width) is primarily determined by the mass of the dark matter halo in which it lives, making the TFR a manifestation of the connection between visible and dark matter mass. In Modified Newtonian dynamics (MOND), the BTFR (with power-law index exactly 4) is a direct consequence of the gravitational force law effective at low acceleration.The analogues of the TFR for non-rotationally-supported galaxies, such as ellipticals, are known as the Faber–Jackson relation and the fundamental plane.

Velocity dispersion

In astronomy, the velocity dispersion (σ) is the statistical dispersion of velocities about the mean velocity for a group of objects, such as an open cluster, globular cluster, galaxy, galaxy cluster, or supercluster. By measuring the radial velocities of its members, the velocity dispersion of a cluster can be estimated and used to derive the cluster's mass from the virial theorem. Radial velocity is found by measuring the Doppler width of spectral lines of a collection of objects. The more radial velocities one measures, the more accurately one knows their dispersion. A central velocity dispersion refers to the σ of the interior regions of an extended object, such as a galaxy or cluster.

The relationship between velocity dispersion and matter (or the observed electromagnetic radiation emitted by this matter) takes several forms in astronomy based on the object(s) being observed. For instance, the M–σ relation was found for material circling black holes, the Faber–Jackson relation for elliptical galaxies, and the Tully–Fisher relation for spiral galaxies. For example, the σ found for objects about the Milky Way's supermassive black hole (SMBH) is about 75 km/s. The Andromeda Galaxy (Messier 31) hosts a SMBH about 10 times larger than our own, and has a σ ≈ 160 km/s.Groups and clusters of galaxies have a wider range of velocity dispersions than smaller objects. For example, our own poor group, the Local Group, has a σ = 61±8 km/s. But rich clusters of galaxies, such as the Coma Cluster, have a σ ≈ 1,000 km/s. The dwarf elliptical galaxies in Coma have their own, internal, velocity dispersion for their stars, which is a σ ≲ 80 km/s, typically. Normal elliptical galaxies, by comparison, have an average σ ≈ 200 km/s.For spiral galaxies, the increase in velocity dispersion in population I stars is a gradual process which likely results from the random momentum exchanges, known as dynamical friction, between individual stars and large interstellar gas and dust clouds with masses ≳ 105 M☉. Face-on spiral galaxies have a central σ ≲ 90 km/s; slightly more if viewed edge-on.

Virgocentric flow

The Virgocentric flow (VCF) is the preferred movement of Local Group galaxies towards the Virgo cluster caused by its overwhelming gravity, which separates bound objects from the Hubble flow of cosmic expansion. The VCF can refer to the Local Group's movement towards the Virgo Supercluster, since its center is considered synonymous with the Virgo cluster, but more tedious to ascertain due to its much larger volume. The excess velocity of Local Group galaxies towards, and with respect to, the Virgo Cluster are 100 to 400 km/s. This excess velocity is referred to as each galaxy's peculiar velocity.

Astronomy by
Optical telescopes
Related topics
Portals
Major subfields of astronomy and astrophysics

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.